/*-------------------------------------------------------------------------
* drawElements Quality Program OpenGL ES 3.0 Module
* -------------------------------------------------
*
* Copyright 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*//*!
* \file
* \brief Shader derivate function tests.
*
* \todo [2013-06-25 pyry] Missing features:
* - lines and points
* - projected coordinates
* - continous non-trivial functions (sin, exp)
* - non-continous functions (step)
*//*--------------------------------------------------------------------*/
#include "es3fShaderDerivateTests.hpp"
#include "gluShaderProgram.hpp"
#include "gluRenderContext.hpp"
#include "gluDrawUtil.hpp"
#include "gluPixelTransfer.hpp"
#include "gluShaderUtil.hpp"
#include "gluStrUtil.hpp"
#include "gluTextureUtil.hpp"
#include "gluTexture.hpp"
#include "tcuStringTemplate.hpp"
#include "tcuRenderTarget.hpp"
#include "tcuSurface.hpp"
#include "tcuTestLog.hpp"
#include "tcuVectorUtil.hpp"
#include "tcuTextureUtil.hpp"
#include "tcuRGBA.hpp"
#include "tcuFloat.hpp"
#include "tcuInterval.hpp"
#include "deRandom.hpp"
#include "deUniquePtr.hpp"
#include "deString.h"
#include "glwEnums.hpp"
#include "glwFunctions.hpp"
#include "glsShaderRenderCase.hpp" // gls::setupDefaultUniforms()
#include <sstream>
namespace deqp
{
namespace gles3
{
namespace Functional
{
using std::vector;
using std::string;
using std::map;
using tcu::TestLog;
using std::ostringstream;
enum
{
VIEWPORT_WIDTH = 167,
VIEWPORT_HEIGHT = 103,
FBO_WIDTH = 99,
FBO_HEIGHT = 133,
MAX_FAILED_MESSAGES = 10
};
enum DerivateFunc
{
DERIVATE_DFDX = 0,
DERIVATE_DFDY,
DERIVATE_FWIDTH,
DERIVATE_LAST
};
enum SurfaceType
{
SURFACETYPE_DEFAULT_FRAMEBUFFER = 0,
SURFACETYPE_UNORM_FBO,
SURFACETYPE_FLOAT_FBO, // \note Uses RGBA32UI fbo actually, since FP rendertargets are not in core spec.
SURFACETYPE_LAST
};
// Utilities
namespace
{
class AutoFbo
{
public:
AutoFbo (const glw::Functions& gl)
: m_gl (gl)
, m_fbo (0)
{
}
~AutoFbo (void)
{
if (m_fbo)
m_gl.deleteFramebuffers(1, &m_fbo);
}
void gen (void)
{
DE_ASSERT(!m_fbo);
m_gl.genFramebuffers(1, &m_fbo);
}
deUint32 operator* (void) const { return m_fbo; }
private:
const glw::Functions& m_gl;
deUint32 m_fbo;
};
class AutoRbo
{
public:
AutoRbo (const glw::Functions& gl)
: m_gl (gl)
, m_rbo (0)
{
}
~AutoRbo (void)
{
if (m_rbo)
m_gl.deleteRenderbuffers(1, &m_rbo);
}
void gen (void)
{
DE_ASSERT(!m_rbo);
m_gl.genRenderbuffers(1, &m_rbo);
}
deUint32 operator* (void) const { return m_rbo; }
private:
const glw::Functions& m_gl;
deUint32 m_rbo;
};
} // anonymous
static const char* getDerivateFuncName (DerivateFunc func)
{
switch (func)
{
case DERIVATE_DFDX: return "dFdx";
case DERIVATE_DFDY: return "dFdy";
case DERIVATE_FWIDTH: return "fwidth";
default:
DE_ASSERT(false);
return DE_NULL;
}
}
static const char* getDerivateFuncCaseName (DerivateFunc func)
{
switch (func)
{
case DERIVATE_DFDX: return "dfdx";
case DERIVATE_DFDY: return "dfdy";
case DERIVATE_FWIDTH: return "fwidth";
default:
DE_ASSERT(false);
return DE_NULL;
}
}
static inline tcu::BVec4 getDerivateMask (glu::DataType type)
{
switch (type)
{
case glu::TYPE_FLOAT: return tcu::BVec4(true, false, false, false);
case glu::TYPE_FLOAT_VEC2: return tcu::BVec4(true, true, false, false);
case glu::TYPE_FLOAT_VEC3: return tcu::BVec4(true, true, true, false);
case glu::TYPE_FLOAT_VEC4: return tcu::BVec4(true, true, true, true);
default:
DE_ASSERT(false);
return tcu::BVec4(true);
}
}
static inline tcu::Vec4 readDerivate (const tcu::ConstPixelBufferAccess& surface, const tcu::Vec4& derivScale, const tcu::Vec4& derivBias, int x, int y)
{
return (surface.getPixel(x, y) - derivBias) / derivScale;
}
static inline tcu::UVec4 getCompExpBits (const tcu::Vec4& v)
{
return tcu::UVec4(tcu::Float32(v[0]).exponentBits(),
tcu::Float32(v[1]).exponentBits(),
tcu::Float32(v[2]).exponentBits(),
tcu::Float32(v[3]).exponentBits());
}
float computeFloatingPointError (const float value, const int numAccurateBits)
{
const int numGarbageBits = 23-numAccurateBits;
const deUint32 mask = (1u<<numGarbageBits)-1u;
const int exp = tcu::Float32(value).exponent();
return tcu::Float32::construct(+1, exp, (1u<<23) | mask).asFloat() - tcu::Float32::construct(+1, exp, 1u<<23).asFloat();
}
static int getNumMantissaBits (const glu::Precision precision)
{
switch (precision)
{
case glu::PRECISION_HIGHP: return 23;
case glu::PRECISION_MEDIUMP: return 10;
case glu::PRECISION_LOWP: return 6;
default:
DE_ASSERT(false);
return 0;
}
}
static int getMinExponent (const glu::Precision precision)
{
switch (precision)
{
case glu::PRECISION_HIGHP: return -126;
case glu::PRECISION_MEDIUMP: return -14;
case glu::PRECISION_LOWP: return -8;
default:
DE_ASSERT(false);
return 0;
}
}
static float getSingleULPForExponent (int exp, int numMantissaBits)
{
if (numMantissaBits > 0)
{
DE_ASSERT(numMantissaBits <= 23);
const int ulpBitNdx = 23-numMantissaBits;
return tcu::Float32::construct(+1, exp, (1<<23) | (1 << ulpBitNdx)).asFloat() - tcu::Float32::construct(+1, exp, (1<<23)).asFloat();
}
else
{
DE_ASSERT(numMantissaBits == 0);
return tcu::Float32::construct(+1, exp, (1<<23)).asFloat();
}
}
static float getSingleULPForValue (float value, int numMantissaBits)
{
const int exp = tcu::Float32(value).exponent();
return getSingleULPForExponent(exp, numMantissaBits);
}
static float convertFloatFlushToZeroRtn (float value, int minExponent, int numAccurateBits)
{
if (value == 0.0f)
{
return 0.0f;
}
else
{
const tcu::Float32 inputFloat = tcu::Float32(value);
const int numTruncatedBits = 23-numAccurateBits;
const deUint32 truncMask = (1u<<numTruncatedBits)-1u;
if (value > 0.0f)
{
if (value > 0.0f && tcu::Float32(value).exponent() < minExponent)
{
// flush to zero if possible
return 0.0f;
}
else
{
// just mask away non-representable bits
return tcu::Float32::construct(+1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask).asFloat();
}
}
