/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.1 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Sample variable tests
*//*--------------------------------------------------------------------*/
#include "es31fSampleVariableTests.hpp"
#include "es31fMultisampleShaderRenderCase.hpp"
#include "tcuSurface.hpp"
#include "tcuTestLog.hpp"
#include "tcuRenderTarget.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuVectorUtil.hpp"
#include "tcuFormatUtil.hpp"
#include "gluContextInfo.hpp"
#include "gluShaderProgram.hpp"
#include "gluRenderContext.hpp"
#include "glwFunctions.hpp"
#include "glwEnums.hpp"
#include "deStringUtil.hpp"
namespace deqp
{
namespace gles31
{
namespace Functional
{
namespace
{
class Verifier
{
public:
virtual bool verify (const tcu::RGBA& testColor, const tcu::IVec2& position) const = 0;
virtual void logInfo (tcu::TestLog& log) const = 0;
};
class ColorVerifier : public Verifier
{
public:
ColorVerifier (const tcu::Vec3& _color, int _threshold = 8)
: m_color (tcu::Vec4(_color.x(), _color.y(), _color.z(), 1.0f))
, m_threshold (tcu::IVec3(_threshold))
{
}
ColorVerifier (const tcu::Vec3& _color, tcu::IVec3 _threshold)
: m_color (tcu::Vec4(_color.x(), _color.y(), _color.z(), 1.0f))
, m_threshold (_threshold)
{
}
bool verify (const tcu::RGBA& testColor, const tcu::IVec2& position) const
{
DE_UNREF(position);
return !tcu::boolAny(tcu::greaterThan(tcu::abs(m_color.toIVec().swizzle(0, 1, 2) - testColor.toIVec().swizzle(0, 1, 2)), tcu::IVec3(m_threshold)));
}
void logInfo (tcu::TestLog& log) const
{
// full threshold? print * for clarity
log << tcu::TestLog::Message
<< "Expecting unicolored image, color = RGB("
<< ((m_threshold[0] >= 255) ? ("*") : (de::toString(m_color.getRed()))) << ", "
<< ((m_threshold[1] >= 255) ? ("*") : (de::toString(m_color.getGreen()))) << ", "
<< ((m_threshold[2] >= 255) ? ("*") : (de::toString(m_color.getBlue()))) << ")"
<< tcu::TestLog::EndMessage;
}
const tcu::RGBA m_color;
const tcu::IVec3 m_threshold;
};
class FullBlueSomeGreenVerifier : public Verifier
{
public:
FullBlueSomeGreenVerifier (void)
{
}
bool verify (const tcu::RGBA& testColor, const tcu::IVec2& position) const
{
DE_UNREF(position);
// Values from 0.0 and 1.0 are accurate
if (testColor.getRed() != 0)
return false;
if (testColor.getGreen() == 0)
return false;
if (testColor.getBlue() != 255)
return false;
return true;
}
void logInfo (tcu::TestLog& log) const
{
log << tcu::TestLog::Message << "Expecting color c = (0.0, x, 1.0), x > 0.0" << tcu::TestLog::EndMessage;
}
};
class NoRedVerifier : public Verifier
{
public:
NoRedVerifier (void)
{
}
bool verify (const tcu::RGBA& testColor, const tcu::IVec2& position) const
{
DE_UNREF(position);
return testColor.getRed() == 0;
}
void logInfo (tcu::TestLog& log) const
{
log << tcu::TestLog::Message << "Expecting zero-valued red channel." << tcu::TestLog::EndMessage;
}
};
class SampleAverageVerifier : public Verifier
{
public:
SampleAverageVerifier (int _numSamples);
bool verify (const tcu::RGBA& testColor, const tcu::IVec2& position) const;
void logInfo (tcu::TestLog& log) const;
const int m_numSamples;
const bool m_isStatisticallySignificant;
float m_distanceThreshold;
};
SampleAverageVerifier::SampleAverageVerifier (int _numSamples)
: m_numSamples (_numSamples)
, m_isStatisticallySignificant (_numSamples >= 4)
, m_distanceThreshold (0.0f)
{
// approximate Bates distribution as normal
const float variance = (1.0f / (12.0f * m_numSamples));
const float standardDeviation = deFloatSqrt(variance);
// 95% of means of sample positions are within 2 standard deviations if
// they were randomly assigned. Sample patterns are expected to be more
// uniform than a random pattern.
m_distanceThreshold = 2 * standardDeviation;
}
bool SampleAverageVerifier::verify (const tcu::RGBA& testColor, const tcu::IVec2& position) const
{
DE_UNREF(position);
DE_ASSERT(m_isStatisticallySignificant);
const tcu::Vec2 avgPosition (testColor.getGreen() / 255.0f, testColor.getBlue() / 255.0f);
const tcu::Vec2 distanceFromCenter = tcu::abs(avgPosition - tcu::Vec2(0.5f, 0.5f));
return distanceFromCenter.x() < m_distanceThreshold && distanceFromCenter.y() < m_distanceThreshold;
}
void SampleAverageVerifier::logInfo (tcu::TestLog& log) const
{
log << tcu::TestLog::Message << "Expecting average sample position to be near the pixel center. Maximum per-axis distance " << m_distanceThreshold << tcu::TestLog::EndMessage;
}
class PartialDiscardVerifier : public Verifier
{
public:
PartialDiscardVerifier (void)
{
}
bool verify (const tcu::RGBA& testColor, const tcu::IVec2& position) const
{
DE_UNREF(position);
return (testColor.getGreen() != 0) && (testColor.getGreen() != 255);
}
void logInfo (tcu::TestLog& log) const
{
log << tcu::TestLog::Message << "Expecting color non-zero and non-saturated green channel" << tcu::TestLog::EndMessage;
}
};
static bool verifyImageWithVerifier (const tcu::Surface& resultImage, tcu::TestLog& log, const Verifier& verifier, bool logOnSuccess = true)
{
tcu::Surface errorMask (resultImage.getWidth(), resultImage.getHeight());
bool error = false;
tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f));
if (logOnSuccess)
{
log << tcu::TestLog::Message << "Verifying image." << tcu::TestLog::EndMessage;
verifier.logInfo(log);
}
for (int y = 0; y < resultImage.getHeight(); ++y)
for (int x = 0; x < resultImage.getWidth(); ++x)
{
const tcu::RGBA color = resultImage.getPixel(x, y);
// verify color value is valid for this pixel position
if (!verifier.verify(color, tcu::IVec2(x,y)))
{
error = true;
errorMask.setPixel(x, y, tcu::RGBA::red);
}
}
if (error)
{
// describe the verification logic if we haven't already
if (!logOnSuccess)
verifier.logInfo(log);
log << tcu::TestLog::Message << "Image verification failed." << tcu::TestLog::EndMessage
<< tcu::TestLog::ImageSet("Verification", "Image Verification")
<< tcu::TestLog::Image("Result", "Result image", resultImage.getAccess())
<< tcu::TestLog::Image("ErrorMask", "Error Mask", errorMask.getAccess())
<< tcu::TestLog::EndImageSet;
}
else if (logOnSuccess)
{
log << tcu::TestLog::Message << "Image verification passed." << tcu::TestLog::EndMessage
<< tcu::TestLog::ImageSet("Verification", "Image Verification")
<< tcu::TestLog::Image("Result", "Result image", resultImage.getAccess())
<< tcu::TestLog::EndImageSet;
}
return !error;
}
class MultisampleRenderCase : public MultisampleShaderRenderUtil::MultisampleRenderCase
{
public:
MultisampleRenderCase (Context& context, const char* name, const char* desc, int numSamples, RenderTarget target, int renderSize, int flags = 0);
virtual ~MultisampleRenderCase (void);
virtual void init (void);
};
MultisampleRenderCase::MultisampleRenderCase (Context& context, const char* name, const char* desc, int numSamples, RenderTarget target, int renderSize, int flags)
: MultisampleShaderRenderUtil::MultisampleRenderCase(context, name, desc, numSamples, target, renderSize, flags)
{
DE_ASSERT(target < TARGET_LAST);
}
MultisampleRenderCase::~MultisampleRenderCase (void)
{
MultisampleRenderCase::deinit();
}
void MultisampleRenderCase::init (void)
{
if (!m_context.getContextInfo().isExtensionSupported("GL_OES_sample_variables"))
throw tcu::NotSupportedError("Test requires GL_OES_sample_variables extension");
MultisampleShaderRenderUtil::MultisampleRenderCase::init();
}
class NumSamplesCase : public MultisampleRenderCase
{
public:
NumSamplesCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target);
~NumSamplesCase (void);
std::string genFragmentSource (int numTargetSamples) const;
bool verifyImage (const tcu::Surface& resultImage);
private:
enum
{
RENDER_SIZE = 64
};
};
NumSamplesCase::NumSamplesCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target)
: MultisampleRenderCase(context, name, desc, sampleCount, target, RENDER_SIZE)
{
}
NumSamplesCase::~NumSamplesCase (void)
{
}
std::string NumSamplesCase::genFragmentSource (int numTargetSamples) const
