/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 3.1 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Sample variable tests *//*--------------------------------------------------------------------*/ #include "es31fSampleVariableTests.hpp" #include "es31fMultisampleShaderRenderCase.hpp" #include "tcuSurface.hpp" #include "tcuTestLog.hpp" #include "tcuRenderTarget.hpp" #include "tcuTextureUtil.hpp" #include "tcuVectorUtil.hpp" #include "tcuFormatUtil.hpp" #include "gluContextInfo.hpp" #include "gluShaderProgram.hpp" #include "gluRenderContext.hpp" #include "glwFunctions.hpp" #include "glwEnums.hpp" #include "deStringUtil.hpp" namespace deqp { namespace gles31 { namespace Functional { namespace { class Verifier { public: virtual bool verify (const tcu::RGBA& testColor, const tcu::IVec2& position) const = 0; virtual void logInfo (tcu::TestLog& log) const = 0; }; class ColorVerifier : public Verifier { public: ColorVerifier (const tcu::Vec3& _color, int _threshold = 8) : m_color (tcu::Vec4(_color.x(), _color.y(), _color.z(), 1.0f)) , m_threshold (tcu::IVec3(_threshold)) { } ColorVerifier (const tcu::Vec3& _color, tcu::IVec3 _threshold) : m_color (tcu::Vec4(_color.x(), _color.y(), _color.z(), 1.0f)) , m_threshold (_threshold) { } bool verify (const tcu::RGBA& testColor, const tcu::IVec2& position) const { DE_UNREF(position); return !tcu::boolAny(tcu::greaterThan(tcu::abs(m_color.toIVec().swizzle(0, 1, 2) - testColor.toIVec().swizzle(0, 1, 2)), tcu::IVec3(m_threshold))); } void logInfo (tcu::TestLog& log) const { // full threshold? print * for clarity log << tcu::TestLog::Message << "Expecting unicolored image, color = RGB(" << ((m_threshold[0] >= 255) ? ("*") : (de::toString(m_color.getRed()))) << ", " << ((m_threshold[1] >= 255) ? ("*") : (de::toString(m_color.getGreen()))) << ", " << ((m_threshold[2] >= 255) ? ("*") : (de::toString(m_color.getBlue()))) << ")" << tcu::TestLog::EndMessage; } const tcu::RGBA m_color; const tcu::IVec3 m_threshold; }; class FullBlueSomeGreenVerifier : public Verifier { public: FullBlueSomeGreenVerifier (void) { } bool verify (const tcu::RGBA& testColor, const tcu::IVec2& position) const { DE_UNREF(position); // Values from 0.0 and 1.0 are accurate if (testColor.getRed() != 0) return false; if (testColor.getGreen() == 0) return false; if (testColor.getBlue() != 255) return false; return true; } void logInfo (tcu::TestLog& log) const { log << tcu::TestLog::Message << "Expecting color c = (0.0, x, 1.0), x > 0.0" << tcu::TestLog::EndMessage; } }; class NoRedVerifier : public Verifier { public: NoRedVerifier (void) { } bool verify (const tcu::RGBA& testColor, const tcu::IVec2& position) const { DE_UNREF(position); return testColor.getRed() == 0; } void logInfo (tcu::TestLog& log) const { log << tcu::TestLog::Message << "Expecting zero-valued red channel." << tcu::TestLog::EndMessage; } }; class SampleAverageVerifier : public Verifier { public: SampleAverageVerifier (int _numSamples); bool verify (const tcu::RGBA& testColor, const tcu::IVec2& position) const; void logInfo (tcu::TestLog& log) const; const int m_numSamples; const bool m_isStatisticallySignificant; float m_distanceThreshold; }; SampleAverageVerifier::SampleAverageVerifier (int _numSamples) : m_numSamples (_numSamples) , m_isStatisticallySignificant (_numSamples >= 4) , m_distanceThreshold (0.0f) { // approximate Bates distribution as normal const float variance = (1.0f / (12.0f * m_numSamples)); const float standardDeviation = deFloatSqrt(variance); // 95% of means of sample positions are within 2 standard deviations if // they were randomly assigned. Sample patterns are expected to be more // uniform than a random pattern. m_distanceThreshold = 2 * standardDeviation; } bool SampleAverageVerifier::verify (const tcu::RGBA& testColor, const tcu::IVec2& position) const { DE_UNREF(position); DE_ASSERT(m_isStatisticallySignificant); const tcu::Vec2 avgPosition (testColor.getGreen() / 255.0f, testColor.getBlue() / 255.0f); const tcu::Vec2 distanceFromCenter = tcu::abs(avgPosition - tcu::Vec2(0.5f, 0.5f)); return distanceFromCenter.x() < m_distanceThreshold && distanceFromCenter.y() < m_distanceThreshold; } void SampleAverageVerifier::logInfo (tcu::TestLog& log) const { log << tcu::TestLog::Message << "Expecting average sample position to be near the pixel center. Maximum per-axis distance " << m_distanceThreshold << tcu::TestLog::EndMessage; } class PartialDiscardVerifier : public Verifier { public: PartialDiscardVerifier (void) { } bool verify (const tcu::RGBA& testColor, const tcu::IVec2& position) const { DE_UNREF(position); return (testColor.getGreen() != 0) && (testColor.getGreen() != 255); } void logInfo (tcu::TestLog& log) const { log << tcu::TestLog::Message << "Expecting color non-zero and non-saturated green channel" << tcu::TestLog::EndMessage; } }; static bool verifyImageWithVerifier (const tcu::Surface& resultImage, tcu::TestLog& log, const Verifier& verifier, bool logOnSuccess = true) { tcu::Surface errorMask (resultImage.getWidth(), resultImage.getHeight()); bool error = false; tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f)); if (logOnSuccess) { log << tcu::TestLog::Message << "Verifying image." << tcu::TestLog::EndMessage; verifier.logInfo(log); } for (int y = 0; y < resultImage.getHeight(); ++y) for (int x = 0; x < resultImage.getWidth(); ++x) { const tcu::RGBA color = resultImage.getPixel(x, y); // verify color value is valid for this pixel position if (!verifier.verify(color, tcu::IVec2(x,y))) { error = true; errorMask.setPixel(x, y, tcu::RGBA::red); } } if (error) { // describe the verification logic if we haven't already if (!logOnSuccess) verifier.logInfo(log); log << tcu::TestLog::Message << "Image verification failed." << tcu::TestLog::EndMessage << tcu::TestLog::ImageSet("Verification", "Image Verification") << tcu::TestLog::Image("Result", "Result image", resultImage.getAccess()) << tcu::TestLog::Image("ErrorMask", "Error Mask", errorMask.getAccess()) << tcu::TestLog::EndImageSet; } else if (logOnSuccess) { log << tcu::TestLog::Message << "Image verification passed." << tcu::TestLog::EndMessage << tcu::TestLog::ImageSet("Verification", "Image Verification") << tcu::TestLog::Image("Result", "Result image", resultImage.getAccess()) << tcu::TestLog::EndImageSet; } return !error; } class MultisampleRenderCase : public MultisampleShaderRenderUtil::MultisampleRenderCase { public: MultisampleRenderCase (Context& context, const char* name, const char* desc, int numSamples, RenderTarget target, int renderSize, int flags = 0); virtual ~MultisampleRenderCase (void); virtual void init (void); }; MultisampleRenderCase::MultisampleRenderCase (Context& context, const char* name, const char* desc, int numSamples, RenderTarget target, int renderSize, int flags) : MultisampleShaderRenderUtil::MultisampleRenderCase(context, name, desc, numSamples, target, renderSize, flags) { DE_ASSERT(target < TARGET_LAST); } MultisampleRenderCase::~MultisampleRenderCase (void) { MultisampleRenderCase::deinit(); } void MultisampleRenderCase::init (void) { if (!m_context.getContextInfo().isExtensionSupported("GL_OES_sample_variables")) throw tcu::NotSupportedError("Test requires GL_OES_sample_variables extension"); MultisampleShaderRenderUtil::MultisampleRenderCase::init(); } class NumSamplesCase : public MultisampleRenderCase { public: NumSamplesCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target); ~NumSamplesCase (void); std::string genFragmentSource (int numTargetSamples) const; bool verifyImage (const tcu::Surface& resultImage); private: enum { RENDER_SIZE = 64 }; }; NumSamplesCase::NumSamplesCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target) : MultisampleRenderCase(context, name, desc, sampleCount, target, RENDER_SIZE) { } NumSamplesCase::~NumSamplesCase (void) { } std::string NumSamplesCase::genFragmentSource (int numTargetSamples) const { std::ostringstream buf; buf << "#version 310 es\n" "#extension GL_OES_sample_variables : require\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n" " if (gl_NumSamples == " << numTargetSamples << ")\n" " fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n" "}\n"; return buf.str(); } bool NumSamplesCase::verifyImage (const tcu::Surface& resultImage) { return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), NoRedVerifier()); } class MaxSamplesCase : public MultisampleRenderCase { public: MaxSamplesCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target); ~MaxSamplesCase (void); private: void preDraw (void); std::string genFragmentSource (int numTargetSamples) const; bool verifyImage (const tcu::Surface& resultImage); enum { RENDER_SIZE = 64 }; }; MaxSamplesCase::MaxSamplesCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target) : MultisampleRenderCase(context, name, desc, sampleCount, target, RENDER_SIZE) { } MaxSamplesCase::~MaxSamplesCase (void) { } void MaxSamplesCase::preDraw (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); deInt32 maxSamples = -1; // query samples { gl.getIntegerv(GL_MAX_SAMPLES, &maxSamples); GLU_EXPECT_NO_ERROR(gl.getError(), "query GL_MAX_SAMPLES"); m_testCtx.getLog() << tcu::TestLog::Message << "GL_MAX_SAMPLES = " << maxSamples << tcu::TestLog::EndMessage; } // set samples { const int maxSampleLoc = gl.getUniformLocation(m_program->getProgram(), "u_maxSamples"); if (maxSampleLoc == -1) throw tcu::TestError("Location of u_maxSamples was -1"); gl.uniform1i(maxSampleLoc, maxSamples); GLU_EXPECT_NO_ERROR(gl.getError(), "set u_maxSamples uniform"); m_testCtx.getLog() << tcu::TestLog::Message << "Set u_maxSamples = " << maxSamples << tcu::TestLog::EndMessage; } } std::string MaxSamplesCase::genFragmentSource (int numTargetSamples) const { DE_UNREF(numTargetSamples); std::ostringstream buf; buf << "#version 310 es\n" "#extension GL_OES_sample_variables : require\n" "layout(location = 0) out mediump vec4 fragColor;\n" "uniform mediump int u_maxSamples;\n" "void main (void)\n" "{\n" " fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n" " if (gl_MaxSamples == u_maxSamples)\n" " fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n" "}\n"; return buf.str(); } bool MaxSamplesCase::verifyImage (const tcu::Surface& resultImage) { return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), NoRedVerifier()); } class SampleIDCase : public MultisampleRenderCase { public: SampleIDCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target); ~SampleIDCase (void); void init (void); private: std::string genFragmentSource (int numTargetSamples) const; bool verifyImage (const tcu::Surface& resultImage); bool verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers); enum { RENDER_SIZE = 64 }; enum VerificationMode { VERIFY_USING_SAMPLES, VERIFY_USING_SELECTION, }; const VerificationMode m_vericationMode; }; SampleIDCase::SampleIDCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target) : MultisampleRenderCase (context, name, desc, sampleCount, target, RENDER_SIZE, MultisampleShaderRenderUtil::MultisampleRenderCase::FLAG_VERIFY_MSAA_TEXTURE_SAMPLE_BUFFERS) , m_vericationMode ((target == TARGET_TEXTURE) ? (VERIFY_USING_SAMPLES) : (VERIFY_USING_SELECTION)) { } SampleIDCase::~SampleIDCase (void) { } void SampleIDCase::init (void) { // log the test method and expectations if (m_vericationMode == VERIFY_USING_SAMPLES) m_testCtx.getLog() << tcu::TestLog::Message << "Writing gl_SampleID to the green channel of the texture and verifying texture values, expecting:\n" << " 1) 0 with non-multisample targets.\n" << " 2) value N at sample index N of a multisample texture\n" << tcu::TestLog::EndMessage; else if (m_vericationMode == VERIFY_USING_SELECTION) m_testCtx.getLog() << tcu::TestLog::Message << "Selecting a single sample id for each pixel and writing color only if gl_SampleID == selected.\n" << "Expecting all output pixels to be partially (multisample) or fully (singlesample) colored.\n" << tcu::TestLog::EndMessage; else DE_ASSERT(false); MultisampleRenderCase::init(); } std::string SampleIDCase::genFragmentSource (int numTargetSamples) const { DE_ASSERT(numTargetSamples != 0); std::ostringstream buf; if (m_vericationMode == VERIFY_USING_SAMPLES) { // encode the id to the output, and then verify it during sampling buf << "#version 310 es\n" "#extension GL_OES_sample_variables : require\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " highp float normalizedSample = float(gl_SampleID) / float(" << numTargetSamples << ");\n" " fragColor = vec4(0.0, normalizedSample, 1.0, 1.0);\n" "}\n"; } else if (m_vericationMode == VERIFY_USING_SELECTION) { if (numTargetSamples == 1) { // single sample, just verify value is 0 buf << "#version 310 es\n" "#extension GL_OES_sample_variables : require\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " if (gl_SampleID == 0)\n" " fragColor = vec4(0.0, 1.0, 1.0, 1.0);\n" " else\n" " fragColor = vec4(0.0, 0.0, 1.0, 1.0);\n" "}\n"; } else { // select only one sample per PIXEL buf << "#version 310 es\n" "#extension GL_OES_sample_variables : require\n" "in highp vec4 v_position;\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " highp vec2 relPosition = (v_position.xy + vec2(1.0, 1.0)) / 2.0;\n" " highp ivec2 pixelPos = ivec2(floor(relPosition * " << (int)RENDER_SIZE << ".0));\n" " highp int selectedID = abs(pixelPos.x + 17 * pixelPos.y) % " << numTargetSamples << ";\n" "\n" " if (gl_SampleID == selectedID)\n" " fragColor = vec4(0.0, 1.0, 1.0, 1.0);\n" " else\n" " fragColor = vec4(0.0, 0.0, 1.0, 1.0);\n" "}\n"; } } else DE_ASSERT(false); return buf.str(); } bool SampleIDCase::verifyImage (const tcu::Surface& resultImage) { if (m_vericationMode == VERIFY_USING_SAMPLES) { // never happens DE_ASSERT(false); return false; } else if (m_vericationMode == VERIFY_USING_SELECTION) { // should result in full blue and some green everywhere return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), FullBlueSomeGreenVerifier()); } else { DE_ASSERT(false); return false; } } bool SampleIDCase::verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers) { // Verify all sample buffers bool allOk = true; // Log layers { m_testCtx.getLog() << tcu::TestLog::ImageSet("SampleBuffers", "Image sample buffers"); for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx) m_testCtx.getLog() << tcu::TestLog::Image("Buffer" + de::toString(sampleNdx), "Sample " + de::toString(sampleNdx), resultBuffers[sampleNdx].getAccess()); m_testCtx.getLog() << tcu::TestLog::EndImageSet; } m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample buffers" << tcu::TestLog::EndMessage; for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx) { // sample id should be sample index const int threshold = 255 / 4 / m_numTargetSamples + 1; const float sampleIdColor = sampleNdx / (float)m_numTargetSamples; m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample " << (sampleNdx+1) << "/" << (int)resultBuffers.size() << tcu::TestLog::EndMessage; allOk &= verifyImageWithVerifier(resultBuffers[sampleNdx], m_testCtx.getLog(), ColorVerifier(tcu::Vec3(0.0f, sampleIdColor, 1.0f), tcu::IVec3(1, threshold, 1)), false); } if (!allOk) m_testCtx.getLog() << tcu::TestLog::Message << "Sample buffer verification failed" << tcu::TestLog::EndMessage; return allOk; } class SamplePosDistributionCase : public MultisampleRenderCase { public: SamplePosDistributionCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target); ~SamplePosDistributionCase (void); void init (void); private: enum { RENDER_SIZE = 64 }; std::string genFragmentSource (int numTargetSamples) const; bool verifyImage (const tcu::Surface& resultImage); bool verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers); }; SamplePosDistributionCase::SamplePosDistributionCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target) : MultisampleRenderCase(context, name, desc, sampleCount, target, RENDER_SIZE, MultisampleShaderRenderUtil::MultisampleRenderCase::FLAG_VERIFY_MSAA_TEXTURE_SAMPLE_BUFFERS) { } SamplePosDistributionCase::~SamplePosDistributionCase (void) { } void SamplePosDistributionCase::init (void) { // log the test method and expectations if (m_renderTarget == TARGET_TEXTURE) { m_testCtx.getLog() << tcu::TestLog::Message << "Verifying gl_SamplePosition value:\n" << " 1) With non-multisample targets: Expect the center of the pixel.\n" << " 2) With multisample targets:\n" << " a) Expect legal sample position.\n" << " b) Sample position is unique within the set of all sample positions of a pixel.\n" << " c) Sample position distribution is uniform or almost uniform.\n" << tcu::TestLog::EndMessage; } else { m_testCtx.getLog() << tcu::TestLog::Message << "Verifying gl_SamplePosition value:\n" << " 1) With non-multisample targets: Expect the center of the pixel.\n" << " 2) With multisample targets:\n" << " a) Expect legal sample position.\n" << " b) Sample position distribution is uniform or almost uniform.