else
{
if (inputFloat.mantissa() & truncMask)
{
// decrement one ulp if truncated bits are non-zero (i.e. if value is not representable)
return tcu::Float32::construct(-1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask).asFloat() - getSingleULPForExponent(inputFloat.exponent(), numAccurateBits);
}
else
{
// value is representable, no need to do anything
return value;
}
}
}
}
static float convertFloatFlushToZeroRtp (float value, int minExponent, int numAccurateBits)
{
return -convertFloatFlushToZeroRtn(-value, minExponent, numAccurateBits);
}
static float addErrorUlp (float value, float numUlps, int numMantissaBits)
{
return value + numUlps * getSingleULPForValue(value, numMantissaBits);
}
enum
{
INTERPOLATION_LOST_BITS = 3, // number mantissa of bits allowed to be lost in varying interpolation
};
static inline tcu::Vec4 getDerivateThreshold (const glu::Precision precision, const tcu::Vec4& valueMin, const tcu::Vec4& valueMax, const tcu::Vec4& expectedDerivate)
{
const int baseBits = getNumMantissaBits(precision);
const tcu::UVec4 derivExp = getCompExpBits(expectedDerivate);
const tcu::UVec4 maxValueExp = max(getCompExpBits(valueMin), getCompExpBits(valueMax));
const tcu::UVec4 numBitsLost = maxValueExp - min(maxValueExp, derivExp);
const tcu::IVec4 numAccurateBits = max(baseBits - numBitsLost.asInt() - (int)INTERPOLATION_LOST_BITS, tcu::IVec4(0));
return tcu::Vec4(computeFloatingPointError(expectedDerivate[0], numAccurateBits[0]),
computeFloatingPointError(expectedDerivate[1], numAccurateBits[1]),
computeFloatingPointError(expectedDerivate[2], numAccurateBits[2]),
computeFloatingPointError(expectedDerivate[3], numAccurateBits[3]));
}
namespace
{
struct LogVecComps
{
const tcu::Vec4& v;
int numComps;
LogVecComps (const tcu::Vec4& v_, int numComps_)
: v (v_)
, numComps (numComps_)
{
}
};
std::ostream& operator<< (std::ostream& str, const LogVecComps& v)
{
DE_ASSERT(de::inRange(v.numComps, 1, 4));
if (v.numComps == 1) return str << v.v[0];
else if (v.numComps == 2) return str << v.v.toWidth<2>();
else if (v.numComps == 3) return str << v.v.toWidth<3>();
else return str << v.v;
}
} // anonymous
enum VerificationLogging
{
LOG_ALL = 0,
LOG_NOTHING
};
static bool verifyConstantDerivate (tcu::TestLog& log,
const tcu::ConstPixelBufferAccess& result,
const tcu::PixelBufferAccess& errorMask,
glu::DataType dataType,
const tcu::Vec4& reference,
const tcu::Vec4& threshold,
const tcu::Vec4& scale,
const tcu::Vec4& bias,
VerificationLogging logPolicy = LOG_ALL)
{
const int numComps = glu::getDataTypeFloatScalars(dataType);
const tcu::BVec4 mask = tcu::logicalNot(getDerivateMask(dataType));
int numFailedPixels = 0;
if (logPolicy == LOG_ALL)
log << TestLog::Message << "Expecting " << LogVecComps(reference, numComps) << " with threshold " << LogVecComps(threshold, numComps) << TestLog::EndMessage;
for (int y = 0; y < result.getHeight(); y++)
{
for (int x = 0; x < result.getWidth(); x++)
{
const tcu::Vec4 resDerivate = readDerivate(result, scale, bias, x, y);
const bool isOk = tcu::allEqual(tcu::logicalOr(tcu::lessThanEqual(tcu::abs(reference - resDerivate), threshold), mask), tcu::BVec4(true));
if (!isOk)
{
if (numFailedPixels < MAX_FAILED_MESSAGES && logPolicy == LOG_ALL)
log << TestLog::Message << "FAIL: got " << LogVecComps(resDerivate, numComps)
<< ", diff = " << LogVecComps(tcu::abs(reference - resDerivate), numComps)
<< ", at x = " << x << ", y = " << y
<< TestLog::EndMessage;
numFailedPixels += 1;
errorMask.setPixel(tcu::RGBA::red.toVec(), x, y);
}
}
}
if (numFailedPixels >= MAX_FAILED_MESSAGES && logPolicy == LOG_ALL)
log << TestLog::Message << "..." << TestLog::EndMessage;
if (numFailedPixels > 0 && logPolicy == LOG_ALL)
log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage;
return numFailedPixels == 0;
}
struct Linear2DFunctionEvaluator
{
tcu::Matrix<float, 4, 3> matrix;
// .-----.
// | s_x |
// M x | s_y |
// | 1.0 |
// '-----'
tcu::Vec4 evaluateAt (float screenX, float screenY) const;
};
tcu::Vec4 Linear2DFunctionEvaluator::evaluateAt (float screenX, float screenY) const
{
const tcu::Vec3 position(screenX, screenY, 1.0f);
return matrix * position;
}
static bool reverifyConstantDerivateWithFlushRelaxations (tcu::TestLog& log,
const tcu::ConstPixelBufferAccess& result,
const tcu::PixelBufferAccess& errorMask,
glu::DataType dataType,
glu::Precision precision,
const tcu::Vec4& derivScale,
const tcu::Vec4& derivBias,
const tcu::Vec4& surfaceThreshold,
DerivateFunc derivateFunc,
const Linear2DFunctionEvaluator& function)
{
DE_ASSERT(result.getWidth() == errorMask.getWidth());
DE_ASSERT(result.getHeight() == errorMask.getHeight());
DE_ASSERT(derivateFunc == DERIVATE_DFDX || derivateFunc == DERIVATE_DFDY);
const tcu::IVec4 red (255, 0, 0, 255);
const tcu::IVec4 green (0, 255, 0, 255);
const float divisionErrorUlps = 2.5f;
const int numComponents = glu::getDataTypeFloatScalars(dataType);
const int numBits = getNumMantissaBits(precision);
const int minExponent = getMinExponent(precision);
const int numVaryingSampleBits = numBits - INTERPOLATION_LOST_BITS;
int numFailedPixels = 0;
tcu::clear(errorMask, green);
// search for failed pixels
for (int y = 0; y < result.getHeight(); ++y)
for (int x = 0; x < result.getWidth(); ++x)
{
// flushToZero?(f2z?(functionValueCurrent) - f2z?(functionValueBefore))
// flushToZero? ( ------------------------------------------------------------------------ +- 2.5 ULP )
// dx
const tcu::Vec4 resultDerivative = readDerivate(result, derivScale, derivBias, x, y);
// sample at the front of the back pixel and the back of the front pixel to cover the whole area of
// legal sample positions. In general case this is NOT OK, but we know that the target funtion is
// (mostly*) linear which allows us to take the sample points at arbitrary points. This gets us the
// maximum difference possible in exponents which are used in error bound calculations.
