// -*- coding: utf-8 // vim: set fileencoding=utf-8 // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_HYBRIDNONLINEARSOLVER_H #define EIGEN_HYBRIDNONLINEARSOLVER_H namespace Eigen { namespace HybridNonLinearSolverSpace { enum Status { Running = -1, ImproperInputParameters = 0, RelativeErrorTooSmall = 1, TooManyFunctionEvaluation = 2, TolTooSmall = 3, NotMakingProgressJacobian = 4, NotMakingProgressIterations = 5, UserAsked = 6 }; } /** * \ingroup NonLinearOptimization_Module * \brief Finds a zero of a system of n * nonlinear functions in n variables by a modification of the Powell * hybrid method ("dogleg"). * * The user must provide a subroutine which calculates the * functions. The Jacobian is either provided by the user, or approximated * using a forward-difference method. * */ template<typename FunctorType, typename Scalar=double> class HybridNonLinearSolver { public: typedef DenseIndex Index; HybridNonLinearSolver(FunctorType &_functor) : functor(_functor) { nfev=njev=iter = 0; fnorm= 0.; useExternalScaling=false;} struct Parameters { Parameters() : factor(Scalar(100.)) , maxfev(1000) , xtol(std::sqrt(NumTraits<Scalar>::epsilon())) , nb_of_subdiagonals(-1) , nb_of_superdiagonals(-1) , epsfcn(Scalar(0.)) {} Scalar factor; Index maxfev; // maximum number of function evaluation Scalar xtol; Index nb_of_subdiagonals; Index nb_of_superdiagonals; Scalar epsfcn; }; typedef Matrix< Scalar, Dynamic, 1 > FVectorType; typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType; /* TODO: if eigen provides a triangular storage, use it here */ typedef Matrix< Scalar, Dynamic, Dynamic > UpperTriangularType; HybridNonLinearSolverSpace::Status hybrj1( FVectorType &x, const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) ); HybridNonLinearSolverSpace::Status solveInit(FVectorType &x); HybridNonLinearSolverSpace::Status solveOneStep(FVectorType &x); HybridNonLinearSolverSpace::Status solve(FVectorType &x); HybridNonLinearSolverSpace::Status hybrd1( FVectorType &x, const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) ); HybridNonLinearSolverSpace::Status solveNumericalDiffInit(FVectorType &x); HybridNonLinearSolverSpace::Status solveNumericalDiffOneStep(FVectorType &x); HybridNonLinearSolverSpace::Status solveNumericalDiff(FVectorType &x); void resetParameters(void) { parameters = Parameters(); } Parameters parameters; FVectorType fvec, qtf, diag; JacobianType fjac; UpperTriangularType R; Index nfev; Index njev; Index iter; Scalar fnorm; bool useExternalScaling; private: FunctorType &functor; Index n; Scalar sum; bool sing; Scalar temp; Scalar delta; bool jeval; Index ncsuc; Scalar ratio; Scalar pnorm, xnorm, fnorm1; Index nslow1, nslow2; Index ncfail; Scalar actred, prered; FVectorType wa1, wa2, wa3, wa4; HybridNonLinearSolver& operator=(const HybridNonLinearSolver&); }; template<typename FunctorType, typename Scalar> HybridNonLinearSolverSpace::Status HybridNonLinearSolver<FunctorType,Scalar>::hybrj1( FVectorType &x, const Scalar tol ) { n = x.size(); /* check the input parameters for errors. */ if (n <= 0 || tol < 0.) return HybridNonLinearSolverSpace::ImproperInputParameters; resetParameters(); parameters.maxfev = 100*(n+1); parameters.xtol = tol; diag.setConstant(n, 1.); useExternalScaling = true; return solve(x); } template<typename FunctorType, typename Scalar> HybridNonLinearSolverSpace::Status HybridNonLinearSolver<FunctorType,Scalar>::solveInit(FVectorType &x) { n = x.size(); wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n); fvec.resize(n); qtf.resize(n); fjac.resize(n, n); if (!useExternalScaling) diag.resize(n); eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'"); /* Function Body */ nfev = 0; njev = 0; /* check the input parameters for errors. */ if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0. ) return HybridNonLinearSolverSpace::ImproperInputParameters; if (useExternalScaling) for (Index j = 0; j < n; ++j) if (diag[j] <= 0.) return HybridNonLinearSolverSpace::ImproperInputParameters; /* evaluate