{
std::ostringstream buf;
buf << "#version 310 es\n"
"#extension GL_OES_sample_variables : require\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n"
" if (gl_NumSamples == " << numTargetSamples << ")\n"
" fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n"
"}\n";
return buf.str();
}
bool NumSamplesCase::verifyImage (const tcu::Surface& resultImage)
{
return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), NoRedVerifier());
}
class MaxSamplesCase : public MultisampleRenderCase
{
public:
MaxSamplesCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target);
~MaxSamplesCase (void);
private:
void preDraw (void);
std::string genFragmentSource (int numTargetSamples) const;
bool verifyImage (const tcu::Surface& resultImage);
enum
{
RENDER_SIZE = 64
};
};
MaxSamplesCase::MaxSamplesCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target)
: MultisampleRenderCase(context, name, desc, sampleCount, target, RENDER_SIZE)
{
}
MaxSamplesCase::~MaxSamplesCase (void)
{
}
void MaxSamplesCase::preDraw (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
deInt32 maxSamples = -1;
// query samples
{
gl.getIntegerv(GL_MAX_SAMPLES, &maxSamples);
GLU_EXPECT_NO_ERROR(gl.getError(), "query GL_MAX_SAMPLES");
m_testCtx.getLog() << tcu::TestLog::Message << "GL_MAX_SAMPLES = " << maxSamples << tcu::TestLog::EndMessage;
}
// set samples
{
const int maxSampleLoc = gl.getUniformLocation(m_program->getProgram(), "u_maxSamples");
if (maxSampleLoc == -1)
throw tcu::TestError("Location of u_maxSamples was -1");
gl.uniform1i(maxSampleLoc, maxSamples);
GLU_EXPECT_NO_ERROR(gl.getError(), "set u_maxSamples uniform");
m_testCtx.getLog() << tcu::TestLog::Message << "Set u_maxSamples = " << maxSamples << tcu::TestLog::EndMessage;
}
}
std::string MaxSamplesCase::genFragmentSource (int numTargetSamples) const
{
DE_UNREF(numTargetSamples);
std::ostringstream buf;
buf << "#version 310 es\n"
"#extension GL_OES_sample_variables : require\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"uniform mediump int u_maxSamples;\n"
"void main (void)\n"
"{\n"
" fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n"
" if (gl_MaxSamples == u_maxSamples)\n"
" fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n"
"}\n";
return buf.str();
}
bool MaxSamplesCase::verifyImage (const tcu::Surface& resultImage)
{
return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), NoRedVerifier());
}
class SampleIDCase : public MultisampleRenderCase
{
public:
SampleIDCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target);
~SampleIDCase (void);
void init (void);
private:
std::string genFragmentSource (int numTargetSamples) const;
bool verifyImage (const tcu::Surface& resultImage);
bool verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers);
enum
{
RENDER_SIZE = 64
};
enum VerificationMode
{
VERIFY_USING_SAMPLES,
VERIFY_USING_SELECTION,
};
const VerificationMode m_vericationMode;
};
SampleIDCase::SampleIDCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target)
: MultisampleRenderCase (context, name, desc, sampleCount, target, RENDER_SIZE, MultisampleShaderRenderUtil::MultisampleRenderCase::FLAG_VERIFY_MSAA_TEXTURE_SAMPLE_BUFFERS)
, m_vericationMode ((target == TARGET_TEXTURE) ? (VERIFY_USING_SAMPLES) : (VERIFY_USING_SELECTION))
{
}
SampleIDCase::~SampleIDCase (void)
{
}
void SampleIDCase::init (void)
{
// log the test method and expectations
if (m_vericationMode == VERIFY_USING_SAMPLES)
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Writing gl_SampleID to the green channel of the texture and verifying texture values, expecting:\n"
<< " 1) 0 with non-multisample targets.\n"
<< " 2) value N at sample index N of a multisample texture\n"
<< tcu::TestLog::EndMessage;
else if (m_vericationMode == VERIFY_USING_SELECTION)
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Selecting a single sample id for each pixel and writing color only if gl_SampleID == selected.\n"
<< "Expecting all output pixels to be partially (multisample) or fully (singlesample) colored.\n"
<< tcu::TestLog::EndMessage;
else
DE_ASSERT(false);
MultisampleRenderCase::init();
}
std::string SampleIDCase::genFragmentSource (int numTargetSamples) const
{
DE_ASSERT(numTargetSamples != 0);
std::ostringstream buf;
if (m_vericationMode == VERIFY_USING_SAMPLES)
{
// encode the id to the output, and then verify it during sampling
buf << "#version 310 es\n"
"#extension GL_OES_sample_variables : require\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" highp float normalizedSample = float(gl_SampleID) / float(" << numTargetSamples << ");\n"
" fragColor = vec4(0.0, normalizedSample, 1.0, 1.0);\n"
"}\n";
}
else if (m_vericationMode == VERIFY_USING_SELECTION)
{
if (numTargetSamples == 1)
{
// single sample, just verify value is 0
buf << "#version 310 es\n"
"#extension GL_OES_sample_variables : require\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" if (gl_SampleID == 0)\n"
" fragColor = vec4(0.0, 1.0, 1.0, 1.0);\n"
" else\n"
" fragColor = vec4(0.0, 0.0, 1.0, 1.0);\n"
"}\n";
}
else
{
// select only one sample per PIXEL
buf << "#version 310 es\n"
"#extension GL_OES_sample_variables : require\n"
"in highp vec4 v_position;\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" highp vec2 relPosition = (v_position.xy + vec2(1.0, 1.0)) / 2.0;\n"
" highp ivec2 pixelPos = ivec2(floor(relPosition * " << (int)RENDER_SIZE << ".0));\n"
" highp int selectedID = abs(pixelPos.x + 17 * pixelPos.y) % " << numTargetSamples << ";\n"
"\n"
" if (gl_SampleID == selectedID)\n"
" fragColor = vec4(0.0, 1.0, 1.0, 1.0);\n"
" else\n"
" fragColor = vec4(0.0, 0.0, 1.0, 1.0);\n"
"}\n";
}
}
else
DE_ASSERT(false);
return buf.str();
}
bool SampleIDCase::verifyImage (const tcu::Surface& resultImage)
{
if (m_vericationMode == VERIFY_USING_SAMPLES)
{
// never happens
DE_ASSERT(false);
return false;
}
else if (m_vericationMode == VERIFY_USING_SELECTION)
{
// should result in full blue and some green everywhere
return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), FullBlueSomeGreenVerifier());
}
else
{
DE_ASSERT(false);
return false;
}
}
bool SampleIDCase::verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers)
{
// Verify all sample buffers
bool allOk = true;
// Log layers
{
m_testCtx.getLog() << tcu::TestLog::ImageSet("SampleBuffers", "Image sample buffers");
for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx)
m_testCtx.getLog() << tcu::TestLog::Image("Buffer" + de::toString(sampleNdx), "Sample " + de::toString(sampleNdx), resultBuffers[sampleNdx].getAccess());
m_testCtx.getLog() << tcu::TestLog::EndImageSet;
}
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample buffers" << tcu::TestLog::EndMessage;
for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx)
{
// sample id should be sample index
const int threshold = 255 / 4 / m_numTargetSamples + 1;
const float sampleIdColor = sampleNdx / (float)m_numTargetSamples;
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample " << (sampleNdx+1) << "/" << (int)resultBuffers.size() << tcu::TestLog::EndMessage;
allOk &= verifyImageWithVerifier(resultBuffers[sampleNdx], m_testCtx.getLog(), ColorVerifier(tcu::Vec3(0.0f, sampleIdColor, 1.0f), tcu::IVec3(1, threshold, 1)), false);
}
if (!allOk)
m_testCtx.getLog() << tcu::TestLog::Message << "Sample buffer verification failed" << tcu::TestLog::EndMessage;
return allOk;
}
class SamplePosDistributionCase : public MultisampleRenderCase
{
public:
SamplePosDistributionCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target);
~SamplePosDistributionCase (void);
void init (void);
private:
enum
{
RENDER_SIZE = 64
};
std::string genFragmentSource (int numTargetSamples) const;
bool verifyImage (const tcu::Surface& resultImage);
bool verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers);
};
SamplePosDistributionCase::SamplePosDistributionCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target)
