/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 3.0 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Shader derivate function tests. * * \todo [2013-06-25 pyry] Missing features: * - lines and points * - projected coordinates * - continous non-trivial functions (sin, exp) * - non-continous functions (step) *//*--------------------------------------------------------------------*/ #include "es3fShaderDerivateTests.hpp" #include "gluShaderProgram.hpp" #include "gluRenderContext.hpp" #include "gluDrawUtil.hpp" #include "gluPixelTransfer.hpp" #include "gluShaderUtil.hpp" #include "gluStrUtil.hpp" #include "gluTextureUtil.hpp" #include "gluTexture.hpp" #include "tcuStringTemplate.hpp" #include "tcuRenderTarget.hpp" #include "tcuSurface.hpp" #include "tcuTestLog.hpp" #include "tcuVectorUtil.hpp" #include "tcuTextureUtil.hpp" #include "tcuRGBA.hpp" #include "tcuFloat.hpp" #include "tcuInterval.hpp" #include "deRandom.hpp" #include "deUniquePtr.hpp" #include "deString.h" #include "glwEnums.hpp" #include "glwFunctions.hpp" #include "glsShaderRenderCase.hpp" // gls::setupDefaultUniforms() #include <sstream> namespace deqp { namespace gles3 { namespace Functional { using std::vector; using std::string; using std::map; using tcu::TestLog; using std::ostringstream; enum { VIEWPORT_WIDTH = 167, VIEWPORT_HEIGHT = 103, FBO_WIDTH = 99, FBO_HEIGHT = 133, MAX_FAILED_MESSAGES = 10 }; enum DerivateFunc { DERIVATE_DFDX = 0, DERIVATE_DFDY, DERIVATE_FWIDTH, DERIVATE_LAST }; enum SurfaceType { SURFACETYPE_DEFAULT_FRAMEBUFFER = 0, SURFACETYPE_UNORM_FBO, SURFACETYPE_FLOAT_FBO, // \note Uses RGBA32UI fbo actually, since FP rendertargets are not in core spec. SURFACETYPE_LAST }; // Utilities namespace { class AutoFbo { public: AutoFbo (const glw::Functions& gl) : m_gl (gl) , m_fbo (0) { } ~AutoFbo (void) { if (m_fbo) m_gl.deleteFramebuffers(1, &m_fbo); } void gen (void) { DE_ASSERT(!m_fbo); m_gl.genFramebuffers(1, &m_fbo); } deUint32 operator* (void) const { return m_fbo; } private: const glw::Functions& m_gl; deUint32 m_fbo; }; class AutoRbo { public: AutoRbo (const glw::Functions& gl) : m_gl (gl) , m_rbo (0) { } ~AutoRbo (void) { if (m_rbo) m_gl.deleteRenderbuffers(1, &m_rbo); } void gen (void) { DE_ASSERT(!m_rbo); m_gl.genRenderbuffers(1, &m_rbo); } deUint32 operator* (void) const { return m_rbo; } private: const glw::Functions& m_gl; deUint32 m_rbo; }; } // anonymous static const char* getDerivateFuncName (DerivateFunc func) { switch (func) { case DERIVATE_DFDX: return "dFdx"; case DERIVATE_DFDY: return "dFdy"; case DERIVATE_FWIDTH: return "fwidth"; default: DE_ASSERT(false); return DE_NULL; } } static const char* getDerivateFuncCaseName (DerivateFunc func) { switch (func) { case DERIVATE_DFDX: return "dfdx"; case DERIVATE_DFDY: return "dfdy"; case DERIVATE_FWIDTH: return "fwidth"; default: DE_ASSERT(false); return DE_NULL; } } static inline tcu::BVec4 getDerivateMask (glu::DataType type) { switch (type) { case glu::TYPE_FLOAT: return tcu::BVec4(true, false, false, false); case glu::TYPE_FLOAT_VEC2: return tcu::BVec4(true, true, false, false); case glu::TYPE_FLOAT_VEC3: return tcu::BVec4(true, true, true, false); case glu::TYPE_FLOAT_VEC4: return tcu::BVec4(true, true, true, true); default: DE_ASSERT(false); return tcu::BVec4(true); } } static inline tcu::Vec4 readDerivate (const tcu::ConstPixelBufferAccess& surface, const tcu::Vec4& derivScale, const tcu::Vec4& derivBias, int x, int y) { return (surface.getPixel(x, y) - derivBias) / derivScale; } static inline tcu::UVec4 getCompExpBits (const tcu::Vec4& v) { return tcu::UVec4(tcu::Float32(v[0]).exponentBits(), tcu::Float32(v[1]).exponentBits(), tcu::Float32(v[2]).exponentBits(), tcu::Float32(v[3]).exponentBits()); } float computeFloatingPointError (const float value, const int numAccurateBits) { const int numGarbageBits = 23-numAccurateBits; const deUint32 mask = (1u<<numGarbageBits)-1u; const int exp = tcu::Float32(value).exponent(); return tcu::Float32::construct(+1, exp, (1u<<23) | mask).asFloat() - tcu::Float32::construct(+1, exp, 1u<<23).asFloat(); } static int getNumMantissaBits (const glu::Precision precision) { switch (precision) { case glu::PRECISION_HIGHP: return 23; case glu::PRECISION_MEDIUMP: return 10; case glu::PRECISION_LOWP: return 6; default: DE_ASSERT(false); return 0; } } static int getMinExponent (const glu::Precision