the function at the starting point */ /* and calculate its norm. */ nfev = 1; if ( functor(x, fvec) < 0) return HybridNonLinearSolverSpace::UserAsked; fnorm = fvec.stableNorm(); /* initialize iteration counter and monitors. */ iter = 1; ncsuc = 0; ncfail = 0; nslow1 = 0; nslow2 = 0; return HybridNonLinearSolverSpace::Running; } template<typename FunctorType, typename Scalar> HybridNonLinearSolverSpace::Status HybridNonLinearSolver<FunctorType,Scalar>::solveOneStep(FVectorType &x) { using std::abs; eigen_assert(x.size()==n); // check the caller is not cheating us Index j; std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n); jeval = true; /* calculate the jacobian matrix. */ if ( functor.df(x, fjac) < 0) return HybridNonLinearSolverSpace::UserAsked; ++njev; wa2 = fjac.colwise().blueNorm(); /* on the first iteration and if external scaling is not used, scale according */ /* to the norms of the columns of the initial jacobian. */ if (iter == 1) { if (!useExternalScaling) for (j = 0; j < n; ++j) diag[j] = (wa2[j]==0.) ? 1. : wa2[j]; /* on the first iteration, calculate the norm of the scaled x */ /* and initialize the step bound delta. */ xnorm = diag.cwiseProduct(x).stableNorm(); delta = parameters.factor * xnorm; if (delta == 0.) delta = parameters.factor; } /* compute the qr factorization of the jacobian. */ HouseholderQR<JacobianType> qrfac(fjac); // no pivoting: /* copy the triangular factor of the qr factorization into r. */ R = qrfac.matrixQR(); /* accumulate the orthogonal factor in fjac. */ fjac = qrfac.householderQ(); /* form (q transpose)*fvec and store in qtf. */ qtf = fjac.transpose() * fvec; /* rescale if necessary. */ if (!useExternalScaling) diag = diag.cwiseMax(wa2); while (true) { /* determine the direction p. */ internal::dogleg<Scalar>(R, diag, qtf, delta, wa1); /* store the direction p and x + p. calculate the norm of p. */ wa1 = -wa1; wa2 = x + wa1; pnorm = diag.cwiseProduct(wa1).stableNorm(); /* on the first iteration, adjust the initial step bound. */ if (iter == 1) delta = (std::min)(delta,pnorm); /* evaluate the function at x + p and calculate its norm. */ if ( functor(wa2, wa4) < 0) return HybridNonLinearSolverSpace::UserAsked; ++nfev; fnorm1 = wa4.stableNorm(); /* compute the scaled actual reduction. */ actred = -1.; if (fnorm1 < fnorm) /* Computing 2nd power */ actred = 1. - numext::abs2(fnorm1 / fnorm); /* compute the scaled predicted reduction. */ wa3 = R.template triangularView<Upper>()*wa1 + qtf; temp = wa3.stableNorm(); prered = 0.; if (temp < fnorm) /* Computing 2nd power */ prered = 1. - numext::abs2(temp / fnorm); /* compute the ratio of the actual to the predicted reduction. */ ratio = 0.; if (prered > 0.) ratio = actred / prered; /* update the step bound. */ if (ratio < Scalar(.1)) { ncsuc = 0; ++ncfail; delta = Scalar(.5) * delta; } else { ncfail = 0; ++ncsuc; if (ratio >= Scalar(.5) || ncsuc > 1) delta = (std::max)(delta, pnorm / Scalar(.5)); if (abs(ratio - 1.) <= Scalar(.1)) { delta = pnorm / Scalar(.5); } } /* test for successful iteration. */ if (ratio >= Scalar(1e-4)) { /* successful iteration. update x, fvec, and their norms. */ x = wa2; wa2 = diag.cwiseProduct(x); fvec = wa4; xnorm = wa2.stableNorm(); fnorm = fnorm1; ++iter; } /* determine the progress of the iteration. */ ++nslow1; if (actred >= Scalar(.001)) nslow1 = 0; if (jeval) ++nslow2; if (actred >= Scalar(.1)) nslow2 = 0; /* test for convergence. */ if (delta <= parameters.xtol * xnorm || fnorm == 0.) return HybridNonLinearSolverSpace::RelativeErrorTooSmall; /* tests for termination and stringent tolerances. */ if (nfev >= parameters.maxfev) return HybridNonLinearSolverSpace::TooManyFunctionEvaluation; if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm) return HybridNonLinearSolverSpace::TolTooSmall; if (nslow2 == 5) return HybridNonLinearSolverSpace::NotMakingProgressJacobian; if (nslow1 == 10) return HybridNonLinearSolverSpace::NotMakingProgressIterations; /* criterion for recalculating jacobian. */ if (ncfail == 2) break; // leave inner loop and go for the next outer loop iteration /* calculate the rank one modification to the jacobian */ /* and update qtf if necessary. */ wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm ); wa2 = fjac.transpose() * wa4; if (ratio >= Scalar(1e-4)) qtf = wa2; wa2 = (wa2-wa3)/pnorm; /* compute the qr factorization of the updated jacobian. */ internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing); internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens); internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens); jeval = false; } return HybridNonLinearSolverSpace::Running; } template<typename FunctorType, typename Scalar> HybridNonLinearSolverSpace::Status HybridNonLinearSolver<FunctorType,Scalar>::solve(FVectorType &x) { HybridNonLinearSolverSpace::Status status = solveInit(x); if (status==HybridNonLinearSolverSpace::ImproperInputParameters) return status; while (status==HybridNonLinearSolverSpace::Running) status = solveOneStep(x); return status; } template<typename FunctorType, typename Scalar> HybridNonLinearSolverSpace::Status HybridNonLinearSolver<FunctorType,Scalar>::hybrd1( FVectorType &x, const Scalar tol ) { n = x.size(); /* check the input parameters for errors. */ if (n <= 0 || tol < 0.) return HybridNonLinearSolverSpace::ImproperInputParameters; resetParameters(); parameters.maxfev = 200*(n+1); parameters.xtol = tol; diag.setConstant(n, 1.); useExternalScaling = true; return solveNumericalDiff(x); } template<typename FunctorType, typename Scalar> HybridNonLinearSolverSpace::Status HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffInit(FVectorType &x) { n = x.size(); if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1; if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1; wa1.resize(n); wa2.resize(n); wa3.resize(n); wa4.resize(n); qtf.resize(n); fjac.resize(n, n); fvec.resize(n); if (!useExternalScaling) diag.resize(n); eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'"); /* Function Body */ nfev = 0; njev = 0; /* check the input parameters for errors. */ if (n <= 0 || parameters.xtol < 0. || parameters.maxfev <= 0 || parameters.nb_of_subdiagonals< 0 || parameters.nb_of_superdiagonals< 0 || parameters.factor <= 0. ) return HybridNonLinearSolverSpace::ImproperInputParameters; if (useExternalScaling) for (Index j = 0; j < n; ++j) if (diag[j] <= 0.) return HybridNonLinearSolverSpace::ImproperInputParameters; /* evaluate the function at the starting point */ /* and calculate its norm. */ nfev = 1; if ( functor(x, fvec) < 0) return HybridNonLinearSolverSpace::UserAsked; fnorm = fvec.stableNorm(); /* initialize iteration counter and monitors. */ iter = 1; ncsuc = 0; ncfail = 0; nslow1 = 0; nslow2 = 0; return HybridNonLinearSolverSpace::Running; } template<typename FunctorType, typename Scalar> HybridNonLinearSolverSpace::Status HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiffOneStep(FVectorType &x) { using std::sqrt; using std::abs; assert(x.size()==n); // check the caller is not cheating us Index j; std::vector<JacobiRotation<Scalar> > v_givens(n), w_givens(n); jeval = true; if (parameters.nb_of_subdiagonals<0) parameters.nb_of_subdiagonals= n-1; if (parameters.nb_of_superdiagonals<0) parameters.nb_of_superdiagonals= n-1; /* calculate the jacobian matrix. */ if (internal::fdjac1(functor, x, fvec, fjac, parameters.nb_of_subdiagonals, parameters.nb_of_superdiagonals, parameters.epsfcn) <0) return HybridNonLinearSolverSpace::UserAsked; nfev += (std::min)(parameters.nb_of_subdiagonals+parameters.nb_of_superdiagonals+ 1, n); wa2 = fjac.colwise().blueNorm(); /* on the first iteration and if external scaling is not used, scale according */ /* to the norms of the columns of the initial jacobian. */ if (iter == 1) { if (!useExternalScaling) for (j = 0; j < n; ++j) diag[j] = (wa2[j]==0.) ? 