: MultisampleRenderCase(context, name, desc, sampleCount, target, RENDER_SIZE, MultisampleShaderRenderUtil::MultisampleRenderCase::FLAG_VERIFY_MSAA_TEXTURE_SAMPLE_BUFFERS)
{
}
SamplePosDistributionCase::~SamplePosDistributionCase (void)
{
}
void SamplePosDistributionCase::init (void)
{
// log the test method and expectations
if (m_renderTarget == TARGET_TEXTURE)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Verifying gl_SamplePosition value:\n"
<< " 1) With non-multisample targets: Expect the center of the pixel.\n"
<< " 2) With multisample targets:\n"
<< " a) Expect legal sample position.\n"
<< " b) Sample position is unique within the set of all sample positions of a pixel.\n"
<< " c) Sample position distribution is uniform or almost uniform.\n"
<< tcu::TestLog::EndMessage;
}
else
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Verifying gl_SamplePosition value:\n"
<< " 1) With non-multisample targets: Expect the center of the pixel.\n"
<< " 2) With multisample targets:\n"
<< " a) Expect legal sample position.\n"
<< " b) Sample position distribution is uniform or almost uniform.\n"
<< tcu::TestLog::EndMessage;
}
MultisampleRenderCase::init();
}
std::string SamplePosDistributionCase::genFragmentSource (int numTargetSamples) const
{
DE_ASSERT(numTargetSamples != 0);
DE_UNREF(numTargetSamples);
const bool multisampleTarget = (m_numRequestedSamples > 0) || (m_renderTarget == TARGET_DEFAULT && m_context.getRenderTarget().getNumSamples() > 1);
std::ostringstream buf;
if (multisampleTarget)
{
// encode the position to the output, use red channel as error channel
buf << "#version 310 es\n"
"#extension GL_OES_sample_variables : require\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" if (gl_SamplePosition.x < 0.0 || gl_SamplePosition.x > 1.0 || gl_SamplePosition.y < 0.0 || gl_SamplePosition.y > 1.0)\n"
" fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n"
" else\n"
" fragColor = vec4(0.0, gl_SamplePosition.x, gl_SamplePosition.y, 1.0);\n"
"}\n";
}
else
{
// verify value is ok
buf << "#version 310 es\n"
"#extension GL_OES_sample_variables : require\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" if (gl_SamplePosition.x != 0.5 || gl_SamplePosition.y != 0.5)\n"
" fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n"
" else\n"
" fragColor = vec4(0.0, gl_SamplePosition.x, gl_SamplePosition.y, 1.0);\n"
"}\n";
}
return buf.str();
}
bool SamplePosDistributionCase::verifyImage (const tcu::Surface& resultImage)
{
const int sampleCount = (m_renderTarget == TARGET_DEFAULT) ? (m_context.getRenderTarget().getNumSamples()) : (m_numRequestedSamples);
SampleAverageVerifier verifier (sampleCount);
// check there is nothing in the error channel
if (!verifyImageWithVerifier(resultImage, m_testCtx.getLog(), NoRedVerifier()))
return false;
// position average should be around 0.5, 0.5
if (verifier.m_isStatisticallySignificant && !verifyImageWithVerifier(resultImage, m_testCtx.getLog(), verifier))
throw MultisampleShaderRenderUtil::QualityWarning("Bias detected, sample positions are not uniformly distributed within the pixel");
return true;
}
bool SamplePosDistributionCase::verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers)
{
const int width = resultBuffers[0].getWidth();
const int height = resultBuffers[0].getHeight();
bool allOk = true;
bool distibutionError = false;
// Check sample range, uniqueness, and distribution, log layers
{
m_testCtx.getLog() << tcu::TestLog::ImageSet("SampleBuffers", "Image sample buffers");
for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx)
m_testCtx.getLog() << tcu::TestLog::Image("Buffer" + de::toString(sampleNdx), "Sample " + de::toString(sampleNdx), resultBuffers[sampleNdx].getAccess());
m_testCtx.getLog() << tcu::TestLog::EndImageSet;
}
// verify range
{
bool rangeOk = true;
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample position range" << tcu::TestLog::EndMessage;
for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx)
{
// shader does the check, just check the shader error output (red)
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample " << (sampleNdx+1) << "/" << (int)resultBuffers.size() << tcu::TestLog::EndMessage;
rangeOk &= verifyImageWithVerifier(resultBuffers[sampleNdx], m_testCtx.getLog(), NoRedVerifier(), false);
}
if (!rangeOk)
{
allOk = false;
m_testCtx.getLog() << tcu::TestLog::Message << "Sample position verification failed." << tcu::TestLog::EndMessage;
}
}
// Verify uniqueness
{
bool uniquenessOk = true;
tcu::Surface errorMask (width, height);
std::vector<tcu::Vec2> samplePositions (resultBuffers.size());
int printCount = 0;
const int printFloodLimit = 5;
tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f));
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample position uniqueness." << tcu::TestLog::EndMessage;
for (int y = 0; y < height; ++y)
for (int x = 0; x < width; ++x)
{
bool samplePosNotUnique = false;
for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx)
{
const tcu::RGBA color = resultBuffers[sampleNdx].getPixel(x, y);
samplePositions[sampleNdx] = tcu::Vec2(color.getGreen() / 255.0f, color.getBlue() / 255.0f);
}
// Just check there are no two samples with same positions
for (int sampleNdxA = 0; sampleNdxA < (int)resultBuffers.size() && (!samplePosNotUnique || printCount < printFloodLimit); ++sampleNdxA)
for (int sampleNdxB = sampleNdxA+1; sampleNdxB < (int)resultBuffers.size() && (!samplePosNotUnique || printCount < printFloodLimit); ++sampleNdxB)
{
if (samplePositions[sampleNdxA] == samplePositions[sampleNdxB])
{
if (++printCount <= printFloodLimit)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Pixel (" << x << ", " << y << "): Samples " << sampleNdxA << " and " << sampleNdxB << " have the same position."
<< tcu::TestLog::EndMessage;
}
samplePosNotUnique = true;
uniquenessOk = false;
errorMask.setPixel(x, y, tcu::RGBA::red);
}
}
}
// end result
if (!uniquenessOk)
{
if (printCount > printFloodLimit)
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "...\n"
<< "Omitted " << (printCount-printFloodLimit) << " error descriptions."
<< tcu::TestLog::EndMessage;
m_testCtx.getLog()
<< tcu::TestLog::Message << "Image verification failed." << tcu::TestLog::EndMessage
<< tcu::TestLog::ImageSet("Verification", "Image Verification")
<< tcu::TestLog::Image("ErrorMask", "Error Mask", errorMask.getAccess())
<< tcu::TestLog::EndImageSet;
allOk = false;
}
}
// check distribution
{
const SampleAverageVerifier verifier (m_numTargetSamples);
tcu::Surface errorMask (width, height);
int printCount = 0;
const int printFloodLimit = 5;
tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f));
// don't bother with small sample counts
if (verifier.m_isStatisticallySignificant)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample position distribution is (nearly) unbiased." << tcu::TestLog::EndMessage;
verifier.logInfo(m_testCtx.getLog());
for (int y = 0; y < height; ++y)
for (int x = 0; x < width; ++x)
{
tcu::IVec3 colorSum(0, 0, 0);
// color average
for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx)
{
const tcu::RGBA color = resultBuffers[sampleNdx].getPixel(x, y);
colorSum.x() += color.getRed();
colorSum.y() += color.getBlue();
colorSum.z() += color.getGreen();
}
colorSum.x() /= m_numTargetSamples;
colorSum.y() /= m_numTargetSamples;
colorSum.z() /= m_numTargetSamples;
// verify average sample position
if (!verifier.verify(tcu::RGBA(colorSum.x(), colorSum.y(), colorSum.z(), 0), tcu::IVec2(x, y)))
{
if (++printCount <= printFloodLimit)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Pixel (" << x << ", " << y << "): Sample distribution is biased."
<< tcu::TestLog::EndMessage;
}
distibutionError = true;
errorMask.setPixel(x, y, tcu::RGBA::red);
}
}
// sub-verification result
if (distibutionError)
{
if (printCount > printFloodLimit)
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "...\n"
<< "Omitted " << (printCount-printFloodLimit) << " error descriptions."