\n" << tcu::TestLog::EndMessage; } MultisampleRenderCase::init(); } std::string SamplePosDistributionCase::genFragmentSource (int numTargetSamples) const { DE_ASSERT(numTargetSamples != 0); DE_UNREF(numTargetSamples); const bool multisampleTarget = (m_numRequestedSamples > 0) || (m_renderTarget == TARGET_DEFAULT && m_context.getRenderTarget().getNumSamples() > 1); std::ostringstream buf; if (multisampleTarget) { // encode the position to the output, use red channel as error channel buf << "#version 310 es\n" "#extension GL_OES_sample_variables : require\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " if (gl_SamplePosition.x < 0.0 || gl_SamplePosition.x > 1.0 || gl_SamplePosition.y < 0.0 || gl_SamplePosition.y > 1.0)\n" " fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n" " else\n" " fragColor = vec4(0.0, gl_SamplePosition.x, gl_SamplePosition.y, 1.0);\n" "}\n"; } else { // verify value is ok buf << "#version 310 es\n" "#extension GL_OES_sample_variables : require\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " if (gl_SamplePosition.x != 0.5 || gl_SamplePosition.y != 0.5)\n" " fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n" " else\n" " fragColor = vec4(0.0, gl_SamplePosition.x, gl_SamplePosition.y, 1.0);\n" "}\n"; } return buf.str(); } bool SamplePosDistributionCase::verifyImage (const tcu::Surface& resultImage) { const int sampleCount = (m_renderTarget == TARGET_DEFAULT) ? (m_context.getRenderTarget().getNumSamples()) : (m_numRequestedSamples); SampleAverageVerifier verifier (sampleCount); // check there is nothing in the error channel if (!verifyImageWithVerifier(resultImage, m_testCtx.getLog(), NoRedVerifier())) return false; // position average should be around 0.5, 0.5 if (verifier.m_isStatisticallySignificant && !verifyImageWithVerifier(resultImage, m_testCtx.getLog(), verifier)) throw MultisampleShaderRenderUtil::QualityWarning("Bias detected, sample positions are not uniformly distributed within the pixel"); return true; } bool SamplePosDistributionCase::verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers) { const int width = resultBuffers[0].getWidth(); const int height = resultBuffers[0].getHeight(); bool allOk = true; bool distibutionError = false; // Check sample range, uniqueness, and distribution, log layers { m_testCtx.getLog() << tcu::TestLog::ImageSet("SampleBuffers", "Image sample buffers"); for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx) m_testCtx.getLog() << tcu::TestLog::Image("Buffer" + de::toString(sampleNdx), "Sample " + de::toString(sampleNdx), resultBuffers[sampleNdx].getAccess()); m_testCtx.getLog() << tcu::TestLog::EndImageSet; } // verify range { bool rangeOk = true; m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample position range" << tcu::TestLog::EndMessage; for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx) { // shader does the check, just check the shader error output (red) m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample " << (sampleNdx+1) << "/" << (int)resultBuffers.size() << tcu::TestLog::EndMessage; rangeOk &= verifyImageWithVerifier(resultBuffers[sampleNdx], m_testCtx.getLog(), NoRedVerifier(), false); } if (!rangeOk) { allOk = false; m_testCtx.getLog() << tcu::TestLog::Message << "Sample position verification failed." << tcu::TestLog::EndMessage; } } // Verify uniqueness { bool uniquenessOk = true; tcu::Surface errorMask (width, height); std::vector<tcu::Vec2> samplePositions (resultBuffers.size()); int printCount = 0; const int printFloodLimit = 5; tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f)); m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample position uniqueness." << tcu::TestLog::EndMessage; for (int y = 0; y < height; ++y) for (int x = 0; x < width; ++x) { bool samplePosNotUnique = false; for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx) { const tcu::RGBA color = resultBuffers[sampleNdx].getPixel(x, y); samplePositions[sampleNdx] = tcu::Vec2(color.getGreen() / 255.0f, color.getBlue() / 255.0f); } // Just check there are no two samples with same positions for (int sampleNdxA = 0; sampleNdxA < (int)resultBuffers.size() && (!samplePosNotUnique || printCount < printFloodLimit); ++sampleNdxA) for (int sampleNdxB = sampleNdxA+1; sampleNdxB < (int)resultBuffers.size() && (!samplePosNotUnique || printCount < printFloodLimit); ++sampleNdxB) { if (samplePositions[sampleNdxA] == samplePositions[sampleNdxB]) { if (++printCount <= printFloodLimit) { m_testCtx.getLog() << tcu::TestLog::Message << "Pixel (" << x << ", " << y << "): Samples " << sampleNdxA << " and " << sampleNdxB << " have the same position." << tcu::TestLog::EndMessage; } samplePosNotUnique = true; uniquenessOk = false; errorMask.setPixel(x, y, tcu::RGBA::red); } } } // end result if (!uniquenessOk) { if (printCount > printFloodLimit) m_testCtx.getLog() << tcu::TestLog::Message << "...\n" << "Omitted " << (printCount-printFloodLimit) << " error descriptions." << tcu::TestLog::EndMessage; m_testCtx.getLog() << tcu::TestLog::Message << "Image verification failed." << tcu::TestLog::EndMessage << tcu::TestLog::ImageSet("Verification", "Image Verification") << tcu::TestLog::Image("ErrorMask", "Error Mask", errorMask.getAccess()) << tcu::TestLog::EndImageSet; allOk = false; } } // check distribution { const SampleAverageVerifier verifier (m_numTargetSamples); tcu::Surface errorMask (width, height); int printCount = 0; const int printFloodLimit = 5; tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f)); // don't bother with small sample counts if (verifier.m_isStatisticallySignificant) { m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample position distribution is (nearly) unbiased." << tcu::TestLog::EndMessage; verifier.logInfo(m_testCtx.getLog()); for (int y = 0; y < height; ++y) for (int x = 0; x < width; ++x) { tcu::IVec3 colorSum(0, 0, 0); // color average for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx) { const tcu::RGBA color = resultBuffers[sampleNdx].getPixel(x, y); colorSum.x() += color.getRed(); colorSum.y() += color.getBlue(); colorSum.z() += color.getGreen(); } colorSum.x() /= m_numTargetSamples; colorSum.y() /= m_numTargetSamples; colorSum.z() /= m_numTargetSamples; // verify average sample position if (!verifier.verify(tcu::RGBA(colorSum.x(), colorSum.y(), colorSum.z(), 0), tcu::IVec2(x, y))) { if (++printCount <= printFloodLimit) { m_testCtx.getLog() << tcu::TestLog::Message << "Pixel (" << x << ", " << y << "): Sample distribution is biased." << tcu::TestLog::EndMessage; } distibutionError = true; errorMask.setPixel(x, y, tcu::RGBA::red); } } // sub-verification result if (distibutionError) { if (printCount > printFloodLimit) m_testCtx.getLog() << tcu::TestLog::Message << "...\n" << "Omitted " << (printCount-printFloodLimit) << " error descriptions." << tcu::TestLog::EndMessage; m_testCtx.getLog() << tcu::TestLog::Message << "Image verification failed." << tcu::TestLog::EndMessage << tcu::TestLog::ImageSet("Verification", "Image Verification") << tcu::TestLog::Image("ErrorMask", "Error Mask", errorMask.getAccess()) << tcu::TestLog::EndImageSet; } } } // results if (!allOk) return false; else if (distibutionError) throw MultisampleShaderRenderUtil::QualityWarning("Bias detected, sample positions are not uniformly distributed within the pixel"); else { m_testCtx.getLog() << tcu::TestLog::Message << "Verification ok." << tcu::TestLog::EndMessage; return true; } } class SamplePosCorrectnessCase : public MultisampleRenderCase { public: SamplePosCorrectnessCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target); ~SamplePosCorrectnessCase (void); void init (void); private: enum { RENDER_SIZE = 32 }; void preDraw (void); void postDraw (void); std::string genVertexSource (int numTargetSamples) const; std::string genFragmentSource (int numTargetSamples) const; bool verifyImage (const tcu::Surface& resultImage); bool m_useSampleQualifier; }; SamplePosCorrectnessCase::SamplePosCorrectnessCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target) : MultisampleRenderCase (context, name, desc, sampleCount, target, RENDER_SIZE) , m_useSampleQualifier (false) { } SamplePosCorrectnessCase::~SamplePosCorrectnessCase (void) { } void SamplePosCorrectnessCase::init (void) { // requirements: per-invocation interpolation required if (!m_context.getContextInfo().isExtensionSupported("GL_OES_shader_multisample_interpolation") && !m_context.getContextInfo().isExtensionSupported("GL_OES_sample_shading")) throw tcu::NotSupportedError("Test requires GL_OES_shader_multisample_interpolation or GL_OES_sample_shading extension"); // prefer to use the sample qualifier path m_useSampleQualifier = m_context.getContextInfo().isExtensionSupported("GL_OES_shader_multisample_interpolation"); // log the test method and expectations m_testCtx.getLog() << tcu::TestLog::Message << "Verifying gl_SamplePosition correctness:\n" << " 1) Varying values should be sampled at the sample position.