precision) { switch (precision) { case glu::PRECISION_HIGHP: return -126; case glu::PRECISION_MEDIUMP: return -14; case glu::PRECISION_LOWP: return -8; default: DE_ASSERT(false); return 0; } } static float getSingleULPForExponent (int exp, int numMantissaBits) { if (numMantissaBits > 0) { DE_ASSERT(numMantissaBits <= 23); const int ulpBitNdx = 23-numMantissaBits; return tcu::Float32::construct(+1, exp, (1<<23) | (1 << ulpBitNdx)).asFloat() - tcu::Float32::construct(+1, exp, (1<<23)).asFloat(); } else { DE_ASSERT(numMantissaBits == 0); return tcu::Float32::construct(+1, exp, (1<<23)).asFloat(); } } static float getSingleULPForValue (float value, int numMantissaBits) { const int exp = tcu::Float32(value).exponent(); return getSingleULPForExponent(exp, numMantissaBits); } static float convertFloatFlushToZeroRtn (float value, int minExponent, int numAccurateBits) { if (value == 0.0f) { return 0.0f; } else { const tcu::Float32 inputFloat = tcu::Float32(value); const int numTruncatedBits = 23-numAccurateBits; const deUint32 truncMask = (1u<<numTruncatedBits)-1u; if (value > 0.0f) { if (value > 0.0f && tcu::Float32(value).exponent() < minExponent) { // flush to zero if possible return 0.0f; } else { // just mask away non-representable bits return tcu::Float32::construct(+1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask).asFloat(); } } else { if (inputFloat.mantissa() & truncMask) { // decrement one ulp if truncated bits are non-zero (i.e. if value is not representable) return tcu::Float32::construct(-1, inputFloat.exponent(), inputFloat.mantissa() & ~truncMask).asFloat() - getSingleULPForExponent(inputFloat.exponent(), numAccurateBits); } else { // value is representable, no need to do anything return value; } } } } static float convertFloatFlushToZeroRtp (float value, int minExponent, int numAccurateBits) { return -convertFloatFlushToZeroRtn(-value, minExponent, numAccurateBits); } static float addErrorUlp (float value, float numUlps, int numMantissaBits) { return value + numUlps * getSingleULPForValue(value, numMantissaBits); } enum { INTERPOLATION_LOST_BITS = 3, // number mantissa of bits allowed to be lost in varying interpolation }; static inline tcu::Vec4 getDerivateThreshold (const glu::Precision precision, const tcu::Vec4& valueMin, const tcu::Vec4& valueMax, const tcu::Vec4& expectedDerivate) { const int baseBits = getNumMantissaBits(precision); const tcu::UVec4 derivExp = getCompExpBits(expectedDerivate); const tcu::UVec4 maxValueExp = max(getCompExpBits(valueMin), getCompExpBits(valueMax)); const tcu::UVec4 numBitsLost = maxValueExp - min(maxValueExp, derivExp); const tcu::IVec4 numAccurateBits = max(baseBits - numBitsLost.asInt() - (int)INTERPOLATION_LOST_BITS, tcu::IVec4(0)); return tcu::Vec4(computeFloatingPointError(expectedDerivate[0], numAccurateBits[0]), computeFloatingPointError(expectedDerivate[1], numAccurateBits[1]), computeFloatingPointError(expectedDerivate[2], numAccurateBits[2]), computeFloatingPointError(expectedDerivate[3], numAccurateBits[3])); } namespace { struct LogVecComps { const tcu::Vec4& v; int numComps; LogVecComps (const tcu::Vec4& v_, int numComps_) : v (v_) , numComps (numComps_) { } }; std::ostream& operator<< (std::ostream& str, const LogVecComps& v) { DE_ASSERT(de::inRange(v.numComps, 1, 4)); if (v.numComps == 1) return str << v.v[0]; else if (v.numComps == 2) return str << v.v.toWidth<2>(); else if (v.numComps == 3) return str << v.v.toWidth<3>(); else return str << v.v; } } // anonymous enum VerificationLogging { LOG_ALL = 0, LOG_NOTHING }; static bool verifyConstantDerivate (tcu::TestLog& log, const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask, glu::DataType dataType, const tcu::Vec4& reference, const tcu::Vec4& threshold, const tcu::Vec4& scale, const tcu::Vec4& bias, VerificationLogging logPolicy = LOG_ALL) { const int numComps = glu::getDataTypeFloatScalars(dataType); const tcu::BVec4 mask = tcu::logicalNot(getDerivateMask(dataType)); int numFailedPixels = 0; if (logPolicy == LOG_ALL) log << TestLog::Message << "Expecting " << LogVecComps(reference, numComps) << " with threshold " << LogVecComps(threshold, numComps) << TestLog::EndMessage; for (int y = 0; y < result.getHeight(); y++) { for (int x = 0; x < result.getWidth(); x++) { const tcu::Vec4 resDerivate = readDerivate(result, scale, bias, x, y); const