<< tcu::TestLog::EndMessage;
m_testCtx.getLog()
<< tcu::TestLog::Message << "Image verification failed." << tcu::TestLog::EndMessage
<< tcu::TestLog::ImageSet("Verification", "Image Verification")
<< tcu::TestLog::Image("ErrorMask", "Error Mask", errorMask.getAccess())
<< tcu::TestLog::EndImageSet;
}
}
}
// results
if (!allOk)
return false;
else if (distibutionError)
throw MultisampleShaderRenderUtil::QualityWarning("Bias detected, sample positions are not uniformly distributed within the pixel");
else
{
m_testCtx.getLog() << tcu::TestLog::Message << "Verification ok." << tcu::TestLog::EndMessage;
return true;
}
}
class SamplePosCorrectnessCase : public MultisampleRenderCase
{
public:
SamplePosCorrectnessCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target);
~SamplePosCorrectnessCase (void);
void init (void);
private:
enum
{
RENDER_SIZE = 32
};
void preDraw (void);
void postDraw (void);
std::string genVertexSource (int numTargetSamples) const;
std::string genFragmentSource (int numTargetSamples) const;
bool verifyImage (const tcu::Surface& resultImage);
bool m_useSampleQualifier;
};
SamplePosCorrectnessCase::SamplePosCorrectnessCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target)
: MultisampleRenderCase (context, name, desc, sampleCount, target, RENDER_SIZE)
, m_useSampleQualifier (false)
{
}
SamplePosCorrectnessCase::~SamplePosCorrectnessCase (void)
{
}
void SamplePosCorrectnessCase::init (void)
{
// requirements: per-invocation interpolation required
if (!m_context.getContextInfo().isExtensionSupported("GL_OES_shader_multisample_interpolation") &&
!m_context.getContextInfo().isExtensionSupported("GL_OES_sample_shading"))
throw tcu::NotSupportedError("Test requires GL_OES_shader_multisample_interpolation or GL_OES_sample_shading extension");
// prefer to use the sample qualifier path
m_useSampleQualifier = m_context.getContextInfo().isExtensionSupported("GL_OES_shader_multisample_interpolation");
// log the test method and expectations
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Verifying gl_SamplePosition correctness:\n"
<< " 1) Varying values should be sampled at the sample position.\n"
<< " => fract(screenSpacePosition) == gl_SamplePosition\n"
<< tcu::TestLog::EndMessage;
MultisampleRenderCase::init();
}
void SamplePosCorrectnessCase::preDraw (void)
{
if (!m_useSampleQualifier)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
// use GL_OES_sample_shading to set per fragment sample invocation interpolation
gl.enable(GL_SAMPLE_SHADING);
gl.minSampleShading(1.0f);
GLU_EXPECT_NO_ERROR(gl.getError(), "set ratio");
m_testCtx.getLog() << tcu::TestLog::Message << "Enabling per-sample interpolation with GL_SAMPLE_SHADING." << tcu::TestLog::EndMessage;
}
}
void SamplePosCorrectnessCase::postDraw (void)
{
if (!m_useSampleQualifier)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
gl.disable(GL_SAMPLE_SHADING);
gl.minSampleShading(1.0f);
GLU_EXPECT_NO_ERROR(gl.getError(), "set ratio");
}
}
std::string SamplePosCorrectnessCase::genVertexSource (int numTargetSamples) const
{
DE_UNREF(numTargetSamples);
std::ostringstream buf;
buf << "#version 310 es\n"
<< ((m_useSampleQualifier) ? ("#extension GL_OES_shader_multisample_interpolation : require\n") : (""))
<< "in highp vec4 a_position;\n"
<< ((m_useSampleQualifier) ? ("sample ") : ("")) << "out highp vec4 v_position;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
" v_position = a_position;\n"
"}\n";
return buf.str();
}
std::string SamplePosCorrectnessCase::genFragmentSource (int numTargetSamples) const
{
DE_UNREF(numTargetSamples);
std::ostringstream buf;
// encode the position to the output, use red channel as error channel
buf << "#version 310 es\n"
"#extension GL_OES_sample_variables : require\n"
<< ((m_useSampleQualifier) ? ("#extension GL_OES_shader_multisample_interpolation : require\n") : (""))
<< ((m_useSampleQualifier) ? ("sample ") : ("")) << "in highp vec4 v_position;\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" const highp float maxDistance = 0.15625; // 4 subpixel bits. Assume 3 accurate bits + 0.03125 for other errors\n" // 0.03125 = mediump epsilon when value = 32 (RENDER_SIZE)
"\n"
" highp vec2 screenSpacePosition = (v_position.xy + vec2(1.0, 1.0)) / 2.0 * " << (int)RENDER_SIZE << ".0;\n"
" highp ivec2 nearbyPixel = ivec2(floor(screenSpacePosition));\n"
" bool allOk = false;\n"
"\n"
" // sample at edge + inaccuaries may cause us to round to any neighboring pixel\n"
" // check all neighbors for any match\n"
" for (highp int dy = -1; dy <= 1; ++dy)\n"
" for (highp int dx = -1; dx <= 1; ++dx)\n"
" {\n"
" highp ivec2 currentPixel = nearbyPixel + ivec2(dx, dy);\n"
" highp vec2 candidateSamplingPos = vec2(currentPixel) + gl_SamplePosition.xy;\n"
" highp vec2 positionDiff = abs(candidateSamplingPos - screenSpacePosition);\n"
" if (positionDiff.x < maxDistance && positionDiff.y < maxDistance)\n"
" allOk = true;\n"
" }\n"
"\n"
" if (allOk)\n"
" fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n"
" else\n"
" fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n"
"}\n";
return buf.str();
}
bool SamplePosCorrectnessCase::verifyImage (const tcu::Surface& resultImage)
{
return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), NoRedVerifier());
}
class SampleMaskBaseCase : public MultisampleRenderCase
{
public:
enum ShaderRunMode
{
RUN_PER_PIXEL = 0,
RUN_PER_SAMPLE,
RUN_PER_TWO_SAMPLES,
RUN_LAST
};
SampleMaskBaseCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, int renderSize, ShaderRunMode runMode, int flags = 0);
virtual ~SampleMaskBaseCase (void);
protected:
virtual void init (void);
virtual void preDraw (void);
virtual void postDraw (void);
virtual bool verifyImage (const tcu::Surface& resultImage);
const ShaderRunMode m_runMode;
};
SampleMaskBaseCase::SampleMaskBaseCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, int renderSize, ShaderRunMode runMode, int flags)
: MultisampleRenderCase (context, name, desc, sampleCount, target, renderSize, flags)
, m_runMode (runMode)
{
DE_ASSERT(runMode < RUN_LAST);
}
SampleMaskBaseCase::~SampleMaskBaseCase (void)
{
}
void SampleMaskBaseCase::init (void)
{
// required extra extension
if (m_runMode == RUN_PER_TWO_SAMPLES && !m_context.getContextInfo().isExtensionSupported("GL_OES_sample_shading"))
throw tcu::NotSupportedError("Test requires GL_OES_sample_shading extension");
MultisampleRenderCase::init();
}
void SampleMaskBaseCase::preDraw (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
if (m_runMode == RUN_PER_TWO_SAMPLES)
{
gl.enable(GL_SAMPLE_SHADING);
gl.minSampleShading(0.5f);
GLU_EXPECT_NO_ERROR(gl.getError(), "enable sample shading");
m_testCtx.getLog() << tcu::TestLog::Message << "Enabled GL_SAMPLE_SHADING, value = 0.5" << tcu::TestLog::EndMessage;
}
}
void SampleMaskBaseCase::postDraw (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
if (m_runMode == RUN_PER_TWO_SAMPLES)
{
gl.disable(GL_SAMPLE_SHADING);
gl.minSampleShading(1.0f);
GLU_EXPECT_NO_ERROR(gl.getError(), "disable sample shading");
}
}
bool SampleMaskBaseCase::verifyImage (const tcu::Surface& resultImage)
{
// shader does the verification
return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), NoRedVerifier());
}
class SampleMaskCase : public SampleMaskBaseCase
{
public:
SampleMaskCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target);
~SampleMaskCase (void);
void init (void);
void preDraw (void);
void postDraw (void);
private:
enum
{
RENDER_SIZE = 64
};
std::string genFragmentSource (int numTargetSamples) const;
};
SampleMaskCase::SampleMaskCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target)
: SampleMaskBaseCase(context, name, desc, sampleCount, target, RENDER_SIZE, RUN_PER_PIXEL)
{
}
SampleMaskCase::~SampleMaskCase (void)
{
}
void SampleMaskCase::init (void)
{
// log the test method and expectations
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Verifying gl_SampleMaskIn value with SAMPLE_MASK state. gl_SampleMaskIn does not contain any bits set that are have been killed by SAMPLE_MASK state. Expecting:\n"
<< " 1) With multisample targets: gl_SampleMaskIn AND ~(SAMPLE_MASK) should be zero.\n"
<< " 2) With non-multisample targets: SAMPLE_MASK state is only ANDed as a multisample operation. gl_SampleMaskIn should only have its last bit set regardless of SAMPLE_MASK state.\n"
<< tcu::TestLog::EndMessage;
SampleMaskBaseCase::init();
}
void SampleMaskCase::preDraw (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const bool multisampleTarget = (m_numRequestedSamples > 0) || (m_renderTarget == TARGET_DEFAULT && m_context.getRenderTarget().getNumSamples() > 1);
const deUint32 fullMask = (deUint32)0xAAAAAAAAUL;
const deUint32 maskMask = (1U << m_numTargetSamples) - 1;
const deUint32 effectiveMask = fullMask & maskMask;
