// -*- coding: utf-8
// vim: set fileencoding=utf-8
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_HYBRIDNONLINEARSOLVER_H
#define EIGEN_HYBRIDNONLINEARSOLVER_H
namespace Eigen {
namespace HybridNonLinearSolverSpace {
enum Status {
Running = -1,
ImproperInputParameters = 0,
RelativeErrorTooSmall = 1,
TooManyFunctionEvaluation = 2,
TolTooSmall = 3,
NotMakingProgressJacobian = 4,
NotMakingProgressIterations = 5,
UserAsked = 6
};
}
/**
* \ingroup NonLinearOptimization_Module
* \brief Finds a zero of a system of n
* nonlinear functions in n variables by a modification of the Powell
* hybrid method ("dogleg").
*
* The user must provide a subroutine which calculates the
* functions. The Jacobian is either provided by the user, or approximated
* using a forward-difference method.
*
*/
template<typename FunctorType, typename Scalar=double>
class HybridNonLinearSolver
{
public:
typedef DenseIndex Index;
HybridNonLinearSolver(FunctorType &_functor)
: functor(_functor) { nfev=njev=iter = 0; fnorm= 0.; useExternalScaling=false;}
struct Parameters {
Parameters()
: factor(Scalar(100.))
, maxfev(1000)
, xtol(std::sqrt(NumTraits<Scalar>::epsilon()))
, nb_of_subdiagonals(-1)
, nb_of_superdiagonals(-1)
, epsfcn(Scalar(0.)) {}
Scalar factor;
Index maxfev; // maximum number of function evaluation
Scalar xtol;
Index nb_of_subdiagonals;
Index nb_of_superdiagonals;
Scalar epsfcn;
};
typedef Matrix< Scalar, Dynamic, 1 > FVectorType;
typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType;
/* TODO: if eigen provides a triangular storage, use it here */
typedef Matrix< Scalar, Dynamic, Dynamic > UpperTriangularType;
HybridNonLinearSolverSpace::Status hybrj1(
FVectorType &x,
const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
);
HybridNonLinearSolverSpace::Status solveInit(FVectorType &x);
HybridNonLinearSolverSpace::Status solveOneStep(FVectorType &x);
HybridNonLinearSolverSpace::Status solve(FVectorType &x);
HybridNonLinearSolverSpace::Status hybrd1(
FVectorType &x,
const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
);
HybridNonLinearSolverSpace::Status solveNumericalDiffInit(FVectorType &x);
HybridNonLinearSolverSpace::Status solveNumericalDiffOneStep(FVectorType &x);
HybridNonLinearSolverSpace::Status solveNumericalDiff(FVectorType &x);
void resetParameters(void) { parameters = Parameters(); }
Parameters parameters;
FVectorType fvec, qtf, diag;
JacobianType fjac;
UpperTriangularType R;
Index nfev;
Index njev;
Index iter;
Scalar fnorm;
bool useExternalScaling;
private:
FunctorType &functor;
Index n;
Scalar sum;
bool sing;
Scalar temp;
Scalar delta;
bool jeval;
Index ncsuc;
Scalar ratio;
Scalar pnorm, xnorm, fnorm1;
Index nslow1, nslow2;
Index ncfail;
Scalar actred, prered;
FVectorType wa1, wa2, wa3, wa4;
HybridNonLinearSolver& operator=(const HybridNonLinearSolver&);
};
template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::hybrj1(
FVectorType &x,
const Scalar tol
)
{
n = x.size();
/* check the input parameters for errors. */
if (n <= 0 || tol < 0.)
return HybridNonLinearSolverSpace::ImproperInputParameters;
resetParameters();
parameters.maxfev = 100*(n+1);
parameters.xtol = tol;
diag.setConstant(n, 1.);
useExternalScaling = true;
return solve(x);
}
template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveInit(FVectorType &x)
{
n = x.size();
wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
fvec.resize(n);
qtf.resize(n);
fjac.resize(n, n);
if (!useExternalScaling)
diag.resize(n);
eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
/* Function Body */
nfev = 0;
njev = 0;
/* check the input parameters for errors. */
if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0. )
return HybridNonLinearSolverSpace::ImproperInputParameters;
if (useExternalScaling)
for (Index j = 0; j < n; ++j)
if (diag[j] <= 0.)