bool isOk = tcu::allEqual(tcu::logicalOr(tcu::lessThanEqual(tcu::abs(reference - resDerivate), threshold), mask), tcu::BVec4(true)); if (!isOk) { if (numFailedPixels < MAX_FAILED_MESSAGES && logPolicy == LOG_ALL) log << TestLog::Message << "FAIL: got " << LogVecComps(resDerivate, numComps) << ", diff = " << LogVecComps(tcu::abs(reference - resDerivate), numComps) << ", at x = " << x << ", y = " << y << TestLog::EndMessage; numFailedPixels += 1; errorMask.setPixel(tcu::RGBA::red.toVec(), x, y); } } } if (numFailedPixels >= MAX_FAILED_MESSAGES && logPolicy == LOG_ALL) log << TestLog::Message << "..." << TestLog::EndMessage; if (numFailedPixels > 0 && logPolicy == LOG_ALL) log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage; return numFailedPixels == 0; } struct Linear2DFunctionEvaluator { tcu::Matrix<float, 4, 3> matrix; // .-----. // | s_x | // M x | s_y | // | 1.0 | // '-----' tcu::Vec4 evaluateAt (float screenX, float screenY) const; }; tcu::Vec4 Linear2DFunctionEvaluator::evaluateAt (float screenX, float screenY) const { const tcu::Vec3 position(screenX, screenY, 1.0f); return matrix * position; } static bool reverifyConstantDerivateWithFlushRelaxations (tcu::TestLog& log, const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask, glu::DataType dataType, glu::Precision precision, const tcu::Vec4& derivScale, const tcu::Vec4& derivBias, const tcu::Vec4& surfaceThreshold, DerivateFunc derivateFunc, const Linear2DFunctionEvaluator& function) { DE_ASSERT(result.getWidth() == errorMask.getWidth()); DE_ASSERT(result.getHeight() == errorMask.getHeight()); DE_ASSERT(derivateFunc == DERIVATE_DFDX || derivateFunc == DERIVATE_DFDY); const tcu::IVec4 red (255, 0, 0, 255); const tcu::IVec4 green (0, 255, 0, 255); const float divisionErrorUlps = 2.5f; const int numComponents = glu::getDataTypeFloatScalars(dataType); const int numBits = getNumMantissaBits(precision); const int minExponent = getMinExponent(precision); const int numVaryingSampleBits = numBits - INTERPOLATION_LOST_BITS; int numFailedPixels = 0; tcu::clear(errorMask, green); // search for failed pixels for (int y = 0; y < result.getHeight(); ++y) for (int x = 0; x < result.getWidth(); ++x) { // flushToZero?(f2z?(functionValueCurrent) - f2z?(functionValueBefore)) // flushToZero? ( ------------------------------------------------------------------------ +- 2.5 ULP ) // dx const tcu::Vec4 resultDerivative = readDerivate(result, derivScale, derivBias, x, y); // sample at the front of the back pixel and the back of the front pixel to cover the whole area of // legal sample positions. In general case this is NOT OK, but we know that the target funtion is // (mostly*) linear which allows us to take the sample points at arbitrary points. This gets us the // maximum difference possible in exponents which are used in error bound calculations. // * non-linearity may happen around zero or with very high function values due to subnorms not // behaving well. const tcu::Vec4 functionValueForward = (derivateFunc == DERIVATE_DFDX) ? (function.evaluateAt(x + 2.0f, y + 0.5f)) : (function.evaluateAt(x + 0.5f, y + 2.0f)); const tcu::Vec4 functionValueBackward = (derivateFunc == DERIVATE_DFDX) ? (function.evaluateAt(x - 1.0f, y + 0.5f)) : (function.evaluateAt(x + 0.5f, y - 1.0f)); bool anyComponentFailed = false; // check components separately for (int c = 0; c < numComponents; ++c) { // Simulate interpolation. Add allowed interpolation error and round to target precision. Allow one half ULP (i.e. correct rounding) const tcu::Interval forwardComponent (convertFloatFlushToZeroRtn(addErrorUlp((float)functionValueForward[c], -0.5f, numVaryingSampleBits), minExponent, numBits), convertFloatFlushToZeroRtp(addErrorUlp((float)functionValueForward[c], +0.5f, numVaryingSampleBits), minExponent, numBits)); const tcu::Interval backwardComponent (convertFloatFlushToZeroRtn(addErrorUlp((float)functionValueBackward[c], -0.5f, numVaryingSampleBits), minExponent, numBits), convertFloatFlushToZeroRtp(addErrorUlp((float)functionValueBackward[c], +0.5f, numVaryingSampleBits), minExponent, numBits)); const int maxValueExp = de::max(de::max(tcu::Float32(forwardComponent.lo()).exponent(), tcu::Float32(forwardComponent.hi()).exponent()), de::max(tcu::Float32(backwardComponent.lo()).exponent(), tcu::Float32(backwardComponent.hi()).exponent())); // subtraction in numerator will likely cause a cancellation of the most // significant bits. Apply error bounds. const tcu::Interval numerator (forwardComponent - backwardComponent); const int numeratorLoExp = tcu::Float32(numerator.lo()).exponent(); const int numeratorHiExp = tcu::Float32(numerator.hi()).exponent(); const int numeratorLoBitsLost = de::max(0, maxValueExp - numeratorLoExp); //!