// set test mask
gl.enable(GL_SAMPLE_MASK);
gl.sampleMaski(0, effectiveMask);
GLU_EXPECT_NO_ERROR(gl.getError(), "set mask");
m_testCtx.getLog() << tcu::TestLog::Message << "Setting sample mask " << tcu::Format::Hex<4>(effectiveMask) << tcu::TestLog::EndMessage;
// set multisample case uniforms
if (multisampleTarget)
{
const int maskLoc = gl.getUniformLocation(m_program->getProgram(), "u_sampleMask");
if (maskLoc == -1)
throw tcu::TestError("Location of u_mask was -1");
gl.uniform1ui(maskLoc, effectiveMask);
GLU_EXPECT_NO_ERROR(gl.getError(), "set mask uniform");
}
// base class logic
SampleMaskBaseCase::preDraw();
}
void SampleMaskCase::postDraw (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const deUint32 fullMask = (1U << m_numTargetSamples) - 1;
gl.disable(GL_SAMPLE_MASK);
gl.sampleMaski(0, fullMask);
GLU_EXPECT_NO_ERROR(gl.getError(), "set mask");
// base class logic
SampleMaskBaseCase::postDraw();
}
std::string SampleMaskCase::genFragmentSource (int numTargetSamples) const
{
DE_ASSERT(numTargetSamples != 0);
const bool multisampleTarget = (m_numRequestedSamples > 0) || (m_renderTarget == TARGET_DEFAULT && m_context.getRenderTarget().getNumSamples() > 1);
std::ostringstream buf;
// test supports only one sample mask word
if (numTargetSamples > 32)
throw tcu::NotSupportedError("Sample count larger than 32 is not supported.");
if (multisampleTarget)
{
buf << "#version 310 es\n"
"#extension GL_OES_sample_variables : require\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"uniform highp uint u_sampleMask;\n"
"void main (void)\n"
"{\n"
" if ((uint(gl_SampleMaskIn[0]) & (~u_sampleMask)) != 0u)\n"
" fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n"
" else\n"
" fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n"
"}\n";
}
else
{
// non-multisample targets don't get multisample operations like ANDing with mask
buf << "#version 310 es\n"
"#extension GL_OES_sample_variables : require\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"uniform highp uint u_sampleMask;\n"
"void main (void)\n"
"{\n"
" if (gl_SampleMaskIn[0] != 1)\n"
" fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n"
" else\n"
" fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n"
"}\n";
}
return buf.str();
}
class SampleMaskCountCase : public SampleMaskBaseCase
{
public:
SampleMaskCountCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode);
~SampleMaskCountCase (void);
void init (void);
void preDraw (void);
void postDraw (void);
private:
enum
{
RENDER_SIZE = 64
};
std::string genFragmentSource (int numTargetSamples) const;
};
SampleMaskCountCase::SampleMaskCountCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode)
: SampleMaskBaseCase(context, name, desc, sampleCount, target, RENDER_SIZE, runMode)
{
DE_ASSERT(runMode < RUN_LAST);
}
SampleMaskCountCase::~SampleMaskCountCase (void)
{
}
void SampleMaskCountCase::init (void)
{
// log the test method and expectations
if (m_runMode == RUN_PER_PIXEL)
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Verifying gl_SampleMaskIn.\n"
<< " Fragment shader may be invoked [1, numSamples] times.\n"
<< " => gl_SampleMaskIn should have the number of bits set in range [1, numSamples]\n"
<< tcu::TestLog::EndMessage;
else if (m_runMode == RUN_PER_SAMPLE)
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Verifying gl_SampleMaskIn.\n"
<< " Fragment will be invoked numSamples times.\n"
<< " => gl_SampleMaskIn should have only one bit set.\n"
<< tcu::TestLog::EndMessage;
else if (m_runMode == RUN_PER_TWO_SAMPLES)
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Verifying gl_SampleMaskIn.\n"
<< " Fragment shader may be invoked [ceil(numSamples/2), numSamples] times.\n"
<< " => gl_SampleMaskIn should have the number of bits set in range [1, numSamples - ceil(numSamples/2) + 1]:\n"
<< tcu::TestLog::EndMessage;
else
DE_ASSERT(false);
SampleMaskBaseCase::init();
}
void SampleMaskCountCase::preDraw (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
if (m_runMode == RUN_PER_PIXEL)
{
const int maxLoc = gl.getUniformLocation(m_program->getProgram(), "u_maxBitCount");
const int minLoc = gl.getUniformLocation(m_program->getProgram(), "u_minBitCount");
const int minBitCount = 1;
const int maxBitCount = m_numTargetSamples;
if (maxLoc == -1)
throw tcu::TestError("Location of u_maxBitCount was -1");
if (minLoc == -1)
throw tcu::TestError("Location of u_minBitCount was -1");
gl.uniform1i(minLoc, minBitCount);
gl.uniform1i(maxLoc, maxBitCount);
GLU_EXPECT_NO_ERROR(gl.getError(), "set limits");
m_testCtx.getLog() << tcu::TestLog::Message << "Setting minBitCount = " << minBitCount << ", maxBitCount = " << maxBitCount << tcu::TestLog::EndMessage;
}
else if (m_runMode == RUN_PER_TWO_SAMPLES)
{
const int maxLoc = gl.getUniformLocation(m_program->getProgram(), "u_maxBitCount");
const int minLoc = gl.getUniformLocation(m_program->getProgram(), "u_minBitCount");
// Worst case: all but one shader invocations get one sample, one shader invocation the rest of the samples
const int minInvocationCount = ((m_numTargetSamples + 1) / 2);
const int minBitCount = 1;
const int maxBitCount = (m_numTargetSamples <= 2) ? (1) : (m_numTargetSamples - ((minInvocationCount-1) * minBitCount));
if (maxLoc == -1)
throw tcu::TestError("Location of u_maxBitCount was -1");
if (minLoc == -1)
throw tcu::TestError("Location of u_minBitCount was -1");
gl.uniform1i(minLoc, minBitCount);
gl.uniform1i(maxLoc, maxBitCount);
GLU_EXPECT_NO_ERROR(gl.getError(), "set limits");
m_testCtx.getLog() << tcu::TestLog::Message << "Setting minBitCount = " << minBitCount << ", maxBitCount = " << maxBitCount << tcu::TestLog::EndMessage;
}
SampleMaskBaseCase::preDraw();
}
void SampleMaskCountCase::postDraw (void)
{
SampleMaskBaseCase::postDraw();
}
std::string SampleMaskCountCase::genFragmentSource (int numTargetSamples) const
{
DE_ASSERT(numTargetSamples != 0);
std::ostringstream buf;
// test supports only one sample mask word
if (numTargetSamples > 32)
throw tcu::NotSupportedError("Sample count larger than 32 is not supported.");
// count the number of the bits in gl_SampleMask
buf << "#version 310 es\n"
"#extension GL_OES_sample_variables : require\n"
"layout(location = 0) out mediump vec4 fragColor;\n";
if (m_runMode != RUN_PER_SAMPLE)
buf << "uniform highp int u_minBitCount;\n"
"uniform highp int u_maxBitCount;\n";
buf << "void main (void)\n"
"{\n"
" mediump int maskBitCount = 0;\n"
" for (int i = 0; i < 32; ++i)\n"
" if (((gl_SampleMaskIn[0] >> i) & 0x01) == 0x01)\n"
" ++maskBitCount;\n"
"\n";
if (m_runMode == RUN_PER_SAMPLE)
{
// check the validity here
buf << " // force per-sample shading\n"
" highp float blue = float(gl_SampleID);\n"
"\n"
" if (maskBitCount != 1)\n"
" fragColor = vec4(1.0, 0.0, blue, 1.0);\n"
" else\n"
" fragColor = vec4(0.0, 1.0, blue, 1.0);\n"
"}\n";
}
else
{
// check the validity here
buf << " if (maskBitCount < u_minBitCount || maskBitCount > u_maxBitCount)\n"
" fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n"
" else\n"
" fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n"
"}\n";
}
return buf.str();
}
class SampleMaskUniqueCase : public SampleMaskBaseCase
{
public:
SampleMaskUniqueCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode);
~SampleMaskUniqueCase (void);
void init (void);
private:
enum
{
RENDER_SIZE = 64
};
std::string genFragmentSource (int numTargetSamples) const;
bool verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers);
};
SampleMaskUniqueCase::SampleMaskUniqueCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode)
: SampleMaskBaseCase(context, name, desc, sampleCount, target, RENDER_SIZE, runMode, MultisampleShaderRenderUtil::MultisampleRenderCase::FLAG_VERIFY_MSAA_TEXTURE_SAMPLE_BUFFERS)
{
DE_ASSERT(runMode == RUN_PER_SAMPLE);
DE_ASSERT(target == TARGET_TEXTURE);
}
SampleMaskUniqueCase::~SampleMaskUniqueCase (void)
{
}
void SampleMaskUniqueCase::init (void)
{
// log the test method and expectations
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Verifying gl_SampleMaskIn.\n"
<< " Fragment will be invoked numSamples times.\n"
<< " => gl_SampleMaskIn should have only one bit set\n"
<< " => and that bit index should be unique within other fragment shader invocations of that pixel.\n"
<< " Writing sampleMask bit index to green channel in render shader. Verifying uniqueness in sampler shader.\n"
<< tcu::TestLog::EndMessage;
SampleMaskBaseCase::init();
}
std::string SampleMaskUniqueCase::genFragmentSource (int numTargetSamples) const
{
DE_ASSERT(numTargetSamples != 0);
std::ostringstream buf;
// test supports only one sample mask word
if (numTargetSamples > 32)
throw tcu::NotSupportedError("Sample count larger than 32 is not supported.");
// find our sampleID by searching for unique bit.