return HybridNonLinearSolverSpace::ImproperInputParameters;
/* evaluate the function at the starting point */
/* and calculate its norm. */
nfev = 1;
if ( functor(x, fvec) < 0)
return HybridNonLinearSolverSpace::UserAsked;
fnorm = fvec.stableNorm();
/* initialize iteration counter and monitors. */
iter = 1;
ncsuc = 0;
ncfail = 0;
nslow1 = 0;
nslow2 = 0;
return HybridNonLinearSolverSpace::Running;
}
template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(FVectorType &x)
{
using std::abs;
eigen_assert(x.size()==n); // check the caller is not cheating us
Index j;
std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
jeval = true;
/* calculate the jacobian matrix. */
if ( functor.df(x, fjac) < 0)
return HybridNonLinearSolverSpace::UserAsked;
++njev;
wa2 = fjac.colwise().blueNorm();
/* on the first iteration and if external scaling is not used, scale according */
/* to the norms of the columns of the initial jacobian. */
if (iter == 1) {
if (!useExternalScaling)
for (j = 0; j < n; ++j)
diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
/* on the first iteration, calculate the norm of the scaled x */
/* and initialize the step bound delta. */
xnorm = diag.cwiseProduct(x).stableNorm();
delta = parameters.factor * xnorm;
if (delta == 0.)
delta = parameters.factor;
}
/* compute the qr factorization of the jacobian. */
HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:
/* copy the triangular factor of the qr factorization into r. */
R = qrfac.matrixQR();
/* accumulate the orthogonal factor in fjac. */
fjac = qrfac.householderQ();
/* form (q transpose)*fvec and store in qtf. */
qtf = fjac.transpose() * fvec;
/* rescale if necessary. */
if (!useExternalScaling)
diag = diag.cwiseMax(wa2);
while (true) {
/* determine the direction p. */
internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);
/* store the direction p and x + p. calculate the norm of p. */
wa1 = -wa1;
wa2 = x + wa1;
pnorm = diag.cwiseProduct(wa1).stableNorm();
/* on the first iteration, adjust the initial step bound. */
if (iter == 1)
delta = (std::min)(delta,pnorm);
/* evaluate the function at x + p and calculate its norm. */
if ( functor(wa2, wa4) < 0)
return HybridNonLinearSolverSpace::UserAsked;
++nfev;
fnorm1 = wa4.stableNorm();
/* compute the scaled actual reduction. */
actred = -1.;
if (fnorm1 < fnorm) /* Computing 2nd power */
actred = 1. - numext::abs2(fnorm1 / fnorm);
/* compute the scaled predicted reduction. */
wa3 = R.template triangularView<Upper>()*wa1 + qtf;
temp = wa3.stableNorm();
prered = 0.;
if (temp < fnorm) /* Computing 2nd power */
prered = 1. - numext::abs2(temp / fnorm);
/* compute the ratio of the actual to the predicted reduction. */
ratio = 0.;
if (prered > 0.)
ratio = actred / prered;
/* update the step bound. */
if (ratio < Scalar(.1)) {
ncsuc = 0;
++ncfail;
delta = Scalar(.5) * delta;
} else {
ncfail = 0;
++ncsuc;
if (ratio >= Scalar(.5) || ncsuc > 1)
delta = (std::max)(delta, pnorm / Scalar(.5));
if (abs(ratio - 1.) <= Scalar(.1)) {
delta = pnorm / Scalar(.5);
}
}
/* test for successful iteration. */
if (ratio >= Scalar(1e-4)) {
/* successful iteration. update x, fvec, and their norms. */
x = wa2;
wa2 = diag.cwiseProduct(x);
fvec = wa4;
xnorm = wa2.stableNorm();
fnorm = fnorm1;
++iter;
}
/* determine the progress of the iteration. */
++nslow1;
if (actred >= Scalar(.001))
nslow1 = 0;
if (jeval)
++nslow2;
if (actred >= Scalar(.1))
nslow2 = 0;
/* test for convergence. */
if (delta <= parameters.xtol * xnorm || fnorm == 0.)