< must clamp to zero since if forward and backward components have different const int numeratorHiBitsLost = de::max(0, maxValueExp - numeratorHiExp); //!< sign, numerator might have larger exponent than its operands. const int numeratorLoBits = de::max(0, numBits - numeratorLoBitsLost); const int numeratorHiBits = de::max(0, numBits - numeratorHiBitsLost); const tcu::Interval numeratorRange (convertFloatFlushToZeroRtn((float)numerator.lo(), minExponent, numeratorLoBits), convertFloatFlushToZeroRtp((float)numerator.hi(), minExponent, numeratorHiBits)); const tcu::Interval divisionRange = numeratorRange / 3.0f; // legal sample area is anywhere within this and neighboring pixels (i.e. size = 3) const tcu::Interval divisionResultRange (convertFloatFlushToZeroRtn(addErrorUlp((float)divisionRange.lo(), -divisionErrorUlps, numBits), minExponent, numBits), convertFloatFlushToZeroRtp(addErrorUlp((float)divisionRange.hi(), +divisionErrorUlps, numBits), minExponent, numBits)); const tcu::Interval finalResultRange (divisionResultRange.lo() - surfaceThreshold[c], divisionResultRange.hi() + surfaceThreshold[c]); if (resultDerivative[c] >= finalResultRange.lo() && resultDerivative[c] <= finalResultRange.hi()) { // value ok } else { if (numFailedPixels < MAX_FAILED_MESSAGES) log << tcu::TestLog::Message << "Error in pixel at " << x << ", " << y << " with component " << c << " (channel " << ("rgba"[c]) << ")\n" << "\tGot pixel value " << result.getPixelInt(x, y) << "\n" << "\t\tdFd" << ((derivateFunc == DERIVATE_DFDX) ? ('x') : ('y')) << " ~= " << resultDerivative[c] << "\n" << "\t\tdifference to a valid range: " << ((resultDerivative[c] < finalResultRange.lo()) ? ("-") : ("+")) << ((resultDerivative[c] < finalResultRange.lo()) ? (finalResultRange.lo() - resultDerivative[c]) : (resultDerivative[c] - finalResultRange.hi())) << "\n" << "\tDerivative value range:\n" << "\t\tMin: " << finalResultRange.lo() << "\n" << "\t\tMax: " << finalResultRange.hi() << "\n" << tcu::TestLog::EndMessage; ++numFailedPixels; anyComponentFailed = true; } } if (anyComponentFailed) errorMask.setPixel(red, x, y); } if (numFailedPixels >= MAX_FAILED_MESSAGES) log << TestLog::Message << "..." << TestLog::EndMessage; if (numFailedPixels > 0) log << TestLog::Message << "FAIL: found " << numFailedPixels << " failed pixels" << TestLog::EndMessage; return numFailedPixels == 0; } // TriangleDerivateCase class TriangleDerivateCase : public TestCase { public: TriangleDerivateCase (Context& context, const char* name, const char* description); ~TriangleDerivateCase (void); IterateResult iterate (void); protected: virtual void setupRenderState (deUint32 program) { DE_UNREF(program); } virtual bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask) = DE_NULL; tcu::IVec2 getViewportSize (void) const; tcu::Vec4 getSurfaceThreshold (void) const; glu::DataType m_dataType; glu::Precision m_precision; glu::DataType m_coordDataType; glu::Precision m_coordPrecision; std::string m_fragmentSrc; tcu::Vec4 m_coordMin; tcu::Vec4 m_coordMax; tcu::Vec4 m_derivScale; tcu::Vec4 m_derivBias; SurfaceType m_surfaceType; int m_numSamples; deUint32 m_hint; }; TriangleDerivateCase::TriangleDerivateCase (Context& context, const char* name, const char* description) : TestCase (context, name, description) , m_dataType (glu::TYPE_LAST) , m_precision (glu::PRECISION_LAST) , m_coordDataType (glu::TYPE_LAST) , m_coordPrecision (glu::PRECISION_LAST) , m_surfaceType (SURFACETYPE_DEFAULT_FRAMEBUFFER) , m_numSamples (0) , m_hint (GL_DONT_CARE) { DE_ASSERT(m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER || m_numSamples == 0); } TriangleDerivateCase::~TriangleDerivateCase (void) { TriangleDerivateCase::deinit(); } static std::string genVertexSource (glu::DataType coordType, glu::Precision precision) { DE_ASSERT(glu::isDataTypeFloatOrVec(coordType)); const char* vertexTmpl = "#version 300 es\n" "in highp vec4 a_position;\n" "in ${PRECISION} ${DATATYPE} a_coord;\n" "out ${PRECISION} ${DATATYPE} v_coord;\n" "void main (void)\n" "{\n" " gl_Position = a_position;\n" " v_coord = a_coord;\n" "}\n"; map<string, string> vertexParams; vertexParams["PRECISION"] = glu::getPrecisionName(precision); vertexParams["DATATYPE"] = glu::getDataTypeName(coordType); return tcu::StringTemplate(vertexTmpl).specialize(vertexParams); } inline tcu::IVec2 TriangleDerivateCase::getViewportSize (void) const { if (m_surfaceType == SURFACETYPE_DEFAULT_FRAMEBUFFER) { const int width = de::min<int>(m_context.getRenderTarget().getWidth(), VIEWPORT_WIDTH); const int height = de::min<int>(m_context.getRenderTarget().getHeight(), VIEWPORT_HEIGHT); return tcu::IVec2(width, height); } else return tcu::IVec2(FBO_WIDTH, FBO_HEIGHT); } TriangleDerivateCase::IterateResult TriangleDerivateCase::iterate (void) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const glu::ShaderProgram program (m_context.getRenderContext(), glu::makeVtxFragSources(genVertexSource(m_coordDataType, m_coordPrecision), m_fragmentSrc)); de::Random rnd (deStringHash(getName()) ^ 0xbbc24); const bool useFbo = m_surfaceType != SURFACETYPE_DEFAULT_FRAMEBUFFER; const deUint32 fboFormat = m_surfaceType == SURFACETYPE_FLOAT_FBO ? GL_RGBA32UI : GL_RGBA8; const tcu::IVec2 viewportSize = getViewportSize(); const int viewportX = useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getWidth() - viewportSize.x()); const int viewportY = useFbo ? 0 : rnd.getInt(0, m_context.getRenderTarget().getHeight() - viewportSize.y()); AutoFbo fbo (gl); AutoRbo rbo (gl); tcu::TextureLevel result; m_testCtx.getLog() << program; if (!program.isOk()) TCU_FAIL("Compile failed"); if (useFbo) { m_testCtx.getLog() << TestLog::Message << "Rendering to FBO, format = " << glu::getPixelFormatStr(fboFormat) << ", samples = " << m_numSamples << TestLog::EndMessage; fbo.gen(); rbo.gen(); gl.bindRenderbuffer(GL_RENDERBUFFER, *rbo); gl.renderbufferStorageMultisample(GL_RENDERBUFFER, m_numSamples, fboFormat, viewportSize.x(), viewportSize.y()); gl.bindFramebuffer(GL_FRAMEBUFFER, *fbo); gl.framebufferRenderbuffer(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *rbo); TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE); } else { const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat(); m_testCtx.getLog() << TestLog::Message << "Rendering to default framebuffer\n" << "\tColor depth: R=" << pixelFormat.redBits << ", G=" << pixelFormat.greenBits << ", B=" << pixelFormat.blueBits << ", A=" << pixelFormat.alphaBits << TestLog::EndMessage; } m_testCtx.getLog() << TestLog::Message << "in: " << m_coordMin << " -> " << m_coordMax << "\n" << "v_coord.x = in.x * x\n" << "v_coord.y = in.y * y\n" << "v_coord.z = in.z * (x+y)/2\n" << "v_coord.w = in.w * (1 - (x+y)/2)\n" << TestLog::EndMessage << TestLog::Message << "u_scale: " << m_derivScale << ", u_bias: " << m_derivBias << " (displayed values have scale/bias removed)" << TestLog::EndMessage << TestLog::Message << "Viewport: " << viewportSize.x() << "x" << viewportSize.y() << TestLog::EndMessage << TestLog::Message << "GL_FRAGMENT_SHADER_DERIVATE_HINT: " << glu::getHintModeStr(m_hint) << TestLog::EndMessage; // Draw { const float positions[] = { -1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f }; const float coords[] = { m_coordMin.x(), m_coordMin.y(), m_coordMin.z(), m_coordMax.w(), m_coordMin.x(), m_coordMax.y(), (m_coordMin.z()+m_coordMax.z())*0.5f, (m_coordMin.w()+m_coordMax.w())*0.5f, m_coordMax.x(), m_coordMin.y(), (m_coordMin.z()+m_coordMax.z())*0.5f, (m_coordMin.w()+m_coordMax.w())*0.5f, m_coordMax.x(), m_coordMax.y(), m_coordMax.z(), m_coordMin.w() }; const glu::VertexArrayBinding vertexArrays[] = { glu::va::Float("a_position", 4, 4, 0, &positions[0]), glu::va::Float("a_coord", 4, 4, 0, &coords[0]) }; const deUint16 indices[] = { 0, 2, 1, 2, 3, 1 }; gl.clearColor(0.125f, 0.25f, 0.5f, 1.0f); gl.