// * non-linearity may happen around zero or with very high function values due to subnorms not
// behaving well.
const tcu::Vec4 functionValueForward = (derivateFunc == DERIVATE_DFDX)
? (function.evaluateAt(x + 2.0f, y + 0.5f))
: (function.evaluateAt(x + 0.5f, y + 2.0f));
const tcu::Vec4 functionValueBackward = (derivateFunc == DERIVATE_DFDX)
? (function.evaluateAt(x - 1.0f, y + 0.5f))
: (function.evaluateAt(x + 0.5f, y - 1.0f));
bool anyComponentFailed = false;
// check components separately
for (int c = 0; c < numComponents; ++c)
{
// Simulate interpolation. Add allowed interpolation error and round to target precision. Allow one half ULP (i.e. correct rounding)
const tcu::Interval forwardComponent (convertFloatFlushToZeroRtn(addErrorUlp((float)functionValueForward[c], -0.5f, numVaryingSampleBits), minExponent, numBits),
convertFloatFlushToZeroRtp(addErrorUlp((float)functionValueForward[c], +0.5f, numVaryingSampleBits), minExponent, numBits));
const tcu::Interval backwardComponent (convertFloatFlushToZeroRtn(addErrorUlp((float)functionValueBackward[c], -0.5f, numVaryingSampleBits), minExponent, numBits),
convertFloatFlushToZeroRtp(addErrorUlp((float)functionValueBackward[c], +0.5f, numVaryingSampleBits), minExponent, numBits));
const int maxValueExp = de::max(de::max(tcu::Float32(forwardComponent.lo()).exponent(), tcu::Float32(forwardComponent.hi()).exponent()),
de::max(tcu::Float32(backwardComponent.lo()).exponent(), tcu::Float32(backwardComponent.hi()).exponent()));
// subtraction in numerator will likely cause a cancellation of the most
// significant bits. Apply error bounds.
const tcu::Interval numerator (forwardComponent - backwardComponent);
const int numeratorLoExp = tcu::Float32(numerator.lo()).exponent();
const int numeratorHiExp = tcu::Float32(numerator.hi()).exponent();
const int numeratorLoBitsLost = de::max(0, maxValueExp - numeratorLoExp); //!< must clamp to zero since if forward and backward components have different
const int numeratorHiBitsLost = de::max(0, maxValueExp - numeratorHiExp); //!< sign, numerator might have larger exponent than its operands.
const int numeratorLoBits = de::max(0, numBits - numeratorLoBitsLost);
const int numeratorHiBits = de::max(0, numBits - numeratorHiBitsLost);
const tcu::Interval numeratorRange (convertFloatFlushToZeroRtn((float)numerator.lo(), minExponent, numeratorLoBits),
convertFloatFlushToZeroRtp((float)numerator.hi(), minExponent, numeratorHiBits));
const tcu::Interval divisionRange = numeratorRange / 3.0f; // legal sample area is anywhere within this and neighboring pixels (i.e. size = 3)
const tcu::Interval divisionResultRange (convertFloatFlushToZeroRtn(addErrorUlp((float)divisionRange.lo(), -divisionErrorUlps, numBits), minExponent, numBits),
convertFloatFlushToZeroRtp(addErrorUlp((float)divisionRange.hi(), +divisionErrorUlps, numBits), minExponent, numBits));
const tcu::Interval finalResultRange (divisionResultRange.lo() - surfaceThreshold[c], divisionResultRange.hi() + surfaceThreshold[c]);
if (resultDerivative[c] >= finalResultRange.lo() && resultDerivative[c] <= finalResultRange.hi())
{
// value ok
}
else
{
if (numFailedPixels < MAX_FAILED_MESSAGES)
log << tcu::TestLog::Message
<< "Error in pixel at " << x << ", " << y << " with component " << c << " (channel " << ("rgba"[c]) << ")\n"
<< "\tGot pixel value " << result.getPixelInt(x, y) << "\n"
<< "\t\tdFd" << ((derivateFunc == DERIVATE_DFDX) ? ('x') : ('y')) << " ~= " << resultDerivative[c] << "\n"
<< "\t\tdifference to a valid range: "
<< ((resultDerivative[c] < finalResultRange.lo()) ? ("-") : ("+"))
<< ((resultDerivative[c] < finalResultRange.lo()) ? (finalResultRange.lo() - resultDerivative[c]) : (resultDerivative[c] - finalResultRange.hi()))
<< "\n"
<< "\tDerivative value range:\n"
<< "\t\tMin: " << finalResultRange.lo() << "\n"
<< "\t\tMax: " << finalResultRange.hi() << "\n"
<< tcu::TestLog::EndMessage;
++numFailedPixels;
anyComponentFailed = true;
}
}
if (anyComponentFailed)
errorMask.setPixel(red, x, y);
}
if (numFailedPixels >= MAX_FAILED_MESSAGES)
log << TestLog::Message << "..." << TestLog::EndMessage;
if (numFailedPixels > 0)
log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage;
return numFailedPixels == 0;
}
// TriangleDerivateCase
class TriangleDerivateCase : public TestCase
{
public:
TriangleDerivateCase (Context& context, const char* name, const char* description);
~TriangleDerivateCase (void);
IterateResult iterate (void);
protected:
virtual void setupRenderState (deUint32 program) { DE_UNREF(program); }
virtual bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask) = DE_NULL;
tcu::IVec2 getViewportSize (void) const;
tcu::Vec4 getSurfaceThreshold (void) const;
glu::DataType m_dataType;
glu::Precision m_precision;
glu::DataType m_coordDataType;
glu::Precision m_coordPrecision;
std::string m_fragmentSrc;
tcu::Vec4 m_coordMin;
tcu::Vec4 m_coordMax;
tcu::Vec4 m_derivScale;
tcu::Vec4 m_derivBias;
SurfaceType m_surfaceType;
int m_numSamples;
deUint32 m_hint;
};
TriangleDerivateCase::TriangleDerivateCase (Context& context, const char* name, const char* description)
: TestCase (context, name, description)
, m_dataType (glu::TYPE_LAST)
, m_precision (glu::PRECISION_LAST)
, m_coordDataType (glu::TYPE_LAST)
, m_coordPrecision (glu::PRECISION_LAST)
, m_surfaceType (SURFACETYPE_DEFAULT_FRAMEBUFFER)
, m_numSamples (0)
, m_hint (GL_DONT_CARE)
{
DE_ASSERT(m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER || m_numSamples == 0);
}
TriangleDerivateCase::~TriangleDerivateCase (void)
{
TriangleDerivateCase::deinit();
}
static std::string genVertexSource (glu::DataType coordType, glu::Precision precision)
{
DE_ASSERT(glu::isDataTypeFloatOrVec(coordType));
const char* vertexTmpl =
"#version 300 es\n"
"in highp vec4 a_position;\n"
"in ${PRECISION} ${DATATYPE} a_coord;\n"
"out ${PRECISION} ${DATATYPE} v_coord;\n"
"void main (void)\n"
"{\n"
" gl_Position = a_position;\n"
" v_coord = a_coord;\n"
"}\n";
map<string, string> vertexParams;
vertexParams["PRECISION"] = glu::getPrecisionName(precision);
vertexParams["DATATYPE"] = glu::getDataTypeName(coordType);
return tcu::StringTemplate(vertexTmpl).specialize(vertexParams);
}
inline tcu::IVec2 TriangleDerivateCase::getViewportSize (void) const
{
if (m_surfaceType == SURFACETYPE_DEFAULT_FRAMEBUFFER)
{
const int width = de::min<int>(m_context.getRenderTarget().getWidth(), VIEWPORT_WIDTH);
const int height = de::min<int>(m_context.getRenderTarget().getHeight(), VIEWPORT_HEIGHT);
return tcu::IVec2(width, height);
}
else
return tcu::IVec2(FBO_WIDTH, FBO_HEIGHT);
}
TriangleDerivateCase::IterateResult TriangleDerivateCase::iterate (void)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const glu::ShaderProgram program (m_context.getRenderContext(), glu::makeVtxFragSources(genVertexSource(m_coordDataType, m_coordPrecision), m_fragmentSrc));