return HybridNonLinearSolverSpace::RelativeErrorTooSmall;
/* tests for termination and stringent tolerances. */
if (nfev >= parameters.maxfev)
return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
return HybridNonLinearSolverSpace::TolTooSmall;
if (nslow2 == 5)
return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
if (nslow1 == 10)
return HybridNonLinearSolverSpace::NotMakingProgressIterations;
/* criterion for recalculating jacobian. */
if (ncfail == 2)
break; // leave inner loop and go for the next outer loop iteration
/* calculate the rank one modification to the jacobian */
/* and update qtf if necessary. */
wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
wa2 = fjac.transpose() * wa4;
if (ratio >= Scalar(1e-4))
qtf = wa2;
wa2 = (wa2-wa3)/pnorm;
/* compute the qr factorization of the updated jacobian. */
internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
jeval = false;
}
return HybridNonLinearSolverSpace::Running;
}
template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::solve(FVectorType &x)
{
HybridNonLinearSolverSpace::Status status = solveInit(x);
if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
return status;
while (status==HybridNonLinearSolverSpace::Running)
status = solveOneStep(x);
return status;
}
template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::hybrd1(
FVectorType &x,
const Scalar tol
)
{
n = x.size();
/* check the input parameters for errors. */
if (n <= 0 || tol < 0.)
return HybridNonLinearSolverSpace::ImproperInputParameters;
resetParameters();
parameters.maxfev = 200*(n+1);
parameters.xtol = tol;
diag.setConstant(n, 1.);
useExternalScaling = true;
return solveNumericalDiff(x);
}
template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(FVectorType &x)
{
n = x.size();
if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n);
qtf.resize(n);
fjac.resize(n, n);
fvec.resize(n);
if (!useExternalScaling)
diag.resize(n);
eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
/* Function Body */
nfev = 0;
njev = 0;
/* check the input parameters for errors. */
if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.nb_of_subdiagonals< 0 || parameters.nb_of_superdiagonals< 0 || parameters.factor <= 0. )
return HybridNonLinearSolverSpace::ImproperInputParameters;
if (useExternalScaling)
for (Index j = 0; j < n; ++j)
if (diag[j] <= 0.)
return HybridNonLinearSolverSpace::ImproperInputParameters;
/* evaluate the function at the starting point */
/* and calculate its norm. */
nfev = 1;
if ( functor(x, fvec) < 0)
return HybridNonLinearSolverSpace::UserAsked;
fnorm = fvec.stableNorm();
/* initialize iteration counter and monitors. */
iter = 1;
ncsuc = 0;
ncfail = 0;
nslow1 = 0;
nslow2 = 0;
return HybridNonLinearSolverSpace::Running;
}
template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(FVectorType &x)
{
using std::sqrt;
using std::abs;
assert(x.size()==n); // check the caller is not cheating us
Index j;
std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n);
jeval = true;
if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1;
if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1;
/* calculate the jacobian matrix. */
if (internal::fdjac1(functor, x, fvec, fjac, parameters.nb_of_subdiagonals, parameters.nb_of_superdiagonals, parameters.epsfcn) <0)
return HybridNonLinearSolverSpace::UserAsked;
nfev += (std::min)(parameters.nb_of_subdiagonals+parameters.nb_of_superdiagonals+ 1, n);
wa2 = fjac.colwise().blueNorm();
/* on the first iteration and if external scaling is not used, scale according */
/* to the norms of the columns of the initial jacobian. */
if (iter == 1) {
if (!useExternalScaling)
for (j = 0; j < n; ++j)
diag[j] = (wa2[j]==0.) ? 1. : wa2[j];
/* on the first iteration, calculate the norm of the scaled x */
/* and initialize the step bound delta. */
xnorm = diag.cwiseProduct(x).stableNorm();
delta = parameters.factor * xnorm;
if (delta == 0.)