\n" << " => fract(screenSpacePosition) == gl_SamplePosition\n" << tcu::TestLog::EndMessage; MultisampleRenderCase::init(); } void SamplePosCorrectnessCase::preDraw (void) { if (!m_useSampleQualifier) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); // use GL_OES_sample_shading to set per fragment sample invocation interpolation gl.enable(GL_SAMPLE_SHADING); gl.minSampleShading(1.0f); GLU_EXPECT_NO_ERROR(gl.getError(), "set ratio"); m_testCtx.getLog() << tcu::TestLog::Message << "Enabling per-sample interpolation with GL_SAMPLE_SHADING." << tcu::TestLog::EndMessage; } } void SamplePosCorrectnessCase::postDraw (void) { if (!m_useSampleQualifier) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); gl.disable(GL_SAMPLE_SHADING); gl.minSampleShading(1.0f); GLU_EXPECT_NO_ERROR(gl.getError(), "set ratio"); } } std::string SamplePosCorrectnessCase::genVertexSource (int numTargetSamples) const { DE_UNREF(numTargetSamples); std::ostringstream buf; buf << "#version 310 es\n" << ((m_useSampleQualifier) ? ("#extension GL_OES_shader_multisample_interpolation : require\n") : ("")) << "in highp vec4 a_position;\n" << ((m_useSampleQualifier) ? ("sample ") : ("")) << "out highp vec4 v_position;\n" "void main (void)\n" "{\n" " gl_Position = a_position;\n" " v_position = a_position;\n" "}\n"; return buf.str(); } std::string SamplePosCorrectnessCase::genFragmentSource (int numTargetSamples) const { DE_UNREF(numTargetSamples); std::ostringstream buf; // encode the position to the output, use red channel as error channel buf << "#version 310 es\n" "#extension GL_OES_sample_variables : require\n" << ((m_useSampleQualifier) ? ("#extension GL_OES_shader_multisample_interpolation : require\n") : ("")) << ((m_useSampleQualifier) ? ("sample ") : ("")) << "in highp vec4 v_position;\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " const highp float maxDistance = 0.15625; // 4 subpixel bits. Assume 3 accurate bits + 0.03125 for other errors\n" // 0.03125 = mediump epsilon when value = 32 (RENDER_SIZE) "\n" " highp vec2 screenSpacePosition = (v_position.xy + vec2(1.0, 1.0)) / 2.0 * " << (int)RENDER_SIZE << ".0;\n" " highp ivec2 nearbyPixel = ivec2(floor(screenSpacePosition));\n" " bool allOk = false;\n" "\n" " // sample at edge + inaccuaries may cause us to round to any neighboring pixel\n" " // check all neighbors for any match\n" " for (highp int dy = -1; dy <= 1; ++dy)\n" " for (highp int dx = -1; dx <= 1; ++dx)\n" " {\n" " highp ivec2 currentPixel = nearbyPixel + ivec2(dx, dy);\n" " highp vec2 candidateSamplingPos = vec2(currentPixel) + gl_SamplePosition.xy;\n" " highp vec2 positionDiff = abs(candidateSamplingPos - screenSpacePosition);\n" " if (positionDiff.x < maxDistance && positionDiff.y < maxDistance)\n" " allOk = true;\n" " }\n" "\n" " if (allOk)\n" " fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n" " else\n" " fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n" "}\n"; return buf.str(); } bool SamplePosCorrectnessCase::verifyImage (const tcu::Surface& resultImage) { return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), NoRedVerifier()); } class SampleMaskBaseCase : public MultisampleRenderCase { public: enum ShaderRunMode { RUN_PER_PIXEL = 0, RUN_PER_SAMPLE, RUN_PER_TWO_SAMPLES, RUN_LAST }; SampleMaskBaseCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, int renderSize, ShaderRunMode runMode, int flags = 0); virtual ~SampleMaskBaseCase (void); protected: virtual void init (void); virtual void preDraw (void); virtual void postDraw (void); virtual bool verifyImage (const tcu::Surface& resultImage); const ShaderRunMode m_runMode; }; SampleMaskBaseCase::SampleMaskBaseCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, int renderSize, ShaderRunMode runMode, int flags) : MultisampleRenderCase (context, name, desc, sampleCount, target, renderSize, flags) , m_runMode (runMode) { DE_ASSERT(runMode < RUN_LAST); } SampleMaskBaseCase::~SampleMaskBaseCase (void) { } void SampleMaskBaseCase::init (void) { // required extra extension if (m_runMode == RUN_PER_TWO_SAMPLES && !m_context.getContextInfo().isExtensionSupported("GL_OES_sample_shading")) throw tcu::NotSupportedError("Test requires GL_OES_sample_shading extension"); MultisampleRenderCase::init(); } void SampleMaskBaseCase::preDraw (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); if (m_runMode == RUN_PER_TWO_SAMPLES) { gl.enable(GL_SAMPLE_SHADING); gl.minSampleShading(0.5f); GLU_EXPECT_NO_ERROR(gl.getError(), "enable sample shading"); m_testCtx.getLog() << tcu::TestLog::Message << "Enabled GL_SAMPLE_SHADING, value = 0.5" << tcu::TestLog::EndMessage; } } void SampleMaskBaseCase::postDraw (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); if (m_runMode == RUN_PER_TWO_SAMPLES) { gl.disable(GL_SAMPLE_SHADING); gl.minSampleShading(1.0f); GLU_EXPECT_NO_ERROR(gl.getError(), "disable sample shading"); } } bool SampleMaskBaseCase::verifyImage (const tcu::Surface& resultImage) { // shader does the verification return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), NoRedVerifier()); } class SampleMaskCase : public SampleMaskBaseCase { public: SampleMaskCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target); ~SampleMaskCase (void); void init (void); void preDraw (void); void postDraw (void); private: enum { RENDER_SIZE = 64 }; std::string genFragmentSource (int numTargetSamples) const; }; SampleMaskCase::SampleMaskCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target) : SampleMaskBaseCase(context, name, desc, sampleCount, target, RENDER_SIZE, RUN_PER_PIXEL) { } SampleMaskCase::~SampleMaskCase (void) { } void SampleMaskCase::init (void) { // log the test method and expectations m_testCtx.getLog() << tcu::TestLog::Message << "Verifying gl_SampleMaskIn value with SAMPLE_MASK state. gl_SampleMaskIn does not contain any bits set that are have been killed by SAMPLE_MASK state. Expecting:\n" << " 1) With multisample targets: gl_SampleMaskIn AND ~(SAMPLE_MASK) should be zero.\n" << " 2) With non-multisample targets: SAMPLE_MASK state is only ANDed as a multisample operation. gl_SampleMaskIn should only have its last bit set regardless of SAMPLE_MASK state.\n" << tcu::TestLog::EndMessage; SampleMaskBaseCase::init(); } void SampleMaskCase::preDraw (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const bool multisampleTarget = (m_numRequestedSamples > 0) || (m_renderTarget == TARGET_DEFAULT && m_context.getRenderTarget().getNumSamples() > 1); const deUint32 fullMask = (deUint32)0xAAAAAAAAUL; const deUint32 maskMask = (1U << m_numTargetSamples) - 1; const deUint32 effectiveMask = fullMask & maskMask; // set test mask gl.enable(GL_SAMPLE_MASK); gl.sampleMaski(0, effectiveMask); GLU_EXPECT_NO_ERROR(gl.getError(), "set mask"); m_testCtx.getLog() << tcu::TestLog::Message << "Setting sample mask " << tcu::Format::Hex<4>(effectiveMask) << tcu::TestLog::EndMessage; // set multisample case uniforms if (multisampleTarget) { const int maskLoc = gl.getUniformLocation(m_program->getProgram(), "u_sampleMask"); if (maskLoc == -1) throw tcu::TestError("Location of u_mask was -1"); gl.uniform1ui(maskLoc, effectiveMask); GLU_EXPECT_NO_ERROR(gl.getError(), "set mask uniform"); } // base class logic SampleMaskBaseCase::preDraw(); } void SampleMaskCase::postDraw (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const deUint32 fullMask = (1U << m_numTargetSamples) - 1; gl.disable(GL_SAMPLE_MASK); gl.sampleMaski(0, fullMask); GLU_EXPECT_NO_ERROR(gl.getError(), "set mask"); // base class logic SampleMaskBaseCase::postDraw(); } std::string SampleMaskCase::genFragmentSource (int numTargetSamples) const { DE_ASSERT(numTargetSamples != 0); const bool multisampleTarget = (m_numRequestedSamples > 0) || (m_renderTarget == TARGET_DEFAULT && m_context.getRenderTarget().getNumSamples() > 1); std::ostringstream buf; // test supports only one sample mask word if (numTargetSamples > 32) throw tcu::NotSupportedError("Sample count larger than 32 is not supported."); if (multisampleTarget) { buf << "#version 310 es\n" "#extension GL_OES_sample_variables : require\n" "layout(location = 0) out mediump vec4 fragColor;\n" "uniform highp uint u_sampleMask;\n" "void main (void)\n" "{\n" " if ((uint(gl_SampleMaskIn[0]) & (~u_sampleMask)) != 0u)\n" " fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n" " else\n" " fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n" "}\n"; } else { // non-multisample targets don't get multisample operations like ANDing with mask buf << "#version 310 es\n" "#extension GL_OES_sample_variables : require\n" "layout(location = 0) out mediump vec4 fragColor;\n" "uniform highp uint u_sampleMask;\n" "void main (void)\n" "{\n" " if (gl_SampleMaskIn[0] != 1)\n" " fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n" " else\n" " fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n" "}\n"; } return buf.str(); } class SampleMaskCountCase : public SampleMaskBaseCase { public: SampleMaskCountCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode); ~SampleMaskCountCase (void); void init (void); void preDraw (void); void postDraw (void); private: enum { RENDER_SIZE = 64 }; std::string genFragmentSource (int numTargetSamples) const; }; SampleMaskCountCase::SampleMaskCountCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode) : SampleMaskBaseCase(context, name, desc, sampleCount, target, RENDER_SIZE, runMode) { DE_ASSERT(runMode < RUN_LAST); } SampleMaskCountCase::~SampleMaskCountCase (void) { } void SampleMaskCountCase::init (void) { // log the test method and expectations if (m_runMode == RUN_PER_PIXEL) m_testCtx.getLog() << tcu::TestLog::Message << "Verifying gl_SampleMaskIn.