de::Random rnd (deStringHash(getName()) ^ 0xbbc24);
const bool useFbo = m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER;
const deUint32 fboFormat = m_surfaceType == SURFACETYPE_FLOAT_FBO ? GL_RGBA32UI : GL_RGBA8;
const tcu::IVec2 viewportSize = getViewportSize();
const int viewportX = useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getWidth() - viewportSize.x());
const int viewportY = useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getHeight() - viewportSize.y());
AutoFbo fbo (gl);
AutoRbo rbo (gl);
tcu::TextureLevel result;
m_testCtx.getLog() << program;
if (!program.isOk())
TCU_FAIL("Compile failed");
if (useFbo)
{
m_testCtx.getLog() << TestLog::Message
<< "Rendering to FBO, format = " << glu::getPixelFormatStr(fboFormat)
<< ", samples = " << m_numSamples
<< TestLog::EndMessage;
fbo.gen();
rbo.gen();
gl.bindRenderbuffer(GL_RENDERBUFFER, *rbo);
gl.renderbufferStorageMultisample(GL_RENDERBUFFER, m_numSamples, fboFormat, viewportSize.x(), viewportSize.y());
gl.bindFramebuffer(GL_FRAMEBUFFER, *fbo);
gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *rbo);
TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE);
}
else
{
const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat();
m_testCtx.getLog()
<< TestLog::Message
<< "Rendering to default framebuffer\n"
<< "\tColor depth: R=" << pixelFormat.redBits << ", G=" << pixelFormat.greenBits << ", B=" << pixelFormat.blueBits << ", A=" << pixelFormat.alphaBits
<< TestLog::EndMessage;
}
m_testCtx.getLog() << TestLog::Message << "in: " << m_coordMin << " -> " << m_coordMax << "\n"
<< "v_coord.x = in.x * x\n"
<< "v_coord.y = in.y * y\n"
<< "v_coord.z = in.z * (x+y)/2\n"
<< "v_coord.w = in.w * (1 - (x+y)/2)\n"
<< TestLog::EndMessage
<< TestLog::Message << "u_scale: " << m_derivScale << ", u_bias: " << m_derivBias << " (displayed values have scale/bias removed)" << TestLog::EndMessage
<< TestLog::Message << "Viewport: " << viewportSize.x() << "x" << viewportSize.y() << TestLog::EndMessage
<< TestLog::Message << "GL_FRAGMENT_SHADER_DERIVATE_HINT: " << glu::getHintModeStr(m_hint) << TestLog::EndMessage;
// Draw
{
const float positions[] =
{
-1.0f, -1.0f, 0.0f, 1.0f,
-1.0f, 1.0f, 0.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f
};
const float coords[] =
{
m_coordMin.x(), m_coordMin.y(), m_coordMin.z(), m_coordMax.w(),
m_coordMin.x(), m_coordMax.y(), (m_coordMin.z()+m_coordMax.z())*0.5f, (m_coordMin.w()+m_coordMax.w())*0.5f,
m_coordMax.x(), m_coordMin.y(), (m_coordMin.z()+m_coordMax.z())*0.5f, (m_coordMin.w()+m_coordMax.w())*0.5f,
m_coordMax.x(), m_coordMax.y(), m_coordMax.z(), m_coordMin.w()
};
const glu::VertexArrayBinding vertexArrays[] =
{
glu::va::Float("a_position", 4, 4, 0, &positions[0]),
glu::va::Float("a_coord", 4, 4, 0, &coords[0])
};
const deUint16 indices[] = { 0, 2, 1, 2, 3, 1 };
gl.clearColor(0.125f, 0.25f, 0.5f, 1.0f);
gl.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT);
gl.disable(GL_DITHER);
gl.useProgram(program.getProgram());
{
const int scaleLoc = gl.getUniformLocation(program.getProgram(), "u_scale");
const int biasLoc = gl.getUniformLocation(program.getProgram(), "u_bias");
switch (m_dataType)
{
case glu::TYPE_FLOAT:
gl.uniform1f(scaleLoc, m_derivScale.x());
gl.uniform1f(biasLoc, m_derivBias.x());
break;
case glu::TYPE_FLOAT_VEC2:
gl.uniform2fv(scaleLoc, 1, m_derivScale.getPtr());
gl.uniform2fv(biasLoc, 1, m_derivBias.getPtr());
break;
case glu::TYPE_FLOAT_VEC3:
gl.uniform3fv(scaleLoc, 1, m_derivScale.getPtr());
gl.uniform3fv(biasLoc, 1, m_derivBias.getPtr());
break;
case glu::TYPE_FLOAT_VEC4:
gl.uniform4fv(scaleLoc, 1, m_derivScale.getPtr());
gl.uniform4fv(biasLoc, 1, m_derivBias.getPtr());
break;
default:
DE_ASSERT(false);
}
}
gls::setupDefaultUniforms(m_context.getRenderContext(), program.getProgram());
setupRenderState(program.getProgram());
gl.hint(GL_FRAGMENT_SHADER_DERIVATIVE_HINT, m_hint);
GLU_EXPECT_NO_ERROR(gl.getError(), "Setup program state");
gl.viewport(viewportX, viewportY, viewportSize.x(), viewportSize.y());
glu::draw(m_context.getRenderContext(), program.getProgram(), DE_LENGTH_OF_ARRAY(vertexArrays), &vertexArrays[0],
glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0]));
GLU_EXPECT_NO_ERROR(gl.getError(), "Draw");
}
// Read back results
{
const bool isMSAA = useFbo && m_numSamples > 0;
AutoFbo resFbo (gl);
AutoRbo resRbo (gl);
// Resolve if necessary
if (isMSAA)
{
resFbo.gen();
resRbo.gen();
gl.bindRenderbuffer(GL_RENDERBUFFER, *resRbo);
gl.renderbufferStorageMultisample(GL_RENDERBUFFER, 0, fboFormat, viewportSize.x(), viewportSize.y());
gl.bindFramebuffer(GL_DRAW_FRAMEBUFFER, *resFbo);
gl.framebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *resRbo);
TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE);
gl.blitFramebuffer(0, 0, viewportSize.x(), viewportSize.y(), 0, 0, viewportSize.x(), viewportSize.y(), GL_COLOR_BUFFER_BIT, GL_NEAREST);
GLU_EXPECT_NO_ERROR(gl.getError(), "Resolve blit");
gl.bindFramebuffer(GL_READ_FRAMEBUFFER, *resFbo);
}
switch (m_surfaceType)
{
case SURFACETYPE_DEFAULT_FRAMEBUFFER:
case SURFACETYPE_UNORM_FBO:
result.setStorage(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), viewportSize.x(), viewportSize.y());
glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, result);
break;
case SURFACETYPE_FLOAT_FBO:
{
const tcu::TextureFormat dataFormat (tcu::TextureFormat::RGBA, tcu::TextureFormat::FLOAT);
const tcu::TextureFormat transferFormat (tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT32);
result.setStorage(dataFormat, viewportSize.x(), viewportSize.y());
glu::readPixels(m_context.getRenderContext(), viewportX, viewportY,
tcu::PixelBufferAccess(transferFormat, result.getWidth(), result.getHeight(), result.getDepth(), result.getAccess().getDataPtr()));
break;
}
default:
DE_ASSERT(false);
}
GLU_EXPECT_NO_ERROR(gl.getError(), "Read pixels");
}
// Verify
{
tcu::Surface errorMask(result.getWidth(), result.getHeight());
tcu::clear(errorMask.getAccess(), tcu::RGBA::green.toVec());
const bool isOk = verify(result.getAccess(), errorMask.getAccess());
m_testCtx.getLog() << TestLog::ImageSet("Result", "Result images")
<< TestLog::Image("Rendered", "Rendered image", result);
if (!isOk)
m_testCtx.getLog() << TestLog::Image("ErrorMask", "Error mask", errorMask);
m_testCtx.getLog() << TestLog::EndImageSet;
m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL,
isOk ? "Pass" : "Image comparison failed");
}
return STOP;
}
tcu::Vec4 TriangleDerivateCase::getSurfaceThreshold (void) const
{
switch (m_surfaceType)
{
case SURFACETYPE_DEFAULT_FRAMEBUFFER:
{
const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat();
const tcu::IVec4 channelBits (pixelFormat.redBits, pixelFormat.greenBits, pixelFormat.blueBits, pixelFormat.alphaBits);