buf << "#version 310 es\n"
"#extension GL_OES_sample_variables : require\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" mediump int firstIndex = -1;\n"
" for (int i = 0; i < 32; ++i)\n"
" {\n"
" if (((gl_SampleMaskIn[0] >> i) & 0x01) == 0x01)\n"
" {\n"
" firstIndex = i;\n"
" break;\n"
" }\n"
" }\n"
"\n"
" bool notUniqueError = false;\n"
" for (int i = firstIndex + 1; i < 32; ++i)\n"
" if (((gl_SampleMaskIn[0] >> i) & 0x01) == 0x01)\n"
" notUniqueError = true;\n"
"\n"
" highp float encodedSampleId = float(firstIndex) / " << numTargetSamples <<".0;\n"
"\n"
" // force per-sample shading\n"
" highp float blue = float(gl_SampleID);\n"
"\n"
" if (notUniqueError)\n"
" fragColor = vec4(1.0, 0.0, blue, 1.0);\n"
" else\n"
" fragColor = vec4(0.0, encodedSampleId, blue, 1.0);\n"
"}\n";
return buf.str();
}
bool SampleMaskUniqueCase::verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers)
{
const int width = resultBuffers[0].getWidth();
const int height = resultBuffers[0].getHeight();
bool allOk = true;
// Log samples
{
m_testCtx.getLog() << tcu::TestLog::ImageSet("SampleBuffers", "Image sample buffers");
for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx)
m_testCtx.getLog() << tcu::TestLog::Image("Buffer" + de::toString(sampleNdx), "Sample " + de::toString(sampleNdx), resultBuffers[sampleNdx].getAccess());
m_testCtx.getLog() << tcu::TestLog::EndImageSet;
}
// check for earlier errors (in fragment shader)
{
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying fragment shader invocation found only one set sample mask bit." << tcu::TestLog::EndMessage;
for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx)
{
// shader does the check, just check the shader error output (red)
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample " << (sampleNdx+1) << "/" << (int)resultBuffers.size() << tcu::TestLog::EndMessage;
allOk &= verifyImageWithVerifier(resultBuffers[sampleNdx], m_testCtx.getLog(), NoRedVerifier(), false);
}
if (!allOk)
{
// can't check the uniqueness if the masks don't work at all
m_testCtx.getLog() << tcu::TestLog::Message << "Could not get mask information from the rendered image, cannot continue verification." << tcu::TestLog::EndMessage;
return false;
}
}
// verify index / index ranges
if (m_numRequestedSamples == 0)
{
// single sample target, expect index=0
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample mask bit index is 0." << tcu::TestLog::EndMessage;
// only check the mask index
allOk &= verifyImageWithVerifier(resultBuffers[0], m_testCtx.getLog(), ColorVerifier(tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::IVec3(255, 8, 255)), false);
}
else
{
// check uniqueness
tcu::Surface errorMask (width, height);
bool uniquenessOk = true;
int printCount = 0;
const int printFloodLimit = 5;
std::vector<int> maskBitIndices (resultBuffers.size());
tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f));
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying per-invocation sample mask bit is unique." << tcu::TestLog::EndMessage;
for (int y = 0; y < height; ++y)
for (int x = 0; x < width; ++x)
{
bool maskNdxNotUnique = false;
// decode index
for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx)
{
const tcu::RGBA color = resultBuffers[sampleNdx].getPixel(x, y);
maskBitIndices[sampleNdx] = (int)deFloatRound(color.getGreen() / 255.0f * m_numTargetSamples);
}
// just check there are no two invocations with the same bit index
for (int sampleNdxA = 0; sampleNdxA < (int)resultBuffers.size() && (!maskNdxNotUnique || printCount < printFloodLimit); ++sampleNdxA)
for (int sampleNdxB = sampleNdxA+1; sampleNdxB < (int)resultBuffers.size() && (!maskNdxNotUnique || printCount < printFloodLimit); ++sampleNdxB)
{
if (maskBitIndices[sampleNdxA] == maskBitIndices[sampleNdxB])
{
if (++printCount <= printFloodLimit)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Pixel (" << x << ", " << y << "): Samples " << sampleNdxA << " and " << sampleNdxB << " have the same sample mask. (Single bit at index " << maskBitIndices[sampleNdxA] << ")"
<< tcu::TestLog::EndMessage;
}
maskNdxNotUnique = true;
uniquenessOk = false;
errorMask.setPixel(x, y, tcu::RGBA::red);
}
}
}
// end result
if (!uniquenessOk)
{
if (printCount > printFloodLimit)
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "...\n"
<< "Omitted " << (printCount-printFloodLimit) << " error descriptions."
<< tcu::TestLog::EndMessage;
m_testCtx.getLog()
<< tcu::TestLog::Message << "Image verification failed." << tcu::TestLog::EndMessage
<< tcu::TestLog::ImageSet("Verification", "Image Verification")
<< tcu::TestLog::Image("ErrorMask", "Error Mask", errorMask.getAccess())
<< tcu::TestLog::EndImageSet;
allOk = false;
}
}
return allOk;
}
class SampleMaskUniqueSetCase : public SampleMaskBaseCase
{
public:
SampleMaskUniqueSetCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode);
~SampleMaskUniqueSetCase (void);
void init (void);
void deinit (void);
private:
enum
{
RENDER_SIZE = 64
};
void preDraw (void);
void postDraw (void);
std::string genFragmentSource (int numTargetSamples) const;
bool verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers);
std::string getIterationDescription (int iteration) const;
void preTest (void);
void postTest (void);
std::vector<tcu::Surface> m_iterationSampleBuffers;
};
SampleMaskUniqueSetCase::SampleMaskUniqueSetCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode)
: SampleMaskBaseCase(context, name, desc, sampleCount, target, RENDER_SIZE, runMode, MultisampleShaderRenderUtil::MultisampleRenderCase::FLAG_VERIFY_MSAA_TEXTURE_SAMPLE_BUFFERS)
{
DE_ASSERT(runMode == RUN_PER_TWO_SAMPLES);
DE_ASSERT(target == TARGET_TEXTURE);
// high and low bits
m_numIterations = 2;
}
SampleMaskUniqueSetCase::~SampleMaskUniqueSetCase (void)
{
}
void SampleMaskUniqueSetCase::init (void)
{
// log the test method and expectations
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Verifying gl_SampleMaskIn.\n"
<< " Fragment shader may be invoked [ceil(numSamples/2), numSamples] times.\n"
<< " => Each invocation should have unique bit set\n"
<< " Writing highest and lowest bit index to color channels in render shader. Verifying:\n"
<< " 1) no other invocation contains these bits in sampler shader.\n"
<< " 2) number of invocations is at least ceil(numSamples/2).\n"
<< tcu::TestLog::EndMessage;
SampleMaskBaseCase::init();
}
void SampleMaskUniqueSetCase::deinit (void)
{
m_iterationSampleBuffers.clear();
}
void SampleMaskUniqueSetCase::preDraw (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const int selectorLoc = gl.getUniformLocation(m_program->getProgram(), "u_bitSelector");
gl.uniform1ui(selectorLoc, (deUint32)m_iteration);
GLU_EXPECT_NO_ERROR(gl.getError(), "set u_bitSelector");
m_testCtx.getLog() << tcu::TestLog::Message << "Setting u_bitSelector = " << m_iteration << tcu::TestLog::EndMessage;
SampleMaskBaseCase::preDraw();
}
void SampleMaskUniqueSetCase::postDraw (void)
{
SampleMaskBaseCase::postDraw();
}
std::string SampleMaskUniqueSetCase::genFragmentSource (int numTargetSamples) const
{
DE_ASSERT(numTargetSamples != 0);
std::ostringstream buf;
// test supports only one sample mask word
if (numTargetSamples > 32)
throw tcu::NotSupportedError("Sample count larger than 32 is not supported.");
// output min and max sample id
buf << "#version 310 es\n"
"#extension GL_OES_sample_variables : require\n"
"uniform highp uint u_bitSelector;\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" highp int selectedBits;\n"
" if (u_bitSelector == 0u)\n"
" selectedBits = (gl_SampleMaskIn[0] & 0xFFFF);\n"
" else\n"
" selectedBits = ((gl_SampleMaskIn[0] >> 16) & 0xFFFF);\n"
"\n"
" // encode bits to color\n"
" highp int redBits = selectedBits & 31;\n"
" highp int greenBits = (selectedBits >> 5) & 63;\n"
" highp int blueBits = (selectedBits >> 11) & 31;\n"
"\n"
" fragColor = vec4(float(redBits) / float(31), float(greenBits) / float(63), float(blueBits) / float(31), 1.0);\n"
"}\n";
return buf.str();
}
bool SampleMaskUniqueSetCase::verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers)
{
// we need results from all passes to do verification. Store results and verify later (at postTest).
DE_ASSERT(m_numTargetSamples == (int)resultBuffers.size());
for (int ndx = 0; ndx < m_numTargetSamples; ++ndx)
m_iterationSampleBuffers[m_iteration * m_numTargetSamples + ndx] = resultBuffers[ndx];
return true;
}
std::string SampleMaskUniqueSetCase::getIterationDescription (int iteration) const
{
if (iteration == 0)
return "Reading low bits";
else if (iteration == 1)
return "Reading high bits";
else
DE_ASSERT(false);
return "";
}
void SampleMaskUniqueSetCase::preTest (void)
{
m_iterationSampleBuffers.resize(m_numTargetSamples * 2);
}
void SampleMaskUniqueSetCase::postTest (void)
{
DE_ASSERT((m_iterationSampleBuffers.size() % 2) == 0);
DE_ASSERT((int)m_iterationSampleBuffers.size() / 2 == m_numTargetSamples);
const int width = m_iterationSampleBuffers[0].getWidth();
const int height = m_iterationSampleBuffers[0].getHeight();
bool allOk = true;
std::vector<tcu::TextureLevel> sampleCoverage (m_numTargetSamples);
const tcu::ScopedLogSection section (m_testCtx.getLog(), "Verify", "Verify masks");
// convert color layers to 32 bit coverage masks, 2 passes per coverage
for (int sampleNdx = 0; sampleNdx < (int)sampleCoverage.size(); ++sampleNdx)
{
sampleCoverage[sampleNdx].setStorage(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT32), width, height);
for (int y = 0; y < height; ++y)
for (int x = 0; x < width; ++x)
{
const tcu::RGBA lowColor = m_iterationSampleBuffers[sampleNdx].getPixel(x, y);
const tcu::RGBA highColor = m_iterationSampleBuffers[sampleNdx + (int)sampleCoverage.size()].getPixel(x, y);
deUint16 low;
deUint16 high;
{
int redBits = (int)deFloatRound(lowColor.getRed() / 255.0f * 31);
int greenBits = (int)deFloatRound(lowColor.getGreen() / 255.0f * 63);
int blueBits = (int)deFloatRound(lowColor.getBlue() / 255.0f * 31);
low = (deUint16)(redBits | (greenBits << 5) | (blueBits << 11));
}
{
int redBits = (int)deFloatRound(highColor.getRed() / 255.0f * 31);
int greenBits = (int)deFloatRound(highColor.getGreen() / 255.0f * 63);
int blueBits = (int)deFloatRound(highColor.getBlue() / 255.0f * 31);
high = (deUint16)(redBits | (greenBits << 5) | (blueBits << 11));
}
sampleCoverage[sampleNdx].getAccess().setPixel(tcu::UVec4((((deUint32)high) << 16) | low, 0, 0, 0), x, y);
}
}
// verify masks
if (m_numRequestedSamples == 0)
{
// single sample target, expect mask = 0x01
const int printFloodLimit = 5;
int printCount = 0;
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample mask is 0x00000001." << tcu::TestLog::EndMessage;
for (int y = 0; y < height; ++y)
for (int x = 0; x < width; ++x)
{
deUint32 mask = sampleCoverage[0].getAccess().getPixelUint(x, y).x();
if (mask != 0x01)
{
allOk = false;
if (++printCount <= printFloodLimit)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Pixel (" << x << ", " << y << "): Invalid mask, got " << tcu::Format::Hex<8>(mask) << ", expected " << tcu::Format::Hex<8>(0x01) << "\n"
<< tcu::TestLog::EndMessage;
}
}
}
if (!allOk && printCount > printFloodLimit)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "...\n"
<< "Omitted " << (printCount-printFloodLimit) << " error descriptions."