delta = parameters.factor;
}
/* compute the qr factorization of the jacobian. */
HouseholderQR<JacobianType> qrfac(fjac); // no pivoting:
/* copy the triangular factor of the qr factorization into r. */
R = qrfac.matrixQR();
/* accumulate the orthogonal factor in fjac. */
fjac = qrfac.householderQ();
/* form (q transpose)*fvec and store in qtf. */
qtf = fjac.transpose() * fvec;
/* rescale if necessary. */
if (!useExternalScaling)
diag = diag.cwiseMax(wa2);
while (true) {
/* determine the direction p. */
internal::dogleg<Scalar>(R, diag, qtf, delta, wa1);
/* store the direction p and x + p. calculate the norm of p. */
wa1 = -wa1;
wa2 = x + wa1;
pnorm = diag.cwiseProduct(wa1).stableNorm();
/* on the first iteration, adjust the initial step bound. */
if (iter == 1)
delta = (std::min)(delta,pnorm);
/* evaluate the function at x + p and calculate its norm. */
if ( functor(wa2, wa4) < 0)
return HybridNonLinearSolverSpace::UserAsked;
++nfev;
fnorm1 = wa4.stableNorm();
/* compute the scaled actual reduction. */
actred = -1.;
if (fnorm1 < fnorm) /* Computing 2nd power */
actred = 1. - numext::abs2(fnorm1 / fnorm);
/* compute the scaled predicted reduction. */
wa3 = R.template triangularView<Upper>()*wa1 + qtf;
temp = wa3.stableNorm();
prered = 0.;
if (temp < fnorm) /* Computing 2nd power */
prered = 1. - numext::abs2(temp / fnorm);
/* compute the ratio of the actual to the predicted reduction. */
ratio = 0.;
if (prered > 0.)
ratio = actred / prered;
/* update the step bound. */
if (ratio < Scalar(.1)) {
ncsuc = 0;
++ncfail;
delta = Scalar(.5) * delta;
} else {
ncfail = 0;
++ncsuc;
if (ratio >= Scalar(.5) || ncsuc > 1)
delta = (std::max)(delta, pnorm / Scalar(.5));
if (abs(ratio - 1.) <= Scalar(.1)) {
delta = pnorm / Scalar(.5);
}
}
/* test for successful iteration. */
if (ratio >= Scalar(1e-4)) {
/* successful iteration. update x, fvec, and their norms. */
x = wa2;
wa2 = diag.cwiseProduct(x);
fvec = wa4;
xnorm = wa2.stableNorm();
fnorm = fnorm1;
++iter;
}
/* determine the progress of the iteration. */
++nslow1;
if (actred >= Scalar(.001))
nslow1 = 0;
if (jeval)
++nslow2;
if (actred >= Scalar(.1))
nslow2 = 0;
/* test for convergence. */
if (delta <= parameters.xtol * xnorm || fnorm == 0.)
return HybridNonLinearSolverSpace::RelativeErrorTooSmall;
/* tests for termination and stringent tolerances. */
if (nfev >= parameters.maxfev)
return HybridNonLinearSolverSpace::TooManyFunctionEvaluation;
if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm)
return HybridNonLinearSolverSpace::TolTooSmall;
if (nslow2 == 5)
return HybridNonLinearSolverSpace::NotMakingProgressJacobian;
if (nslow1 == 10)
return HybridNonLinearSolverSpace::NotMakingProgressIterations;
/* criterion for recalculating jacobian. */
if (ncfail == 2)
break; // leave inner loop and go for the next outer loop iteration
/* calculate the rank one modification to the jacobian */
/* and update qtf if necessary. */
wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm );
wa2 = fjac.transpose() * wa4;
if (ratio >= Scalar(1e-4))
qtf = wa2;
wa2 = (wa2-wa3)/pnorm;
/* compute the qr factorization of the updated jacobian. */
internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing);
internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens);
internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens);
jeval = false;
}
return HybridNonLinearSolverSpace::Running;
}
template<typename FunctorType, typename Scalar>
HybridNonLinearSolverSpace::Status
HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(FVectorType &x)
{
HybridNonLinearSolverSpace::Status status = solveNumericalDiffInit(x);
if (status==HybridNonLinearSolverSpace::ImproperInputParameters)
return status;
while (status==HybridNonLinearSolverSpace::Running)
status = solveNumericalDiffOneStep(x);
return status;
}
} // end namespace Eigen
#endif // EIGEN_HYBRIDNONLINEARSOLVER_H
//vim: ai ts=4 sts=4 et sw=4