const tcu::IVec4 intThreshold = tcu::IVec4(1) << (8 - channelBits);
const tcu::Vec4 normThreshold = intThreshold.asFloat() / 255.0f;
return normThreshold;
}
case SURFACETYPE_UNORM_FBO: return tcu::IVec4(1).asFloat() / 255.0f;
case SURFACETYPE_FLOAT_FBO: return tcu::Vec4(0.0f);
default:
DE_ASSERT(false);
return tcu::Vec4(0.0f);
}
}
// ConstantDerivateCase
class ConstantDerivateCase : public TriangleDerivateCase
{
public:
ConstantDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type);
~ConstantDerivateCase (void) {}
void init (void);
protected:
bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask);
private:
DerivateFunc m_func;
};
ConstantDerivateCase::ConstantDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type)
: TriangleDerivateCase (context, name, description)
, m_func (func)
{
m_dataType = type;
m_precision = glu::PRECISION_HIGHP;
m_coordDataType = m_dataType;
m_coordPrecision = m_precision;
}
void ConstantDerivateCase::init (void)
{
const char* fragmentTmpl =
"#version 300 es\n"
"layout(location = 0) out mediump vec4 o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res = ${FUNC}(${VALUE}) * u_scale + u_bias;\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n";
map<string, string> fragmentParams;
fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision);
fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType);
fragmentParams["FUNC"] = getDerivateFuncName(m_func);
fragmentParams["VALUE"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "vec4(1.0, 7.2, -1e5, 0.0)" :
m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec3(1e2, 8.0, 0.01)" :
m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec2(-0.0, 2.7)" :
/* TYPE_FLOAT */ "7.7";
fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" :
m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" :
m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" :
/* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)";
m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams);
m_derivScale = tcu::Vec4(1e3f, 1e3f, 1e3f, 1e3f);
m_derivBias = tcu::Vec4(0.5f, 0.5f, 0.5f, 0.5f);
}
bool ConstantDerivateCase::verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask)
{
const tcu::Vec4 reference (0.0f); // Derivate of constant argument should always be 0
const tcu::Vec4 threshold = getSurfaceThreshold() / abs(m_derivScale);
return verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType,
reference, threshold, m_derivScale, m_derivBias);
}
// LinearDerivateCase
class LinearDerivateCase : public TriangleDerivateCase
{
public:
LinearDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples, const char* fragmentSrcTmpl);
~LinearDerivateCase (void) {}
void init (void);
protected:
bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask);
private:
DerivateFunc m_func;
std::string m_fragmentTmpl;
};
LinearDerivateCase::LinearDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples, const char* fragmentSrcTmpl)
: TriangleDerivateCase (context, name, description)
, m_func (func)
, m_fragmentTmpl (fragmentSrcTmpl)
{
m_dataType = type;
m_precision = precision;
m_coordDataType = m_dataType;
m_coordPrecision = m_precision;
m_hint = hint;
m_surfaceType = surfaceType;
m_numSamples = numSamples;
}
void LinearDerivateCase::init (void)
{
const tcu::IVec2 viewportSize = getViewportSize();
const float w = float(viewportSize.x());
const float h = float(viewportSize.y());
const bool packToInt = m_surfaceType == SURFACETYPE_FLOAT_FBO;
map<string, string> fragmentParams;
fragmentParams["OUTPUT_TYPE"] = glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4);
fragmentParams["OUTPUT_PREC"] = glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision);
fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision);
fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType);
fragmentParams["FUNC"] = getDerivateFuncName(m_func);
if (packToInt)
{
fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" :
m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" :
m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" :
/* TYPE_FLOAT */ "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))";
}
else
{
fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" :
m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" :
m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" :
/* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)";
}
m_fragmentSrc = tcu::StringTemplate(m_fragmentTmpl.c_str()).specialize(fragmentParams);
switch (m_precision)
{
case glu::PRECISION_HIGHP:
m_coordMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f);
m_coordMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f);
break;
case glu::PRECISION_MEDIUMP:
m_coordMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f);
m_coordMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f);
break;
case glu::PRECISION_LOWP:
m_coordMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f);
m_coordMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f);
break;
default:
DE_ASSERT(false);
}
if (m_surfaceType == SURFACETYPE_FLOAT_FBO)
{
// No scale or bias used for accuracy.
m_derivScale = tcu::Vec4(1.0f);
m_derivBias = tcu::Vec4(0.0f);
}
else
{
// Compute scale - bias that normalizes to 0..1 range.
const tcu::Vec4 dx = (m_coordMax - m_coordMin) / tcu::Vec4(w, w, w*0.5f, -w*0.5f);
const tcu::Vec4 dy = (m_coordMax - m_coordMin) / tcu::Vec4(h, h, h*0.5f, -h*0.5f);
switch (m_func)
{
case DERIVATE_DFDX:
m_derivScale = 0.5f / dx;
break;
case DERIVATE_DFDY:
m_derivScale = 0.5f / dy;
break;
case DERIVATE_FWIDTH:
m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy));
break;
default:
DE_ASSERT(false);
}
m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f);
}
}
bool LinearDerivateCase::verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask)
{
const tcu::Vec4 xScale = tcu::Vec4(1.0f, 0.0f, 0.5f, -0.5f);
const tcu::Vec4 yScale = tcu::Vec4(0.0f, 1.0f, 0.5f, -0.5f);
const tcu::Vec4 surfaceThreshold = getSurfaceThreshold() / abs(m_derivScale);
if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY)
{
const bool isX = m_func == DERIVATE_DFDX;
const float div = isX ? float(result.getWidth()) : float(result.getHeight());
const tcu::Vec4 scale = isX ? xScale : yScale;
const tcu::Vec4 reference = ((m_coordMax - m_coordMin) / div) * scale;
const tcu::Vec4 opThreshold = getDerivateThreshold(m_precision, m_coordMin*scale, m_coordMax*scale, reference);
const tcu::Vec4 threshold = max(surfaceThreshold, opThreshold);
const int numComps = glu::getDataTypeFloatScalars(m_dataType);
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Verifying result image.\n"
<< "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold " << LogVecComps(threshold, numComps)
<< tcu::TestLog::EndMessage;
// short circuit if result is strictly within the normal value error bounds.