\n" << " Fragment shader may be invoked [1, numSamples] times.\n" << " => gl_SampleMaskIn should have the number of bits set in range [1, numSamples]\n" << tcu::TestLog::EndMessage; else if (m_runMode == RUN_PER_SAMPLE) m_testCtx.getLog() << tcu::TestLog::Message << "Verifying gl_SampleMaskIn.\n" << " Fragment will be invoked numSamples times.\n" << " => gl_SampleMaskIn should have only one bit set.\n" << tcu::TestLog::EndMessage; else if (m_runMode == RUN_PER_TWO_SAMPLES) m_testCtx.getLog() << tcu::TestLog::Message << "Verifying gl_SampleMaskIn.\n" << " Fragment shader may be invoked [ceil(numSamples/2), numSamples] times.\n" << " => gl_SampleMaskIn should have the number of bits set in range [1, numSamples - ceil(numSamples/2) + 1]:\n" << tcu::TestLog::EndMessage; else DE_ASSERT(false); SampleMaskBaseCase::init(); } void SampleMaskCountCase::preDraw (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); if (m_runMode == RUN_PER_PIXEL) { const int maxLoc = gl.getUniformLocation(m_program->getProgram(), "u_maxBitCount"); const int minLoc = gl.getUniformLocation(m_program->getProgram(), "u_minBitCount"); const int minBitCount = 1; const int maxBitCount = m_numTargetSamples; if (maxLoc == -1) throw tcu::TestError("Location of u_maxBitCount was -1"); if (minLoc == -1) throw tcu::TestError("Location of u_minBitCount was -1"); gl.uniform1i(minLoc, minBitCount); gl.uniform1i(maxLoc, maxBitCount); GLU_EXPECT_NO_ERROR(gl.getError(), "set limits"); m_testCtx.getLog() << tcu::TestLog::Message << "Setting minBitCount = " << minBitCount << ", maxBitCount = " << maxBitCount << tcu::TestLog::EndMessage; } else if (m_runMode == RUN_PER_TWO_SAMPLES) { const int maxLoc = gl.getUniformLocation(m_program->getProgram(), "u_maxBitCount"); const int minLoc = gl.getUniformLocation(m_program->getProgram(), "u_minBitCount"); // Worst case: all but one shader invocations get one sample, one shader invocation the rest of the samples const int minInvocationCount = ((m_numTargetSamples + 1) / 2); const int minBitCount = 1; const int maxBitCount = (m_numTargetSamples <= 2) ? (1) : (m_numTargetSamples - ((minInvocationCount-1) * minBitCount)); if (maxLoc == -1) throw tcu::TestError("Location of u_maxBitCount was -1"); if (minLoc == -1) throw tcu::TestError("Location of u_minBitCount was -1"); gl.uniform1i(minLoc, minBitCount); gl.uniform1i(maxLoc, maxBitCount); GLU_EXPECT_NO_ERROR(gl.getError(), "set limits"); m_testCtx.getLog() << tcu::TestLog::Message << "Setting minBitCount = " << minBitCount << ", maxBitCount = " << maxBitCount << tcu::TestLog::EndMessage; } SampleMaskBaseCase::preDraw(); } void SampleMaskCountCase::postDraw (void) { SampleMaskBaseCase::postDraw(); } std::string SampleMaskCountCase::genFragmentSource (int numTargetSamples) const { DE_ASSERT(numTargetSamples != 0); std::ostringstream buf; // test supports only one sample mask word if (numTargetSamples > 32) throw tcu::NotSupportedError("Sample count larger than 32 is not supported."); // count the number of the bits in gl_SampleMask buf << "#version 310 es\n" "#extension GL_OES_sample_variables : require\n" "layout(location = 0) out mediump vec4 fragColor;\n"; if (m_runMode != RUN_PER_SAMPLE) buf << "uniform highp int u_minBitCount;\n" "uniform highp int u_maxBitCount;\n"; buf << "void main (void)\n" "{\n" " mediump int maskBitCount = 0;\n" " for (int i = 0; i < 32; ++i)\n" " if (((gl_SampleMaskIn[0] >> i) & 0x01) == 0x01)\n" " ++maskBitCount;\n" "\n"; if (m_runMode == RUN_PER_SAMPLE) { // check the validity here buf << " // force per-sample shading\n" " highp float blue = float(gl_SampleID);\n" "\n" " if (maskBitCount != 1)\n" " fragColor = vec4(1.0, 0.0, blue, 1.0);\n" " else\n" " fragColor = vec4(0.0, 1.0, blue, 1.0);\n" "}\n"; } else { // check the validity here buf << " if (maskBitCount < u_minBitCount || maskBitCount > u_maxBitCount)\n" " fragColor = vec4(1.0, 0.0, 0.0, 1.0);\n" " else\n" " fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n" "}\n"; } return buf.str(); } class SampleMaskUniqueCase : public SampleMaskBaseCase { public: SampleMaskUniqueCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode); ~SampleMaskUniqueCase (void); void init (void); private: enum { RENDER_SIZE = 64 }; std::string genFragmentSource (int numTargetSamples) const; bool verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers); }; SampleMaskUniqueCase::SampleMaskUniqueCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode) : SampleMaskBaseCase(context, name, desc, sampleCount, target, RENDER_SIZE, runMode, MultisampleShaderRenderUtil::MultisampleRenderCase::FLAG_VERIFY_MSAA_TEXTURE_SAMPLE_BUFFERS) { DE_ASSERT(runMode == RUN_PER_SAMPLE); DE_ASSERT(target == TARGET_TEXTURE); } SampleMaskUniqueCase::~SampleMaskUniqueCase (void) { } void SampleMaskUniqueCase::init (void) { // log the test method and expectations m_testCtx.getLog() << tcu::TestLog::Message << "Verifying gl_SampleMaskIn.\n" << " Fragment will be invoked numSamples times.\n" << " => gl_SampleMaskIn should have only one bit set\n" << " => and that bit index should be unique within other fragment shader invocations of that pixel.\n" << " Writing sampleMask bit index to green channel in render shader. Verifying uniqueness in sampler shader.\n" << tcu::TestLog::EndMessage; SampleMaskBaseCase::init(); } std::string SampleMaskUniqueCase::genFragmentSource (int numTargetSamples) const { DE_ASSERT(numTargetSamples != 0); std::ostringstream buf; // test supports only one sample mask word if (numTargetSamples > 32) throw tcu::NotSupportedError("Sample count larger than 32 is not supported."); // find our sampleID by searching for unique bit. buf << "#version 310 es\n" "#extension GL_OES_sample_variables : require\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " mediump int firstIndex = -1;\n" " for (int i = 0; i < 32; ++i)\n" " {\n" " if (((gl_SampleMaskIn[0] >> i) & 0x01) == 0x01)\n" " {\n" " firstIndex = i;\n" " break;\n" " }\n" " }\n" "\n" " bool notUniqueError = false;\n" " for (int i = firstIndex + 1; i < 32; ++i)\n" " if (((gl_SampleMaskIn[0] >> i) & 0x01) == 0x01)\n" " notUniqueError = true;\n" "\n" " highp float encodedSampleId = float(firstIndex) / " << numTargetSamples <<".0;\n" "\n" " // force per-sample shading\n" " highp float blue = float(gl_SampleID);\n" "\n" " if (notUniqueError)\n" " fragColor = vec4(1.0, 0.0, blue, 1.0);\n" " else\n" " fragColor = vec4(0.0, encodedSampleId, blue, 1.0);\n" "}\n"; return buf.str(); } bool SampleMaskUniqueCase::verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers) { const int width = resultBuffers[0].getWidth(); const int height = resultBuffers[0].getHeight(); bool allOk = true; // Log samples { m_testCtx.getLog() << tcu::TestLog::ImageSet("SampleBuffers", "Image sample buffers"); for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx) m_testCtx.getLog() << tcu::TestLog::Image("Buffer" + de::toString(sampleNdx), "Sample " + de::toString(sampleNdx), resultBuffers[sampleNdx].getAccess()); m_testCtx.getLog() << tcu::TestLog::EndImageSet; } // check for earlier errors (in fragment shader) { m_testCtx.getLog() << tcu::TestLog::Message << "Verifying fragment shader invocation found only one set sample mask bit." << tcu::TestLog::EndMessage; for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx) { // shader does the check, just check the shader error output (red) m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample " << (sampleNdx+1) << "/" << (int)resultBuffers.size() << tcu::TestLog::EndMessage; allOk &= verifyImageWithVerifier(resultBuffers[sampleNdx], m_testCtx.getLog(), NoRedVerifier(), false); } if (!allOk) { // can't check the uniqueness if the masks don't work at all m_testCtx.getLog() << tcu::TestLog::Message << "Could not get mask information from the rendered image, cannot continue verification." << tcu::TestLog::EndMessage; return false; } } // verify index / index ranges if (m_numRequestedSamples == 0) { // single sample target, expect index=0 m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample mask bit index is 0." << tcu::TestLog::EndMessage; // only check the mask index allOk &= verifyImageWithVerifier(resultBuffers[0], m_testCtx.getLog(), ColorVerifier(tcu::Vec3(0.0f, 0.0f, 0.0f), tcu::IVec3(255, 8, 255)), false); } else { // check uniqueness tcu::Surface errorMask (width, height); bool uniquenessOk = true; int printCount = 0; const int printFloodLimit = 5; std::vector<int> maskBitIndices (resultBuffers.size()); tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f)); m_testCtx.getLog() << tcu::TestLog::Message << "Verifying per-invocation sample mask bit is unique." << tcu::TestLog::EndMessage; for (int y = 0; y < height; ++y) for (int x = 0; x < width; ++x) { bool maskNdxNotUnique = false; // decode index for (int sampleNdx = 0; sampleNdx < (int)resultBuffers.size(); ++sampleNdx) { const tcu::RGBA color = resultBuffers[sampleNdx].getPixel(x, y); maskBitIndices[sampleNdx] = (int)deFloatRound(color.getGreen() / 255.0f * m_numTargetSamples); } // just check there are no two invocations with the same bit index for (int sampleNdxA = 0; sampleNdxA < (int)resultBuffers.size() && (!maskNdxNotUnique || printCount < printFloodLimit); ++sampleNdxA) for (int sampleNdxB = sampleNdxA+1; sampleNdxB < (int)resultBuffers.size() && (!maskNdxNotUnique || printCount < printFloodLimit); ++sampleNdxB) { if (maskBitIndices[sampleNdxA] == maskBitIndices[sampleNdxB]) { if (++printCount <= printFloodLimit) { m_testCtx.getLog() << tcu::TestLog::Message << "Pixel (" << x << ", " << y << "): Samples " << sampleNdxA << " and " << sampleNdxB << " have the same sample mask. (Single bit at index " << maskBitIndices[sampleNdxA] << ")" << tcu::TestLog::EndMessage; } maskNdxNotUnique = true; uniquenessOk = false; errorMask.setPixel(x, y, tcu::RGBA::red); } } } // end result if (!uniquenessOk) { if (printCount > printFloodLimit) m_testCtx.getLog() << tcu::TestLog::Message << "...\n" << "Omitted " << (printCount-printFloodLimit) << " error descriptions." << tcu::TestLog::EndMessage; m_testCtx.getLog() << tcu::TestLog::Message << "Image verification failed." << tcu::TestLog::EndMessage << tcu::TestLog::ImageSet("Verification", "Image Verification") << tcu::TestLog::Image("ErrorMask", "Error Mask", errorMask.getAccess()) << tcu::TestLog::EndImageSet; allOk = false; } } return allOk; } class SampleMaskUniqueSetCase : public SampleMaskBaseCase { public: SampleMaskUniqueSetCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode); ~SampleMaskUniqueSetCase (void); void init (void); void deinit (void); private: enum { RENDER_SIZE = 64 }; void preDraw (void); void postDraw (void); std::string genFragmentSource (int numTargetSamples) const; bool verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers); std::string getIterationDescription (int iteration) const; void preTest (void); void postTest (void); std::vector<tcu::Surface> m_iterationSampleBuffers; }; SampleMaskUniqueSetCase::SampleMaskUniqueSetCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode) : SampleMaskBaseCase(context, name, desc, sampleCount, target, RENDER_SIZE, runMode, MultisampleShaderRenderUtil::MultisampleRenderCase::FLAG_VERIFY_MSAA_TEXTURE_SAMPLE_BUFFERS) { DE_ASSERT(runMode == RUN_PER_TWO_SAMPLES); DE_ASSERT(target == TARGET_TEXTURE); // high and low bits m_numIterations = 2; } SampleMaskUniqueSetCase::~SampleMaskUniqueSetCase (void) { } void SampleMaskUniqueSetCase::init (void) { // log the test method and expectations m_testCtx.getLog() << tcu::TestLog::Message << "Verifying gl_SampleMaskIn.\n" << " Fragment shader may be invoked [ceil(numSamples/2), numSamples] times.\n" << " => Each invocation should have unique bit set\n" << " Writing highest and lowest bit index to color channels in render shader. Verifying:\n" << " 1) no other invocation contains these bits in sampler shader.\n" << " 2) number of invocations is at least ceil(numSamples/2).\n" << tcu::TestLog::EndMessage; SampleMaskBaseCase::init(); } void SampleMaskUniqueSetCase::deinit (void) { m_iterationSampleBuffers.clear(); } void SampleMaskUniqueSetCase::preDraw (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const int selectorLoc = gl.getUniformLocation(m_program->getProgram(), "u_bitSelector"); gl.uniform1ui(selectorLoc, (deUint32)m_iteration); GLU_EXPECT_NO_ERROR(gl.getError(), "set u_bitSelector"); m_testCtx.getLog() << tcu::TestLog::Message << "Setting u_bitSelector = " << m_iteration << tcu::TestLog::EndMessage; SampleMaskBaseCase::preDraw(); } void SampleMaskUniqueSetCase::postDraw (void) { SampleMaskBaseCase::postDraw(); } std::string SampleMaskUniqueSetCase::genFragmentSource (int numTargetSamples) const { DE_ASSERT(numTargetSamples != 0); std::ostringstream buf; // test supports only one sample mask word if (numTargetSamples > 32) throw tcu::NotSupportedError("Sample count larger than 32 is not supported."); // output min and max sample id buf << "#version 310 es\n" "#extension GL_OES_sample_variables : require\n" "uniform highp uint u_bitSelector;\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " highp int selectedBits;\n" " if (u_bitSelector == 0u)\n" " selectedBits = (gl_SampleMaskIn[0] & 0xFFFF);\n" " else\n" " selectedBits = ((gl_SampleMaskIn[0] >> 16) & 0xFFFF);\n" "\n" " // encode bits to color\n" " highp int redBits = selectedBits & 31;\n" " highp int greenBits = (selectedBits >> 5) & 63;\n" " highp int blueBits = (selectedBits >> 11) & 31;\n" "\n" " fragColor = vec4(float(redBits) / float(31), float(greenBits) / float(63), float(blueBits) / float(31), 1.0);\n" "}\n"; return buf.str(); } bool SampleMaskUniqueSetCase::verifySampleBuffers (const std::vector<tcu::Surface>& resultBuffers) { // we need results from all passes to do verification. Store results and verify later (at postTest). DE_ASSERT(m_numTargetSamples == (int)resultBuffers.size()); for (int ndx = 0; ndx < m_numTargetSamples; ++ndx) m_iterationSampleBuffers[m_iteration * m_numTargetSamples + ndx] = resultBuffers[ndx]; return true; } std::string SampleMaskUniqueSetCase::getIterationDescription (int iteration) const { if (iteration == 0) return "Reading low bits"; else if (iteration == 1) return "Reading high bits"; else DE_ASSERT(false); return ""; } void SampleMaskUniqueSetCase::preTest (void) { m_iterationSampleBuffers.resize(m_numTargetSamples * 2); } void SampleMaskUniqueSetCase::postTest (void) { DE_ASSERT((m_iterationSampleBuffers.size() % 2) == 0); DE_ASSERT((int)m_iterationSampleBuffers.size() / 2 == m_numTargetSamples); const int width = m_iterationSampleBuffers[0].getWidth(); const int height = m_iterationSampleBuffers[0].getHeight(); bool allOk = true; std::vector<tcu::TextureLevel> sampleCoverage (m_numTargetSamples); const tcu::ScopedLogSection section (m_testCtx.getLog(), "Verify", "Verify masks"); // convert color layers to 32 bit coverage masks, 2 passes per coverage for (int sampleNdx = 0; sampleNdx < (int)sampleCoverage.size(); ++sampleNdx) { sampleCoverage[sampleNdx].setStorage(tcu::TextureFormat(tcu::TextureFormat::R, tcu::TextureFormat::UNSIGNED_INT32), width, height); for (int y = 0; y < height; ++y) for (int x = 0; x < width; ++x) { const tcu::RGBA lowColor = m_iterationSampleBuffers[sampleNdx].getPixel(x, y); const tcu::RGBA highColor = m_iterationSampleBuffers[sampleNdx + (int)sampleCoverage.size()].getPixel(x, y); deUint16 low; deUint16 high; { int redBits = (int)deFloatRound(lowColor.getRed() / 255.0f * 31); int greenBits = (int)deFloatRound(lowColor.getGreen() / 255.0f * 63); int blueBits = (int)deFloatRound(lowColor.getBlue() / 255.0f * 31); low = (deUint16)(redBits | (greenBits << 5) | (blueBits << 11)); } { int redBits = (int)deFloatRound(highColor.getRed() / 255.0f * 31); int greenBits = (int)deFloatRound(highColor.getGreen() / 255.0f * 63); int blueBits = (int)deFloatRound(highColor.getBlue() / 255.0f * 31); high = (deUint16)(redBits | (greenBits << 5) | (blueBits << 11)); } sampleCoverage[sampleNdx].getAccess().setPixel(tcu::UVec4((((deUint32)high) << 16) | low, 0, 0, 0), x, y); } } // verify masks if (m_numRequestedSamples == 0) { // single sample target, expect mask = 0x01 const int printFloodLimit = 5; int printCount = 0; m_testCtx.getLog() << tcu::TestLog::Message << "Verifying sample mask is 0x00000001." << tcu::TestLog::EndMessage; for (int y = 0; y < height; ++y) for (int x = 0; x < width; ++x) { deUint32 mask = sampleCoverage[0].getAccess().getPixelUint(x, y).x(); if (mask != 0x01) { allOk = false; if (++printCount <= printFloodLimit) { m_testCtx.getLog() << tcu::TestLog::Message << "Pixel (" << x << ", " << y << "): Invalid mask, got " << tcu::Format::Hex<8>(mask) << ", expected " << tcu::Format::Hex<8>(0x01) << "\n" << tcu::TestLog::EndMessage; } } } if (!allOk && printCount > printFloodLimit) { m_testCtx.getLog() << tcu::TestLog::Message << "...