<< tcu::TestLog::EndMessage;
}
}
else
{
// check uniqueness
{
bool uniquenessOk = true;
int printCount = 0;
const int printFloodLimit = 5;
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying invocation sample masks do not share bits." << tcu::TestLog::EndMessage;
for (int y = 0; y < height; ++y)
for (int x = 0; x < width; ++x)
{
bool maskBitsNotUnique = false;
for (int sampleNdxA = 0; sampleNdxA < m_numTargetSamples && (!maskBitsNotUnique || printCount < printFloodLimit); ++sampleNdxA)
for (int sampleNdxB = sampleNdxA+1; sampleNdxB < m_numTargetSamples && (!maskBitsNotUnique || printCount < printFloodLimit); ++sampleNdxB)
{
const deUint32 maskA = sampleCoverage[sampleNdxA].getAccess().getPixelUint(x, y).x();
const deUint32 maskB = sampleCoverage[sampleNdxB].getAccess().getPixelUint(x, y).x();
// equal mask == emitted by the same invocation
if (maskA != maskB)
{
// shares samples?
if (maskA & maskB)
{
maskBitsNotUnique = true;
uniquenessOk = false;
if (++printCount <= printFloodLimit)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Pixel (" << x << ", " << y << "):\n"
<< "\tSamples " << sampleNdxA << " and " << sampleNdxB << " share mask bits\n"
<< "\tMask" << sampleNdxA << " = " << tcu::Format::Hex<8>(maskA) << "\n"
<< "\tMask" << sampleNdxB << " = " << tcu::Format::Hex<8>(maskB) << "\n"
<< tcu::TestLog::EndMessage;
}
}
}
}
}
if (!uniquenessOk)
{
allOk = false;
if (printCount > printFloodLimit)
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "...\n"
<< "Omitted " << (printCount-printFloodLimit) << " error descriptions."
<< tcu::TestLog::EndMessage;
}
}
// check number of sample mask bit groups is valid ( == number of invocations )
{
const deUint32 minNumInvocations = (deUint32)de::max(1, (m_numTargetSamples+1)/2);
bool countOk = true;
int printCount = 0;
const int printFloodLimit = 5;
m_testCtx.getLog() << tcu::TestLog::Message << "Verifying cardinality of separate sample mask bit sets. Expecting equal to the number of invocations, (greater or equal to " << minNumInvocations << ")" << tcu::TestLog::EndMessage;
for (int y = 0; y < height; ++y)
for (int x = 0; x < width; ++x)
{
std::set<deUint32> masks;
for (int maskNdx = 0; maskNdx < m_numTargetSamples; ++maskNdx)
{
const deUint32 mask = sampleCoverage[maskNdx].getAccess().getPixelUint(x, y).x();
masks.insert(mask);
}
if ((int)masks.size() < (int)minNumInvocations)
{
if (++printCount <= printFloodLimit)
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Pixel (" << x << ", " << y << "): Pixel invocations had only " << (int)masks.size() << " separate mask sets. Expected " << minNumInvocations << " or more. Found masks:"
<< tcu::TestLog::EndMessage;
for (std::set<deUint32>::iterator it = masks.begin(); it != masks.end(); ++it)
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "\tMask: " << tcu::Format::Hex<8>(*it) << "\n"
<< tcu::TestLog::EndMessage;
}
countOk = false;
}
}
if (!countOk)
{
allOk = false;
if (printCount > printFloodLimit)
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "...\n"
<< "Omitted " << (printCount-printFloodLimit) << " error descriptions."
<< tcu::TestLog::EndMessage;
}
}
}
if (!allOk)
m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image verification failed");
}
class SampleMaskWriteCase : public SampleMaskBaseCase
{
public:
enum TestMode
{
TEST_DISCARD = 0,
TEST_INVERSE,
TEST_LAST
};
SampleMaskWriteCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode, TestMode testMode);
~SampleMaskWriteCase (void);
void init (void);
void preDraw (void);
void postDraw (void);
private:
enum
{
RENDER_SIZE = 64
};
std::string genFragmentSource (int numTargetSamples) const;
bool verifyImage (const tcu::Surface& resultImage);
const TestMode m_testMode;
};
SampleMaskWriteCase::SampleMaskWriteCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode, TestMode testMode)
: SampleMaskBaseCase (context, name, desc, sampleCount, target, RENDER_SIZE, runMode)
, m_testMode (testMode)
{
DE_ASSERT(testMode < TEST_LAST);
}
SampleMaskWriteCase::~SampleMaskWriteCase (void)
{
}
void SampleMaskWriteCase::init (void)
{
// log the test method and expectations
if (m_testMode == TEST_DISCARD)
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Discarding half of the samples using gl_SampleMask, expecting:\n"
<< " 1) half intensity on multisample targets (numSamples > 1)\n"
<< " 2) full discard on multisample targets (numSamples == 1)\n"
<< " 3) full intensity (no discard) on singlesample targets. (Mask is only applied as a multisample operation.)\n"
<< tcu::TestLog::EndMessage;
else if (m_testMode == TEST_INVERSE)
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Discarding half of the samples using GL_SAMPLE_MASK, setting inverse mask in fragment shader using gl_SampleMask, expecting:\n"
<< " 1) full discard on multisample targets (mask & modifiedCoverge == 0)\n"
<< " 2) full intensity (no discard) on singlesample targets. (Mask and coverage is only applied as a multisample operation.)\n"
<< tcu::TestLog::EndMessage;
else
DE_ASSERT(false);
SampleMaskBaseCase::init();
}
void SampleMaskWriteCase::preDraw (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
if (m_testMode == TEST_INVERSE)
{
// set mask to 0xAAAA.., set inverse mask bit coverage in shader
const int maskLoc = gl.getUniformLocation(m_program->getProgram(), "u_mask");
const deUint32 mask = (deUint32)0xAAAAAAAAUL;
if (maskLoc == -1)
throw tcu::TestError("Location of u_mask was -1");
gl.enable(GL_SAMPLE_MASK);
gl.sampleMaski(0, mask);
GLU_EXPECT_NO_ERROR(gl.getError(), "set mask");
gl.uniform1ui(maskLoc, mask);
GLU_EXPECT_NO_ERROR(gl.getError(), "set mask uniform");
m_testCtx.getLog() << tcu::TestLog::Message << "Setting sample mask " << tcu::Format::Hex<4>(mask) << tcu::TestLog::EndMessage;
}
SampleMaskBaseCase::preDraw();
}
void SampleMaskWriteCase::postDraw (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
if (m_testMode == TEST_INVERSE)
{
const deUint32 fullMask = (1U << m_numTargetSamples) - 1;
gl.disable(GL_SAMPLE_MASK);
gl.sampleMaski(0, fullMask);
GLU_EXPECT_NO_ERROR(gl.getError(), "set mask");
}
SampleMaskBaseCase::postDraw();
}
std::string SampleMaskWriteCase::genFragmentSource (int numTargetSamples) const
{
DE_ASSERT(numTargetSamples != 0);
DE_UNREF(numTargetSamples);
std::ostringstream buf;
if (m_testMode == TEST_DISCARD)
{
// mask out every other coverage bit
buf << "#version 310 es\n"
"#extension GL_OES_sample_variables : require\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"void main (void)\n"
"{\n"
" for (int i = 0; i < gl_SampleMask.length(); ++i)\n"
" gl_SampleMask[i] = int(0xAAAAAAAA);\n"
"\n";
if (m_runMode == RUN_PER_SAMPLE)
buf << " // force per-sample shading\n"
" highp float blue = float(gl_SampleID);\n"
"\n"
" fragColor = vec4(0.0, 1.0, blue, 1.0);\n"
"}\n";
else
buf << " fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n"
"}\n";
}
else if (m_testMode == TEST_INVERSE)
{
// inverse every coverage bit
buf << "#version 310 es\n"
"#extension GL_OES_sample_variables : require\n"
"layout(location = 0) out mediump vec4 fragColor;\n"
"uniform highp uint u_mask;\n"
"void main (void)\n"
"{\n"
" gl_SampleMask[0] = int(~u_mask);\n"
"\n";
if (m_runMode == RUN_PER_SAMPLE)
buf << " // force per-sample shading\n"
" highp float blue = float(gl_SampleID);\n"
"\n"
" fragColor = vec4(0.0, 1.0, blue, 1.0);\n"
"}\n";
else
buf << " fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n"
"}\n";
}
else
DE_ASSERT(false);
return buf.str();
}
bool SampleMaskWriteCase::verifyImage (const tcu::Surface& resultImage)
{
const bool singleSampleTarget = m_numRequestedSamples == 0 && !(m_renderTarget == TARGET_DEFAULT && m_context.getRenderTarget().getNumSamples() > 1);
if (m_testMode == TEST_DISCARD)
{
if (singleSampleTarget)
{
// single sample case => multisample operations are not effective => don't discard anything
// expect green
return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), ColorVerifier(tcu::Vec3(0.0f, 1.0f, 0.0f)));
}
else if (m_numTargetSamples == 1)
{
// total discard, expect black
return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), ColorVerifier(tcu::Vec3(0.0f, 0.0f, 0.0f)));
}
else
{
// partial discard, expect something between black and green
return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), PartialDiscardVerifier());
}
}
else if (m_testMode == TEST_INVERSE)
{
if (singleSampleTarget)
{
// single sample case => multisample operations are not effective => don't discard anything
// expect green
return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), ColorVerifier(tcu::Vec3(0.0f, 1.0f, 0.0f)));