// This improves performance significantly.
if (verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType,
reference, threshold, m_derivScale, m_derivBias,
LOG_NOTHING))
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "No incorrect derivatives found, result valid."
<< tcu::TestLog::EndMessage;
return true;
}
// some pixels exceed error bounds calculated for normal values. Verify that these
// potentially invalid pixels are in fact valid due to (for example) subnorm flushing.
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Initial verification failed, verifying image by calculating accurate error bounds for each result pixel.\n"
<< "\tVerifying each result derivative is within its range of legal result values."
<< tcu::TestLog::EndMessage;
{
const tcu::IVec2 viewportSize = getViewportSize();
const float w = float(viewportSize.x());
const float h = float(viewportSize.y());
const tcu::Vec4 valueRamp = (m_coordMax - m_coordMin);
Linear2DFunctionEvaluator function;
function.matrix.setRow(0, tcu::Vec3(valueRamp.x() / w, 0.0f, m_coordMin.x()));
function.matrix.setRow(1, tcu::Vec3(0.0f, valueRamp.y() / h, m_coordMin.y()));
function.matrix.setRow(2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_coordMin.z() + m_coordMin.z()) / 2.0f);
function.matrix.setRow(3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_coordMax.w() + m_coordMax.w()) / 2.0f);
return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), result, errorMask,
m_dataType, m_precision, m_derivScale,
m_derivBias, surfaceThreshold, m_func,
function);
}
}
else
{
DE_ASSERT(m_func == DERIVATE_FWIDTH);
const float w = float(result.getWidth());
const float h = float(result.getHeight());
const tcu::Vec4 dx = ((m_coordMax - m_coordMin) / w) * xScale;
const tcu::Vec4 dy = ((m_coordMax - m_coordMin) / h) * yScale;
const tcu::Vec4 reference = tcu::abs(dx) + tcu::abs(dy);
const tcu::Vec4 dxThreshold = getDerivateThreshold(m_precision, m_coordMin*xScale, m_coordMax*xScale, dx);
const tcu::Vec4 dyThreshold = getDerivateThreshold(m_precision, m_coordMin*yScale, m_coordMax*yScale, dy);
const tcu::Vec4 threshold = max(surfaceThreshold, max(dxThreshold, dyThreshold));
return verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType,
reference, threshold, m_derivScale, m_derivBias);
}
}
// TextureDerivateCase
class TextureDerivateCase : public TriangleDerivateCase
{
public:
TextureDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples);
~TextureDerivateCase (void);
void init (void);
void deinit (void);
protected:
void setupRenderState (deUint32 program);
bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask);
private:
DerivateFunc m_func;
tcu::Vec4 m_texValueMin;
tcu::Vec4 m_texValueMax;
glu::Texture2D* m_texture;
};
TextureDerivateCase::TextureDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples)
: TriangleDerivateCase (context, name, description)
, m_func (func)
, m_texture (DE_NULL)
{
m_dataType = type;
m_precision = precision;
m_coordDataType = glu::TYPE_FLOAT_VEC2;
m_coordPrecision = glu::PRECISION_HIGHP;
m_hint = hint;
m_surfaceType = surfaceType;
m_numSamples = numSamples;
}
TextureDerivateCase::~TextureDerivateCase (void)
{
delete m_texture;
}
void TextureDerivateCase::init (void)
{
// Generate shader
{
const char* fragmentTmpl =
"#version 300 es\n"
"in highp vec2 v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} sampler2D u_sampler;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} vec4 tex = texture(u_sampler, v_coord);\n"
" ${PRECISION} ${DATATYPE} res = ${FUNC}(tex${SWIZZLE}) * u_scale + u_bias;\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n";
const bool packToInt = m_surfaceType == SURFACETYPE_FLOAT_FBO;
map<string, string> fragmentParams;
fragmentParams["OUTPUT_TYPE"] = glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4);
fragmentParams["OUTPUT_PREC"] = glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision);
fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision);
fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType);
fragmentParams["FUNC"] = getDerivateFuncName(m_func);
fragmentParams["SWIZZLE"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "" :
m_dataType == glu::TYPE_FLOAT_VEC3 ? ".xyz" :
m_dataType == glu::TYPE_FLOAT_VEC2 ? ".xy" :
/* TYPE_FLOAT */ ".x";
if (packToInt)
{
fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" :
m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" :
m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" :
/* TYPE_FLOAT */ "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))";
}
else
{
fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" :
m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" :
m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" :
/* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)";
}
m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams);
}
// Texture size matches viewport and nearest sampling is used. Thus texture sampling
// is equal to just interpolating the texture value range.
// Determine value range for texture.
switch (m_precision)
{
case glu::PRECISION_HIGHP:
m_texValueMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f);
m_texValueMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f);
break;
case glu::PRECISION_MEDIUMP:
m_texValueMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f);
m_texValueMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f);
break;
case glu::PRECISION_LOWP:
m_texValueMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f);
m_texValueMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f);
break;
default:
DE_ASSERT(false);
}
// Lowp and mediump cases use RGBA16F format, while highp uses RGBA32F.
{
const tcu::IVec2 viewportSize = getViewportSize();
DE_ASSERT(!m_texture);
m_texture = new glu::Texture2D(m_context.getRenderContext(), m_precision == glu::PRECISION_HIGHP ? GL_RGBA32F : GL_RGBA16F, viewportSize.x(), viewportSize.y());
m_texture->getRefTexture().allocLevel(0);
}
// Texture coordinates
m_coordMin = tcu::Vec4(0.0f);
m_coordMax = tcu::Vec4(1.0f);
// Fill with gradients.
{
const tcu::PixelBufferAccess level0 = m_texture->getRefTexture().getLevel(0);
for (int y = 0; y < level0.getHeight(); y++)
{
for (int x = 0; x < level0.getWidth(); x++)
{
const float xf = (float(x)+0.5f) / float(level0.getWidth());
const float yf = (float(y)+0.5f) / float(level0.getHeight());
const tcu::Vec4 s = tcu::Vec4(xf, yf, (xf+yf)/2.0f, 1.0f - (xf+yf)/2.0f);
level0.setPixel(m_texValueMin + (m_texValueMax - m_texValueMin)*s, x, y);
}
}
}
m_texture->upload();
if (m_surfaceType == SURFACETYPE_FLOAT_FBO)
{
// No scale or bias used for accuracy.
m_derivScale = tcu::Vec4(1.0f);
m_derivBias = tcu::Vec4(0.0f);
}
else
{
// Compute scale - bias that normalizes to 0..1 range.