1. : wa2[j]; /* on the first iteration, calculate the norm of the scaled x */ /* and initialize the step bound delta. */ xnorm = diag.cwiseProduct(x).stableNorm(); delta = parameters.factor * xnorm; if (delta == 0.) delta = parameters.factor; } /* compute the qr factorization of the jacobian. */ HouseholderQR<JacobianType> qrfac(fjac); // no pivoting: /* copy the triangular factor of the qr factorization into r. */ R = qrfac.matrixQR(); /* accumulate the orthogonal factor in fjac. */ fjac = qrfac.householderQ(); /* form (q transpose)*fvec and store in qtf. */ qtf = fjac.transpose() * fvec; /* rescale if necessary. */ if (!useExternalScaling) diag = diag.cwiseMax(wa2); while (true) { /* determine the direction p. */ internal::dogleg<Scalar>(R, diag, qtf, delta, wa1); /* store the direction p and x + p. calculate the norm of p. */ wa1 = -wa1; wa2 = x + wa1; pnorm = diag.cwiseProduct(wa1).stableNorm(); /* on the first iteration, adjust the initial step bound. */ if (iter == 1) delta = (std::min)(delta,pnorm); /* evaluate the function at x + p and calculate its norm. */ if ( functor(wa2, wa4) < 0) return HybridNonLinearSolverSpace::UserAsked; ++nfev; fnorm1 = wa4.stableNorm(); /* compute the scaled actual reduction. */ actred = -1.; if (fnorm1 < fnorm) /* Computing 2nd power */ actred = 1. - numext::abs2(fnorm1 / fnorm); /* compute the scaled predicted reduction. */ wa3 = R.template triangularView<Upper>()*wa1 + qtf; temp = wa3.stableNorm(); prered = 0.; if (temp < fnorm) /* Computing 2nd power */ prered = 1. - numext::abs2(temp / fnorm); /* compute the ratio of the actual to the predicted reduction. */ ratio = 0.; if (prered > 0.) ratio = actred / prered; /* update the step bound. */ if (ratio < Scalar(.1)) { ncsuc = 0; ++ncfail; delta = Scalar(.5) * delta; } else { ncfail = 0; ++ncsuc; if (ratio >= Scalar(.5) || ncsuc > 1) delta = (std::max)(delta, pnorm / Scalar(.5)); if (abs(ratio - 1.) <= Scalar(.1)) { delta = pnorm / Scalar(.5); } } /* test for successful iteration. */ if (ratio >= Scalar(1e-4)) { /* successful iteration. update x, fvec, and their norms. */ x = wa2; wa2 = diag.cwiseProduct(x); fvec = wa4; xnorm = wa2.stableNorm(); fnorm = fnorm1; ++iter; } /* determine the progress of the iteration. */ ++nslow1; if (actred >= Scalar(.001)) nslow1 = 0; if (jeval) ++nslow2; if (actred >= Scalar(.1)) nslow2 = 0; /* test for convergence. */ if (delta <= parameters.xtol * xnorm || fnorm == 0.) return HybridNonLinearSolverSpace::RelativeErrorTooSmall; /* tests for termination and stringent tolerances. */ if (nfev >= parameters.maxfev) return HybridNonLinearSolverSpace::TooManyFunctionEvaluation; if (Scalar(.1) * (std::max)(Scalar(.1) * delta, pnorm) <= NumTraits<Scalar>::epsilon() * xnorm) return HybridNonLinearSolverSpace::TolTooSmall; if (nslow2 == 5) return HybridNonLinearSolverSpace::NotMakingProgressJacobian; if (nslow1 == 10) return HybridNonLinearSolverSpace::NotMakingProgressIterations; /* criterion for recalculating jacobian. */ if (ncfail == 2) break; // leave inner loop and go for the next outer loop iteration /* calculate the rank one modification to the jacobian */ /* and update qtf if necessary. */ wa1 = diag.cwiseProduct( diag.cwiseProduct(wa1)/pnorm ); wa2 = fjac.transpose() * wa4; if (ratio >= Scalar(1e-4)) qtf = wa2; wa2 = (wa2-wa3)/pnorm; /* compute the qr factorization of the updated jacobian. */ internal::r1updt<Scalar>(R, wa1, v_givens, w_givens, wa2, wa3, &sing); internal::r1mpyq<Scalar>(n, n, fjac.data(), v_givens, w_givens); internal::r1mpyq<Scalar>(1, n, qtf.data(), v_givens, w_givens); jeval = false; } return HybridNonLinearSolverSpace::Running; } template<typename FunctorType, typename Scalar> HybridNonLinearSolverSpace::Status HybridNonLinearSolver<FunctorType,Scalar>::solveNumericalDiff(FVectorType &x) { HybridNonLinearSolverSpace::Status status = solveNumericalDiffInit(x); if (status==HybridNonLinearSolverSpace::ImproperInputParameters) return status; while (status==HybridNonLinearSolverSpace::Running) status = solveNumericalDiffOneStep(x); return status; } } // end namespace Eigen #endif // EIGEN_HYBRIDNONLINEARSOLVER_H //vim: ai ts=4 sts=4 et sw=4