}
else
{
// total discard, expect black
return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), ColorVerifier(tcu::Vec3(0.0f, 0.0f, 0.0f)));
}
}
else
{
DE_ASSERT(false);
return false;
}
}
} // anonymous
SampleVariableTests::SampleVariableTests (Context& context)
: TestCaseGroup(context, "sample_variables", "Test sample variables")
{
}
SampleVariableTests::~SampleVariableTests (void)
{
}
void SampleVariableTests::init (void)
{
tcu::TestCaseGroup* const numSampleGroup = new tcu::TestCaseGroup(m_testCtx, "num_samples", "Test NumSamples");
tcu::TestCaseGroup* const maxSampleGroup = new tcu::TestCaseGroup(m_testCtx, "max_samples", "Test MaxSamples");
tcu::TestCaseGroup* const sampleIDGroup = new tcu::TestCaseGroup(m_testCtx, "sample_id", "Test SampleID");
tcu::TestCaseGroup* const samplePosGroup = new tcu::TestCaseGroup(m_testCtx, "sample_pos", "Test SamplePosition");
tcu::TestCaseGroup* const sampleMaskInGroup = new tcu::TestCaseGroup(m_testCtx, "sample_mask_in", "Test SampleMaskIn");
tcu::TestCaseGroup* const sampleMaskGroup = new tcu::TestCaseGroup(m_testCtx, "sample_mask", "Test SampleMask");
addChild(numSampleGroup);
addChild(maxSampleGroup);
addChild(sampleIDGroup);
addChild(samplePosGroup);
addChild(sampleMaskInGroup);
addChild(sampleMaskGroup);
static const struct RenderTarget
{
const char* name;
const char* desc;
int numSamples;
MultisampleRenderCase::RenderTarget target;
} targets[] =
{
{ "default_framebuffer", "Test with default framebuffer", 0, MultisampleRenderCase::TARGET_DEFAULT },
{ "singlesample_texture", "Test with singlesample texture", 0, MultisampleRenderCase::TARGET_TEXTURE },
{ "multisample_texture_1", "Test with multisample texture", 1, MultisampleRenderCase::TARGET_TEXTURE },
{ "multisample_texture_2", "Test with multisample texture", 2, MultisampleRenderCase::TARGET_TEXTURE },
{ "multisample_texture_4", "Test with multisample texture", 4, MultisampleRenderCase::TARGET_TEXTURE },
{ "multisample_texture_8", "Test with multisample texture", 8, MultisampleRenderCase::TARGET_TEXTURE },
{ "multisample_texture_16", "Test with multisample texture", 16, MultisampleRenderCase::TARGET_TEXTURE },
{ "singlesample_rbo", "Test with singlesample rbo", 0, MultisampleRenderCase::TARGET_RENDERBUFFER },
{ "multisample_rbo_1", "Test with multisample rbo", 1, MultisampleRenderCase::TARGET_RENDERBUFFER },
{ "multisample_rbo_2", "Test with multisample rbo", 2, MultisampleRenderCase::TARGET_RENDERBUFFER },
{ "multisample_rbo_4", "Test with multisample rbo", 4, MultisampleRenderCase::TARGET_RENDERBUFFER },
{ "multisample_rbo_8", "Test with multisample rbo", 8, MultisampleRenderCase::TARGET_RENDERBUFFER },
{ "multisample_rbo_16", "Test with multisample rbo", 16, MultisampleRenderCase::TARGET_RENDERBUFFER },
};
// .num_samples
{
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
numSampleGroup->addChild(new NumSamplesCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target));
}
// .max_samples
{
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
maxSampleGroup->addChild(new MaxSamplesCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target));
}
// .sample_ID
{
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
sampleIDGroup->addChild(new SampleIDCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target));
}
// .sample_pos
{
{
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "correctness", "Test SamplePos correctness");
samplePosGroup->addChild(group);
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
group->addChild(new SamplePosCorrectnessCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target));
}
{
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "distribution", "Test SamplePos distribution");
samplePosGroup->addChild(group);
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
group->addChild(new SamplePosDistributionCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target));
}
}
// .sample_mask_in
{
// .sample_mask
{
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "sample_mask", "Test with GL_SAMPLE_MASK");
sampleMaskInGroup->addChild(group);
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
group->addChild(new SampleMaskCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target));
}
// .bit_count_per_pixel
{
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "bit_count_per_pixel", "Test number of coverage bits");
sampleMaskInGroup->addChild(group);
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
group->addChild(new SampleMaskCountCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskCountCase::RUN_PER_PIXEL));
}
// .bit_count_per_sample
{
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "bit_count_per_sample", "Test number of coverage bits");
sampleMaskInGroup->addChild(group);
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
group->addChild(new SampleMaskCountCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskCountCase::RUN_PER_SAMPLE));
}
// .bit_count_per_two_samples
{
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "bit_count_per_two_samples", "Test number of coverage bits");
sampleMaskInGroup->addChild(group);
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
group->addChild(new SampleMaskCountCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskCountCase::RUN_PER_TWO_SAMPLES));
}
// .bits_unique_per_sample
{
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "bits_unique_per_sample", "Test coverage bits");
sampleMaskInGroup->addChild(group);
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
if (targets[targetNdx].target == MultisampleRenderCase::TARGET_TEXTURE)
group->addChild(new SampleMaskUniqueCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskUniqueCase::RUN_PER_SAMPLE));
}
// .bits_unique_per_two_samples
{
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "bits_unique_per_two_samples", "Test coverage bits");
sampleMaskInGroup->addChild(group);
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
if (targets[targetNdx].target == MultisampleRenderCase::TARGET_TEXTURE)
group->addChild(new SampleMaskUniqueSetCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskUniqueCase::RUN_PER_TWO_SAMPLES));
}
}
// .sample_mask
{
// .discard_half_per_pixel
{
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "discard_half_per_pixel", "Test coverage bits");
sampleMaskGroup->addChild(group);
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
group->addChild(new SampleMaskWriteCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskWriteCase::RUN_PER_PIXEL, SampleMaskWriteCase::TEST_DISCARD));
}
// .discard_half_per_sample
{
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "discard_half_per_sample", "Test coverage bits");
sampleMaskGroup->addChild(group);
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
group->addChild(new SampleMaskWriteCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskWriteCase::RUN_PER_SAMPLE, SampleMaskWriteCase::TEST_DISCARD));
}
// .discard_half_per_two_samples
{
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "discard_half_per_two_samples", "Test coverage bits");
sampleMaskGroup->addChild(group);
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
group->addChild(new SampleMaskWriteCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskWriteCase::RUN_PER_TWO_SAMPLES, SampleMaskWriteCase::TEST_DISCARD));
}
// .discard_half_per_two_samples
{
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "inverse_per_pixel", "Test coverage bits");
sampleMaskGroup->addChild(group);
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
group->addChild(new SampleMaskWriteCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskWriteCase::RUN_PER_PIXEL, SampleMaskWriteCase::TEST_INVERSE));
}
// .inverse_per_sample
{
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "inverse_per_sample", "Test coverage bits");
sampleMaskGroup->addChild(group);
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
group->addChild(new SampleMaskWriteCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskWriteCase::RUN_PER_SAMPLE, SampleMaskWriteCase::TEST_INVERSE));
}
// .inverse_per_two_samples
{
tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "inverse_per_two_samples", "Test coverage bits");
sampleMaskGroup->addChild(group);
for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx)
group->addChild(new SampleMaskWriteCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskWriteCase::RUN_PER_TWO_SAMPLES, SampleMaskWriteCase::TEST_INVERSE));
}
}
}
} // Functional
} // gles31
} // deqp