const tcu::IVec2 viewportSize = getViewportSize();
const float w = float(viewportSize.x());
const float h = float(viewportSize.y());
const tcu::Vec4 dx = (m_texValueMax - m_texValueMin) / tcu::Vec4(w, w, w*0.5f, -w*0.5f);
const tcu::Vec4 dy = (m_texValueMax - m_texValueMin) / tcu::Vec4(h, h, h*0.5f, -h*0.5f);
switch (m_func)
{
case DERIVATE_DFDX:
m_derivScale = 0.5f / dx;
break;
case DERIVATE_DFDY:
m_derivScale = 0.5f / dy;
break;
case DERIVATE_FWIDTH:
m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy));
break;
default:
DE_ASSERT(false);
}
m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f);
}
}
void TextureDerivateCase::deinit (void)
{
delete m_texture;
m_texture = DE_NULL;
}
void TextureDerivateCase::setupRenderState (deUint32 program)
{
const glw::Functions& gl = m_context.getRenderContext().getFunctions();
const int texUnit = 1;
gl.activeTexture (GL_TEXTURE0+texUnit);
gl.bindTexture (GL_TEXTURE_2D, m_texture->getGLTexture());
gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
gl.uniform1i (gl.getUniformLocation(program, "u_sampler"), texUnit);
}
bool TextureDerivateCase::verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask)
{
// \note Edges are ignored in comparison
if (result.getWidth() < 2 || result.getHeight() < 2)
throw tcu::NotSupportedError("Too small viewport");
tcu::ConstPixelBufferAccess compareArea = tcu::getSubregion(result, 1, 1, result.getWidth()-2, result.getHeight()-2);
tcu::PixelBufferAccess maskArea = tcu::getSubregion(errorMask, 1, 1, errorMask.getWidth()-2, errorMask.getHeight()-2);
const tcu::Vec4 xScale = tcu::Vec4(1.0f, 0.0f, 0.5f, -0.5f);
const tcu::Vec4 yScale = tcu::Vec4(0.0f, 1.0f, 0.5f, -0.5f);
const float w = float(result.getWidth());
const float h = float(result.getHeight());
const tcu::Vec4 surfaceThreshold = getSurfaceThreshold() / abs(m_derivScale);
if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY)
{
const bool isX = m_func == DERIVATE_DFDX;
const float div = isX ? w : h;
const tcu::Vec4 scale = isX ? xScale : yScale;
const tcu::Vec4 reference = ((m_texValueMax - m_texValueMin) / div) * scale;
const tcu::Vec4 opThreshold = getDerivateThreshold(m_precision, m_texValueMin*scale, m_texValueMax*scale, reference);
const tcu::Vec4 threshold = max(surfaceThreshold, opThreshold);
const int numComps = glu::getDataTypeFloatScalars(m_dataType);
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Verifying result image.\n"
<< "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold " << LogVecComps(threshold, numComps)
<< tcu::TestLog::EndMessage;
// short circuit if result is strictly within the normal value error bounds.
// This improves performance significantly.
if (verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType,
reference, threshold, m_derivScale, m_derivBias,
LOG_NOTHING))
{
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "No incorrect derivatives found, result valid."
<< tcu::TestLog::EndMessage;
return true;
}
// some pixels exceed error bounds calculated for normal values. Verify that these
// potentially invalid pixels are in fact valid due to (for example) subnorm flushing.
m_testCtx.getLog()
<< tcu::TestLog::Message
<< "Initial verification failed, verifying image by calculating accurate error bounds for each result pixel.\n"
<< "\tVerifying each result derivative is within its range of legal result values."
<< tcu::TestLog::EndMessage;
{
const tcu::Vec4 valueRamp = (m_texValueMax - m_texValueMin);
Linear2DFunctionEvaluator function;
function.matrix.setRow(0, tcu::Vec3(valueRamp.x() / w, 0.0f, m_texValueMin.x()));
function.matrix.setRow(1, tcu::Vec3(0.0f, valueRamp.y() / h, m_texValueMin.y()));
function.matrix.setRow(2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_texValueMin.z() + m_texValueMin.z()) / 2.0f);
function.matrix.setRow(3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_texValueMax.w() + m_texValueMax.w()) / 2.0f);
return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), compareArea, maskArea,
m_dataType, m_precision, m_derivScale,
m_derivBias, surfaceThreshold, m_func,
function);
}
}
else
{
DE_ASSERT(m_func == DERIVATE_FWIDTH);
const tcu::Vec4 dx = ((m_texValueMax - m_texValueMin) / w) * xScale;
const tcu::Vec4 dy = ((m_texValueMax - m_texValueMin) / h) * yScale;
const tcu::Vec4 reference = tcu::abs(dx) + tcu::abs(dy);
const tcu::Vec4 dxThreshold = getDerivateThreshold(m_precision, m_texValueMin*xScale, m_texValueMax*xScale, dx);
const tcu::Vec4 dyThreshold = getDerivateThreshold(m_precision, m_texValueMin*yScale, m_texValueMax*yScale, dy);
const tcu::Vec4 threshold = max(surfaceThreshold, max(dxThreshold, dyThreshold));
return verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType,
reference, threshold, m_derivScale, m_derivBias);
}
}
ShaderDerivateTests::ShaderDerivateTests (Context& context)
: TestCaseGroup(context, "derivate", "Derivate Function Tests")
{
}
ShaderDerivateTests::~ShaderDerivateTests (void)
{
}
struct FunctionSpec
{
std::string name;
DerivateFunc function;
glu::DataType dataType;
glu::Precision precision;
FunctionSpec (const std::string& name_, DerivateFunc function_, glu::DataType dataType_, glu::Precision precision_)
: name (name_)
, function (function_)
, dataType (dataType_)
, precision (precision_)
{
}
};
void ShaderDerivateTests::init (void)
{
static const struct
{
const char* name;
const char* description;
const char* source;
} s_linearDerivateCases[] =
{
{
"linear",
"Basic derivate of linearly interpolated argument",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res = ${FUNC}(v_coord) * u_scale + u_bias;\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"
},
{
"in_function",
"Derivate of linear function argument",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"\n"
"${PRECISION} ${DATATYPE} computeRes (${PRECISION} ${DATATYPE} value)\n"
"{\n"
" return ${FUNC}(v_coord) * u_scale + u_bias;\n"
"}\n"
"\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res = computeRes(v_coord);\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"
},
{
"static_if",
"Derivate of linearly interpolated value in static if",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res;\n"
" if (false)\n"
" res = ${FUNC}(-v_coord) * u_scale + u_bias;\n"
" else\n"
" res = ${FUNC}(v_coord) * u_scale + u_bias;\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"
},
{
"static_loop",
"Derivate of linearly interpolated value in static loop",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n"
" for (int i = 0; i < 2; i++)\n"
" res += ${FUNC}(v_coord * float(i));\n"
" res = res * u_scale + u_bias;\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"
},
{
"static_switch",
"Derivate of linearly interpolated value in static switch",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res;\n"
" switch (1)\n"
" {\n"
" case 0: res = ${FUNC}(-v_coord) * u_scale + u_bias; break;\n"
" case 1: res = ${FUNC}(v_coord) * u_scale + u_bias; break;\n"
" }\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"
},
{
"uniform_if",
"Derivate of linearly interpolated value in uniform if",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"uniform bool ub_true;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res;\n"
" if (ub_true)"
" res = ${FUNC}(v_coord) * u_scale + u_bias;\n"
" else\n"
" res = ${FUNC}(-v_coord) * u_scale + u_bias;\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"