\n" << "Omitted " << (printCount-printFloodLimit) << " error descriptions." << tcu::TestLog::EndMessage; } } else { // check uniqueness { bool uniquenessOk = true; int printCount = 0; const int printFloodLimit = 5; m_testCtx.getLog() << tcu::TestLog::Message << "Verifying invocation sample masks do not share bits." << tcu::TestLog::EndMessage; for (int y = 0; y < height; ++y) for (int x = 0; x < width; ++x) { bool maskBitsNotUnique = false; for (int sampleNdxA = 0; sampleNdxA < m_numTargetSamples && (!maskBitsNotUnique || printCount < printFloodLimit); ++sampleNdxA) for (int sampleNdxB = sampleNdxA+1; sampleNdxB < m_numTargetSamples && (!maskBitsNotUnique || printCount < printFloodLimit); ++sampleNdxB) { const deUint32 maskA = sampleCoverage[sampleNdxA].getAccess().getPixelUint(x, y).x(); const deUint32 maskB = sampleCoverage[sampleNdxB].getAccess().getPixelUint(x, y).x(); // equal mask == emitted by the same invocation if (maskA != maskB) { // shares samples? if (maskA & maskB) { maskBitsNotUnique = true; uniquenessOk = false; if (++printCount <= printFloodLimit) { m_testCtx.getLog() << tcu::TestLog::Message << "Pixel (" << x << ", " << y << "):\n" << "\tSamples " << sampleNdxA << " and " << sampleNdxB << " share mask bits\n" << "\tMask" << sampleNdxA << " = " << tcu::Format::Hex<8>(maskA) << "\n" << "\tMask" << sampleNdxB << " = " << tcu::Format::Hex<8>(maskB) << "\n" << tcu::TestLog::EndMessage; } } } } } if (!uniquenessOk) { allOk = false; if (printCount > printFloodLimit) m_testCtx.getLog() << tcu::TestLog::Message << "...\n" << "Omitted " << (printCount-printFloodLimit) << " error descriptions." << tcu::TestLog::EndMessage; } } // check number of sample mask bit groups is valid ( == number of invocations ) { const deUint32 minNumInvocations = (deUint32)de::max(1, (m_numTargetSamples+1)/2); bool countOk = true; int printCount = 0; const int printFloodLimit = 5; m_testCtx.getLog() << tcu::TestLog::Message << "Verifying cardinality of separate sample mask bit sets. Expecting equal to the number of invocations, (greater or equal to " << minNumInvocations << ")" << tcu::TestLog::EndMessage; for (int y = 0; y < height; ++y) for (int x = 0; x < width; ++x) { std::set<deUint32> masks; for (int maskNdx = 0; maskNdx < m_numTargetSamples; ++maskNdx) { const deUint32 mask = sampleCoverage[maskNdx].getAccess().getPixelUint(x, y).x(); masks.insert(mask); } if ((int)masks.size() < (int)minNumInvocations) { if (++printCount <= printFloodLimit) { m_testCtx.getLog() << tcu::TestLog::Message << "Pixel (" << x << ", " << y << "): Pixel invocations had only " << (int)masks.size() << " separate mask sets. Expected " << minNumInvocations << " or more. Found masks:" << tcu::TestLog::EndMessage; for (std::set<deUint32>::iterator it = masks.begin(); it != masks.end(); ++it) m_testCtx.getLog() << tcu::TestLog::Message << "\tMask: " << tcu::Format::Hex<8>(*it) << "\n" << tcu::TestLog::EndMessage; } countOk = false; } } if (!countOk) { allOk = false; if (printCount > printFloodLimit) m_testCtx.getLog() << tcu::TestLog::Message << "...\n" << "Omitted " << (printCount-printFloodLimit) << " error descriptions." << tcu::TestLog::EndMessage; } } } if (!allOk) m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image verification failed"); } class SampleMaskWriteCase : public SampleMaskBaseCase { public: enum TestMode { TEST_DISCARD = 0, TEST_INVERSE, TEST_LAST }; SampleMaskWriteCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode, TestMode testMode); ~SampleMaskWriteCase (void); void init (void); void preDraw (void); void postDraw (void); private: enum { RENDER_SIZE = 64 }; std::string genFragmentSource (int numTargetSamples) const; bool verifyImage (const tcu::Surface& resultImage); const TestMode m_testMode; }; SampleMaskWriteCase::SampleMaskWriteCase (Context& context, const char* name, const char* desc, int sampleCount, RenderTarget target, ShaderRunMode runMode, TestMode testMode) : SampleMaskBaseCase (context, name, desc, sampleCount, target, RENDER_SIZE, runMode) , m_testMode (testMode) { DE_ASSERT(testMode < TEST_LAST); } SampleMaskWriteCase::~SampleMaskWriteCase (void) { } void SampleMaskWriteCase::init (void) { // log the test method and expectations if (m_testMode == TEST_DISCARD) m_testCtx.getLog() << tcu::TestLog::Message << "Discarding half of the samples using gl_SampleMask, expecting:\n" << " 1) half intensity on multisample targets (numSamples > 1)\n" << " 2) full discard on multisample targets (numSamples == 1)\n" << " 3) full intensity (no discard) on singlesample targets. (Mask is only applied as a multisample operation.)\n" << tcu::TestLog::EndMessage; else if (m_testMode == TEST_INVERSE) m_testCtx.getLog() << tcu::TestLog::Message << "Discarding half of the samples using GL_SAMPLE_MASK, setting inverse mask in fragment shader using gl_SampleMask, expecting:\n" << " 1) full discard on multisample targets (mask & modifiedCoverge == 0)\n" << " 2) full intensity (no discard) on singlesample targets. (Mask and coverage is only applied as a multisample operation.)\n" << tcu::TestLog::EndMessage; else DE_ASSERT(false); SampleMaskBaseCase::init(); } void SampleMaskWriteCase::preDraw (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); if (m_testMode == TEST_INVERSE) { // set mask to 0xAAAA.., set inverse mask bit coverage in shader const int maskLoc = gl.getUniformLocation(m_program->getProgram(), "u_mask"); const deUint32 mask = (deUint32)0xAAAAAAAAUL; if (maskLoc == -1) throw tcu::TestError("Location of u_mask was -1"); gl.enable(GL_SAMPLE_MASK); gl.sampleMaski(0, mask); GLU_EXPECT_NO_ERROR(gl.getError(), "set mask"); gl.uniform1ui(maskLoc, mask); GLU_EXPECT_NO_ERROR(gl.getError(), "set mask uniform"); m_testCtx.getLog() << tcu::TestLog::Message << "Setting sample mask " << tcu::Format::Hex<4>(mask) << tcu::TestLog::EndMessage; } SampleMaskBaseCase::preDraw(); } void SampleMaskWriteCase::postDraw (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); if (m_testMode == TEST_INVERSE) { const deUint32 fullMask = (1U << m_numTargetSamples) - 1; gl.disable(GL_SAMPLE_MASK); gl.sampleMaski(0, fullMask); GLU_EXPECT_NO_ERROR(gl.getError(), "set mask"); } SampleMaskBaseCase::postDraw(); } std::string SampleMaskWriteCase::genFragmentSource (int numTargetSamples) const { DE_ASSERT(numTargetSamples != 0); DE_UNREF(numTargetSamples); std::ostringstream buf; if (m_testMode == TEST_DISCARD) { // mask out every other coverage bit buf << "#version 310 es\n" "#extension GL_OES_sample_variables : require\n" "layout(location = 0) out mediump vec4 fragColor;\n" "void main (void)\n" "{\n" " for (int i = 0; i < gl_SampleMask.length(); ++i)\n" " gl_SampleMask[i] = int(0xAAAAAAAA);\n" "\n"; if (m_runMode == RUN_PER_SAMPLE) buf << " // force per-sample shading\n" " highp float blue = float(gl_SampleID);\n" "\n" " fragColor = vec4(0.0, 1.0, blue, 1.0);\n" "}\n"; else buf << " fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n" "}\n"; } else if (m_testMode == TEST_INVERSE) { // inverse every coverage bit buf << "#version 310 es\n" "#extension GL_OES_sample_variables : require\n" "layout(location = 0) out mediump vec4 fragColor;\n" "uniform highp uint u_mask;\n" "void main (void)\n" "{\n" " gl_SampleMask[0] = int(~u_mask);\n" "\n"; if (m_runMode == RUN_PER_SAMPLE) buf << " // force per-sample shading\n" " highp float blue = float(gl_SampleID);\n" "\n" " fragColor = vec4(0.0, 1.0, blue, 1.0);\n" "}\n"; else buf << " fragColor = vec4(0.0, 1.0, 0.0, 1.0);\n" "}\n"; } else DE_ASSERT(false); return buf.str(); } bool SampleMaskWriteCase::verifyImage (const tcu::Surface& resultImage) { const bool singleSampleTarget = m_numRequestedSamples == 0 && !