},
{
"uniform_loop",
"Derivate of linearly interpolated value in uniform loop",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"uniform int ui_two;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n"
" for (int i = 0; i < ui_two; i++)\n"
" res += ${FUNC}(v_coord * float(i));\n"
" res = res * u_scale + u_bias;\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"
},
{
"uniform_switch",
"Derivate of linearly interpolated value in uniform switch",
"#version 300 es\n"
"in ${PRECISION} ${DATATYPE} v_coord;\n"
"layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n"
"uniform ${PRECISION} ${DATATYPE} u_scale;\n"
"uniform ${PRECISION} ${DATATYPE} u_bias;\n"
"uniform int ui_one;\n"
"void main (void)\n"
"{\n"
" ${PRECISION} ${DATATYPE} res;\n"
" switch (ui_one)\n"
" {\n"
" case 0: res = ${FUNC}(-v_coord) * u_scale + u_bias; break;\n"
" case 1: res = ${FUNC}(v_coord) * u_scale + u_bias; break;\n"
" }\n"
" o_color = ${CAST_TO_OUTPUT};\n"
"}\n"
},
};
static const struct
{
const char* name;
SurfaceType surfaceType;
int numSamples;
} s_fboConfigs[] =
{
{ "fbo", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0 },
{ "fbo_msaa2", SURFACETYPE_UNORM_FBO, 2 },
{ "fbo_msaa4", SURFACETYPE_UNORM_FBO, 4 },
{ "fbo_float", SURFACETYPE_FLOAT_FBO, 0 },
};
static const struct
{
const char* name;
deUint32 hint;
} s_hints[] =
{
{ "fastest", GL_FASTEST },
{ "nicest", GL_NICEST },
};
static const struct
{
const char* name;
SurfaceType surfaceType;
int numSamples;
} s_hintFboConfigs[] =
{
{ "default", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0 },
{ "fbo_msaa4", SURFACETYPE_UNORM_FBO, 4 },
{ "fbo_float", SURFACETYPE_FLOAT_FBO, 0 }
};
static const struct
{
const char* name;
SurfaceType surfaceType;
int numSamples;
deUint32 hint;
} s_textureConfigs[] =
{
{ "basic", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0, GL_DONT_CARE },
{ "msaa4", SURFACETYPE_UNORM_FBO, 4, GL_DONT_CARE },
{ "float_fastest", SURFACETYPE_FLOAT_FBO, 0, GL_FASTEST },
{ "float_nicest", SURFACETYPE_FLOAT_FBO, 0, GL_NICEST },
};
// .dfdx, .dfdy, .fwidth
for (int funcNdx = 0; funcNdx < DERIVATE_LAST; funcNdx++)
{
const DerivateFunc function = DerivateFunc(funcNdx);
tcu::TestCaseGroup* const functionGroup = new tcu::TestCaseGroup(m_testCtx, getDerivateFuncCaseName(function), getDerivateFuncName(function));
addChild(functionGroup);
// .constant - no precision variants, checks that derivate of constant arguments is 0
{
tcu::TestCaseGroup* const constantGroup = new tcu::TestCaseGroup(m_testCtx, "constant", "Derivate of constant argument");
functionGroup->addChild(constantGroup);
for (int vecSize = 1; vecSize <= 4; vecSize++)
{
const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
constantGroup->addChild(new ConstantDerivateCase(m_context, glu::getDataTypeName(dataType), "", function, dataType));
}
}
// Cases based on LinearDerivateCase
for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_linearDerivateCases); caseNdx++)
{
tcu::TestCaseGroup* const linearCaseGroup = new tcu::TestCaseGroup(m_testCtx, s_linearDerivateCases[caseNdx].name, s_linearDerivateCases[caseNdx].description);
const char* source = s_linearDerivateCases[caseNdx].source;
functionGroup->addChild(linearCaseGroup);
for (int vecSize = 1; vecSize <= 4; vecSize++)
{
for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
{
const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
const glu::Precision precision = glu::Precision(precNdx);
const SurfaceType surfaceType = SURFACETYPE_DEFAULT_FRAMEBUFFER;
const int numSamples = 0;
const deUint32 hint = GL_DONT_CARE;
ostringstream caseName;
if (caseNdx != 0 && precision == glu::PRECISION_LOWP)
continue; // Skip as lowp doesn't actually produce any bits when rendered to default FB.
caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
linearCaseGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples, source));
}
}
}
// Fbo cases
for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_fboConfigs); caseNdx++)
{
tcu::TestCaseGroup* const fboGroup = new tcu::TestCaseGroup(m_testCtx, s_fboConfigs[caseNdx].name, "Derivate usage when rendering into FBO");
const char* source = s_linearDerivateCases[0].source; // use source from .linear group
const SurfaceType surfaceType = s_fboConfigs[caseNdx].surfaceType;
const int numSamples = s_fboConfigs[caseNdx].numSamples;
functionGroup->addChild(fboGroup);
for (int vecSize = 1; vecSize <= 4; vecSize++)
{
for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
{
const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
const glu::Precision precision = glu::Precision(precNdx);
const deUint32 hint = GL_DONT_CARE;
ostringstream caseName;
if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP)
continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT.
caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples, source));
}
}
}
// .fastest, .nicest
for (int hintCaseNdx = 0; hintCaseNdx < DE_LENGTH_OF_ARRAY(s_hints); hintCaseNdx++)
{
tcu::TestCaseGroup* const hintGroup = new tcu::TestCaseGroup(m_testCtx, s_hints[hintCaseNdx].name, "Shader derivate hints");
const char* source = s_linearDerivateCases[0].source; // use source from .linear group
const deUint32 hint = s_hints[hintCaseNdx].hint;
functionGroup->addChild(hintGroup);
for (int fboCaseNdx = 0; fboCaseNdx < DE_LENGTH_OF_ARRAY(s_hintFboConfigs); fboCaseNdx++)
{
tcu::TestCaseGroup* const fboGroup = new tcu::TestCaseGroup(m_testCtx, s_hintFboConfigs[fboCaseNdx].name, "");
const SurfaceType surfaceType = s_hintFboConfigs[fboCaseNdx].surfaceType;
const int numSamples = s_hintFboConfigs[fboCaseNdx].numSamples;
hintGroup->addChild(fboGroup);
for (int vecSize = 1; vecSize <= 4; vecSize++)
{
for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
{
const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
const glu::Precision precision = glu::Precision(precNdx);
ostringstream caseName;
if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP)
continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT.
caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples, source));
}
}
}
}
// .texture
{
tcu::TestCaseGroup* const textureGroup = new tcu::TestCaseGroup(m_testCtx, "texture", "Derivate of texture lookup result");
functionGroup->addChild(textureGroup);
for (int texCaseNdx = 0; texCaseNdx < DE_LENGTH_OF_ARRAY(s_textureConfigs); texCaseNdx++)
{
tcu::TestCaseGroup* const caseGroup = new tcu::TestCaseGroup(m_testCtx, s_textureConfigs[texCaseNdx].name, "");
const SurfaceType surfaceType = s_textureConfigs[texCaseNdx].surfaceType;
const int numSamples = s_textureConfigs[texCaseNdx].numSamples;
const deUint32 hint = s_textureConfigs[texCaseNdx].hint;
textureGroup->addChild(caseGroup);
for (int vecSize = 1; vecSize <= 4; vecSize++)
{
for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++)
{
const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT;
const glu::Precision precision = glu::Precision(precNdx);
ostringstream caseName;
if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP)
continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT.
caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision);
caseGroup->addChild(new TextureDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples));
}
}
}
}
}
}
} // Functional
} // gles3
} // deqp