(m_renderTarget == TARGET_DEFAULT && m_context.getRenderTarget().getNumSamples() > 1); if (m_testMode == TEST_DISCARD) { if (singleSampleTarget) { // single sample case => multisample operations are not effective => don't discard anything // expect green return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), ColorVerifier(tcu::Vec3(0.0f, 1.0f, 0.0f))); } else if (m_numTargetSamples == 1) { // total discard, expect black return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), ColorVerifier(tcu::Vec3(0.0f, 0.0f, 0.0f))); } else { // partial discard, expect something between black and green return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), PartialDiscardVerifier()); } } else if (m_testMode == TEST_INVERSE) { if (singleSampleTarget) { // single sample case => multisample operations are not effective => don't discard anything // expect green return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), ColorVerifier(tcu::Vec3(0.0f, 1.0f, 0.0f))); } else { // total discard, expect black return verifyImageWithVerifier(resultImage, m_testCtx.getLog(), ColorVerifier(tcu::Vec3(0.0f, 0.0f, 0.0f))); } } else { DE_ASSERT(false); return false; } } } // anonymous SampleVariableTests::SampleVariableTests (Context& context) : TestCaseGroup(context, "sample_variables", "Test sample variables") { } SampleVariableTests::~SampleVariableTests (void) { } void SampleVariableTests::init (void) { tcu::TestCaseGroup* const numSampleGroup = new tcu::TestCaseGroup(m_testCtx, "num_samples", "Test NumSamples"); tcu::TestCaseGroup* const maxSampleGroup = new tcu::TestCaseGroup(m_testCtx, "max_samples", "Test MaxSamples"); tcu::TestCaseGroup* const sampleIDGroup = new tcu::TestCaseGroup(m_testCtx, "sample_id", "Test SampleID"); tcu::TestCaseGroup* const samplePosGroup = new tcu::TestCaseGroup(m_testCtx, "sample_pos", "Test SamplePosition"); tcu::TestCaseGroup* const sampleMaskInGroup = new tcu::TestCaseGroup(m_testCtx, "sample_mask_in", "Test SampleMaskIn"); tcu::TestCaseGroup* const sampleMaskGroup = new tcu::TestCaseGroup(m_testCtx, "sample_mask", "Test SampleMask"); addChild(numSampleGroup); addChild(maxSampleGroup); addChild(sampleIDGroup); addChild(samplePosGroup); addChild(sampleMaskInGroup); addChild(sampleMaskGroup); static const struct RenderTarget { const char* name; const char* desc; int numSamples; MultisampleRenderCase::RenderTarget target; } targets[] = { { "default_framebuffer", "Test with default framebuffer", 0, MultisampleRenderCase::TARGET_DEFAULT }, { "singlesample_texture", "Test with singlesample texture", 0, MultisampleRenderCase::TARGET_TEXTURE }, { "multisample_texture_1", "Test with multisample texture", 1, MultisampleRenderCase::TARGET_TEXTURE }, { "multisample_texture_2", "Test with multisample texture", 2, MultisampleRenderCase::TARGET_TEXTURE }, { "multisample_texture_4", "Test with multisample texture", 4, MultisampleRenderCase::TARGET_TEXTURE }, { "multisample_texture_8", "Test with multisample texture", 8, MultisampleRenderCase::TARGET_TEXTURE }, { "multisample_texture_16", "Test with multisample texture", 16, MultisampleRenderCase::TARGET_TEXTURE }, { "singlesample_rbo", "Test with singlesample rbo", 0, MultisampleRenderCase::TARGET_RENDERBUFFER }, { "multisample_rbo_1", "Test with multisample rbo", 1, MultisampleRenderCase::TARGET_RENDERBUFFER }, { "multisample_rbo_2", "Test with multisample rbo", 2, MultisampleRenderCase::TARGET_RENDERBUFFER }, { "multisample_rbo_4", "Test with multisample rbo", 4, MultisampleRenderCase::TARGET_RENDERBUFFER }, { "multisample_rbo_8", "Test with multisample rbo", 8, MultisampleRenderCase::TARGET_RENDERBUFFER }, { "multisample_rbo_16", "Test with multisample rbo", 16, MultisampleRenderCase::TARGET_RENDERBUFFER }, }; // .num_samples { for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) numSampleGroup->addChild(new NumSamplesCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target)); } // .max_samples { for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) maxSampleGroup->addChild(new MaxSamplesCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target)); } // .sample_ID { for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) sampleIDGroup->addChild(new SampleIDCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target)); } // .sample_pos { { tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "correctness", "Test SamplePos correctness"); samplePosGroup->addChild(group); for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) group->addChild(new SamplePosCorrectnessCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target)); } { tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "distribution", "Test SamplePos distribution"); samplePosGroup->addChild(group); for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) group->addChild(new SamplePosDistributionCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target)); } } // .sample_mask_in { // .sample_mask { tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "sample_mask", "Test with GL_SAMPLE_MASK"); sampleMaskInGroup->addChild(group); for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) group->addChild(new SampleMaskCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target)); } // .bit_count_per_pixel { tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "bit_count_per_pixel", "Test number of coverage bits"); sampleMaskInGroup->addChild(group); for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) group->addChild(new SampleMaskCountCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskCountCase::RUN_PER_PIXEL)); } // .bit_count_per_sample { tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "bit_count_per_sample", "Test number of coverage bits"); sampleMaskInGroup->addChild(group); for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) group->addChild(new SampleMaskCountCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskCountCase::RUN_PER_SAMPLE)); } // .bit_count_per_two_samples { tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "bit_count_per_two_samples", "Test number of coverage bits"); sampleMaskInGroup->addChild(group); for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) group->addChild(new SampleMaskCountCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskCountCase::RUN_PER_TWO_SAMPLES)); } // .bits_unique_per_sample { tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "bits_unique_per_sample", "Test coverage bits"); sampleMaskInGroup->addChild(group); for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) if (targets[targetNdx].target == MultisampleRenderCase::TARGET_TEXTURE) group->addChild(new SampleMaskUniqueCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskUniqueCase::RUN_PER_SAMPLE)); } // .bits_unique_per_two_samples { tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "bits_unique_per_two_samples", "Test coverage bits"); sampleMaskInGroup->addChild(group); for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) if (targets[targetNdx].target == MultisampleRenderCase::TARGET_TEXTURE) group->addChild(new SampleMaskUniqueSetCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskUniqueCase::RUN_PER_TWO_SAMPLES)); } } // .sample_mask { // .discard_half_per_pixel { tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "discard_half_per_pixel", "Test coverage bits"); sampleMaskGroup->addChild(group); for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) group->addChild(new SampleMaskWriteCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskWriteCase::RUN_PER_PIXEL, SampleMaskWriteCase::TEST_DISCARD)); } // .discard_half_per_sample { tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "discard_half_per_sample", "Test coverage bits"); sampleMaskGroup->addChild(group); for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) group->addChild(new SampleMaskWriteCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskWriteCase::RUN_PER_SAMPLE, SampleMaskWriteCase::TEST_DISCARD)); } // .discard_half_per_two_samples { tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "discard_half_per_two_samples", "Test coverage bits"); sampleMaskGroup->addChild(group); for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) group->addChild(new SampleMaskWriteCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskWriteCase::RUN_PER_TWO_SAMPLES, SampleMaskWriteCase::TEST_DISCARD)); } // .discard_half_per_two_samples { tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "inverse_per_pixel", "Test coverage bits"); sampleMaskGroup->addChild(group); for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) group->addChild(new SampleMaskWriteCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskWriteCase::RUN_PER_PIXEL, SampleMaskWriteCase::TEST_INVERSE)); } // .inverse_per_sample { tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "inverse_per_sample", "Test coverage bits"); sampleMaskGroup->addChild(group); for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) group->addChild(new SampleMaskWriteCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskWriteCase::RUN_PER_SAMPLE, SampleMaskWriteCase::TEST_INVERSE)); } // .inverse_per_two_samples { tcu::TestCaseGroup* const group = new tcu::TestCaseGroup(m_testCtx, "inverse_per_two_samples", "Test coverage bits"); sampleMaskGroup->addChild(group); for (int targetNdx = 0; targetNdx < DE_LENGTH_OF_ARRAY(targets); ++targetNdx) group->addChild(new SampleMaskWriteCase(m_context, targets[targetNdx].name, targets[targetNdx].desc, targets[targetNdx].numSamples, targets[targetNdx].target, SampleMaskWriteCase::RUN_PER_TWO_SAMPLES, SampleMaskWriteCase::TEST_INVERSE)); } } } } // Functional } // gles31 } // deqp