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT); gl.disable(GL_DITHER); gl.useProgram(program.getProgram()); { const int scaleLoc = gl.getUniformLocation(program.getProgram(), "u_scale"); const int biasLoc = gl.getUniformLocation(program.getProgram(), "u_bias"); switch (m_dataType) { case glu::TYPE_FLOAT: gl.uniform1f(scaleLoc, m_derivScale.x()); gl.uniform1f(biasLoc, m_derivBias.x()); break; case glu::TYPE_FLOAT_VEC2: gl.uniform2fv(scaleLoc, 1, m_derivScale.getPtr()); gl.uniform2fv(biasLoc, 1, m_derivBias.getPtr()); break; case glu::TYPE_FLOAT_VEC3: gl.uniform3fv(scaleLoc, 1, m_derivScale.getPtr()); gl.uniform3fv(biasLoc, 1, m_derivBias.getPtr()); break; case glu::TYPE_FLOAT_VEC4: gl.uniform4fv(scaleLoc, 1, m_derivScale.getPtr()); gl.uniform4fv(biasLoc, 1, m_derivBias.getPtr()); break; default: DE_ASSERT(false); } } gls::setupDefaultUniforms(m_context.getRenderContext(), program.getProgram()); setupRenderState(program.getProgram()); gl.hint(GL_FRAGMENT_SHADER_DERIVATIVE_HINT, m_hint); GLU_EXPECT_NO_ERROR(gl.getError(), "Setup program state"); gl.viewport(viewportX, viewportY, viewportSize.x(), viewportSize.y()); glu::draw(m_context.getRenderContext(), program.getProgram(), DE_LENGTH_OF_ARRAY(vertexArrays), &vertexArrays[0], glu::pr::Triangles(DE_LENGTH_OF_ARRAY(indices), &indices[0])); GLU_EXPECT_NO_ERROR(gl.getError(), "Draw"); } // Read back results { const bool isMSAA = useFbo && m_numSamples > 0; AutoFbo resFbo (gl); AutoRbo resRbo (gl); // Resolve if necessary if (isMSAA) { resFbo.gen(); resRbo.gen(); gl.bindRenderbuffer(GL_RENDERBUFFER, *resRbo); gl.renderbufferStorageMultisample(GL_RENDERBUFFER, 0, fboFormat, viewportSize.x(), viewportSize.y()); gl.bindFramebuffer(GL_DRAW_FRAMEBUFFER, *resFbo); gl.framebufferRenderbuffer(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_RENDERBUFFER, *resRbo); TCU_CHECK(gl.checkFramebufferStatus(GL_FRAMEBUFFER) == GL_FRAMEBUFFER_COMPLETE); gl.blitFramebuffer(0, 0, viewportSize.x(), viewportSize.y(), 0, 0, viewportSize.x(), viewportSize.y(), GL_COLOR_BUFFER_BIT, GL_NEAREST); GLU_EXPECT_NO_ERROR(gl.getError(), "Resolve blit"); gl.bindFramebuffer(GL_READ_FRAMEBUFFER, *resFbo); } switch (m_surfaceType) { case SURFACETYPE_DEFAULT_FRAMEBUFFER: case SURFACETYPE_UNORM_FBO: result.setStorage(tcu::TextureFormat(tcu::TextureFormat::RGBA, tcu::TextureFormat::UNORM_INT8), viewportSize.x(), viewportSize.y()); glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, result); break; case SURFACETYPE_FLOAT_FBO: { const tcu::TextureFormat dataFormat (tcu::TextureFormat::RGBA, tcu::TextureFormat::FLOAT); const tcu::TextureFormat transferFormat (tcu::TextureFormat::RGBA, tcu::TextureFormat::UNSIGNED_INT32); result.setStorage(dataFormat, viewportSize.x(), viewportSize.y()); glu::readPixels(m_context.getRenderContext(), viewportX, viewportY, tcu::PixelBufferAccess(transferFormat, result.getWidth(), result.getHeight(), result.getDepth(), result.getAccess().getDataPtr())); break; } default: DE_ASSERT(false); } GLU_EXPECT_NO_ERROR(gl.getError(), "Read pixels"); } // Verify { tcu::Surface errorMask(result.getWidth(), result.getHeight()); tcu::clear(errorMask.getAccess(), tcu::RGBA::green.toVec()); const bool isOk = verify(result.getAccess(), errorMask.getAccess()); m_testCtx.getLog() << TestLog::ImageSet("Result", "Result images") << TestLog::Image("Rendered", "Rendered image", result); if (!isOk) m_testCtx.getLog() << TestLog::Image("ErrorMask", "Error mask", errorMask); m_testCtx.getLog() << TestLog::EndImageSet; m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL, isOk ? "Pass" : "Image comparison failed"); } return STOP; } tcu::Vec4 TriangleDerivateCase::getSurfaceThreshold (void) const { switch (m_surfaceType) { case SURFACETYPE_DEFAULT_FRAMEBUFFER: { const tcu::PixelFormat pixelFormat = m_context.getRenderTarget().getPixelFormat(); const tcu::IVec4 channelBits (pixelFormat.redBits, pixelFormat.greenBits, pixelFormat.blueBits, pixelFormat.alphaBits); const tcu::IVec4 intThreshold = tcu::IVec4(1) << (8 - channelBits); const tcu::Vec4 normThreshold = intThreshold.asFloat() / 255.0f; return normThreshold; } case SURFACETYPE_UNORM_FBO: return tcu::IVec4(1).asFloat() / 255.0f; case SURFACETYPE_FLOAT_FBO: return tcu::Vec4(0.0f); default: DE_ASSERT(false); return tcu::Vec4(0.0f); } } // ConstantDerivateCase class ConstantDerivateCase : public TriangleDerivateCase { public: ConstantDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type); ~ConstantDerivateCase (void) {} void init (void); protected: bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask); private: DerivateFunc m_func; }; ConstantDerivateCase::ConstantDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type) : TriangleDerivateCase (context, name, description) , m_func (func) { m_dataType = type; m_precision = glu::PRECISION_HIGHP; m_coordDataType = m_dataType; m_coordPrecision = m_precision; } void ConstantDerivateCase::init (void) { const char* fragmentTmpl = "#version 300 es\n" "layout(location = 0) out mediump vec4 o_color;\n" "uniform ${PRECISION} ${DATATYPE} u_scale;\n" "uniform ${PRECISION} ${DATATYPE} u_bias;\n" "void main (void)\n" "{\n" " ${PRECISION} ${DATATYPE} res = ${FUNC}(${VALUE}) * u_scale + u_bias;\n" " o_color = ${CAST_TO_OUTPUT};\n" "}\n"; map<string, string> fragmentParams; fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision); fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType); fragmentParams["FUNC"] = getDerivateFuncName(m_func); fragmentParams["VALUE"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "vec4(1.0, 7.2, -1e5, 0.0)" : m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec3(1e2, 8.0, 0.01)" : m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec2(-0.0, 2.7)" : /* TYPE_FLOAT */ "7.7"; fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" : m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" : m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" : /* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)"; m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams); m_derivScale = tcu::Vec4(1e3f, 1e3f, 1e3f, 1e3f); m_derivBias = tcu::Vec4(0.5f, 0.5f, 0.5f, 0.5f); } bool ConstantDerivateCase::verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask) { const tcu::Vec4 reference (0.0f); // Derivate of constant argument should always be 0 const tcu::Vec4 threshold = getSurfaceThreshold() / abs(m_derivScale); return verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, threshold, m_derivScale, m_derivBias); } // LinearDerivateCase class LinearDerivateCase : public TriangleDerivateCase { public: LinearDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples, const char* fragmentSrcTmpl); ~LinearDerivateCase (void) {} void init (void); protected: bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask); private: DerivateFunc m_func; std::string m_fragmentTmpl; }; LinearDerivateCase::LinearDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples, const char* fragmentSrcTmpl) : TriangleDerivateCase (context, name, description) , m_func (func) , m_fragmentTmpl (fragmentSrcTmpl) { m_dataType = type; m_precision = precision; m_coordDataType = m_dataType; m_coordPrecision = m_precision; m_hint = hint; m_surfaceType = surfaceType; m_numSamples = numSamples; } void LinearDerivateCase::init (void) { const tcu::IVec2 viewportSize = getViewportSize(); const float w = float(viewportSize.x()); const float h = float(viewportSize.y()); const bool packToInt = m_surfaceType == SURFACETYPE_FLOAT_FBO; map<string, string> fragmentParams; fragmentParams["OUTPUT_TYPE"] = glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4); fragmentParams["OUTPUT_PREC"] = glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision); fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision); fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType); fragmentParams["FUNC"] = getDerivateFuncName(m_func); if (packToInt) { fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" : m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" : m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" : /* TYPE_FLOAT */ "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))"; } else { fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" : m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" : m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" : /* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)"; } m_fragmentSrc = tcu::StringTemplate(m_fragmentTmpl.c_str()).specialize(fragmentParams); switch (m_precision) { case glu::PRECISION_HIGHP: m_coordMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f); m_coordMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f); break; case glu::PRECISION_MEDIUMP: m_coordMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f); m_coordMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f); break; case glu::PRECISION_LOWP: m_coordMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f); m_coordMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f); break; default: DE_ASSERT(false); } if (m_surfaceType == SURFACETYPE_FLOAT_FBO) { // No scale or bias used for accuracy. m_derivScale = tcu::Vec4(1.0f); m_derivBias = tcu::Vec4(0.0f); } else { // Compute scale - bias that normalizes to 0..1 range. const tcu::Vec4 dx = (m_coordMax - m_coordMin) / tcu::Vec4(w, w, w*0.5f, -w*0.5f); const tcu::Vec4 dy = (m_coordMax - m_coordMin) / tcu::Vec4(h, h, h*0.5f, -h*0.5f); switch (m_func) { case DERIVATE_DFDX: m_derivScale = 0.5f / dx; break; case DERIVATE_DFDY: m_derivScale = 0.5f / dy; break; case DERIVATE_FWIDTH: m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy)); break; default: DE_ASSERT(false); } m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f); } } bool LinearDerivateCase::verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask) { const tcu::Vec4 xScale = tcu::Vec4(1.0f, 0.0f, 0.5f, -0.5f); const tcu::Vec4 yScale = tcu::Vec4(0.0f, 1.0f, 0.5f, -0.5f); const tcu::Vec4 surfaceThreshold = getSurfaceThreshold() / abs(m_derivScale); if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY) { const bool isX = m_func == DERIVATE_DFDX; const float div = isX ? float(result.getWidth()) : float(result.getHeight()); const tcu::Vec4 scale = isX ? xScale : yScale; const tcu::Vec4 reference = ((m_coordMax - m_coordMin) / div) * scale; const tcu::Vec4 opThreshold = getDerivateThreshold(m_precision, m_coordMin*scale, m_coordMax*scale, reference); const tcu::Vec4 threshold = max(surfaceThreshold, opThreshold); const int numComps = glu::getDataTypeFloatScalars(m_dataType); m_testCtx.getLog() << tcu::TestLog::Message << "Verifying result image.\n" << "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold " << LogVecComps(threshold, numComps) << tcu::TestLog::EndMessage; // short circuit if result is strictly within the normal value error bounds. // This improves performance significantly. if (verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, threshold, m_derivScale, m_derivBias, LOG_NOTHING)) { m_testCtx.getLog() << tcu::TestLog::Message << "No incorrect derivatives found, result valid." << tcu::TestLog::EndMessage; return true; } // some pixels exceed error bounds calculated for normal values. Verify that these // potentially invalid pixels are in fact valid due to (for example) subnorm flushing. m_testCtx.getLog() << tcu::TestLog::Message << "Initial verification failed, verifying image by calculating accurate error bounds for each result pixel.\n" << "\tVerifying each result derivative is within its range of legal result values." << tcu::TestLog::EndMessage; { const tcu::IVec2 viewportSize = getViewportSize(); const float w = float(viewportSize.x()); const float h = float(viewportSize.y()); const tcu::Vec4 valueRamp = (m_coordMax - m_coordMin); Linear2DFunctionEvaluator function; function.matrix.setRow(0, tcu::Vec3(valueRamp.x() / w, 0.0f, m_coordMin.x())); function.matrix.setRow(1, tcu::Vec3(0.0f, valueRamp.y() / h, m_coordMin.y())); function.matrix.setRow(2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_coordMin.z() + m_coordMin.z()) / 2.0f); function.matrix.setRow(3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_coordMax.w() + m_coordMax.w()) / 2.0f); return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), result, errorMask, m_dataType, m_precision, m_derivScale, m_derivBias, surfaceThreshold, m_func, function); } } else { DE_ASSERT(m_func == DERIVATE_FWIDTH); const float w = float(result.getWidth()); const float h = float(result.getHeight()); const tcu::Vec4 dx = ((m_coordMax - m_coordMin) / w) * xScale; const tcu::Vec4 dy = ((m_coordMax - m_coordMin) / h) * yScale; const tcu::Vec4 reference = tcu::abs(dx) + tcu::abs(dy); const tcu::Vec4 dxThreshold = getDerivateThreshold(m_precision, m_coordMin*xScale, m_coordMax*xScale, dx); const tcu::Vec4 dyThreshold = getDerivateThreshold(m_precision, m_coordMin*yScale, m_coordMax*yScale, dy); const tcu::Vec4 threshold = max(surfaceThreshold, max(dxThreshold, dyThreshold)); return verifyConstantDerivate(m_testCtx.getLog(), result, errorMask, m_dataType, reference, threshold, m_derivScale, m_derivBias); } } // TextureDerivateCase class TextureDerivateCase : public TriangleDerivateCase { public: TextureDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples); ~TextureDerivateCase (void); void init (void); void deinit (void); protected: void setupRenderState (deUint32 program); bool verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask); private: DerivateFunc m_func; tcu::Vec4 m_texValueMin; tcu::Vec4 m_texValueMax; glu::Texture2D* m_texture; }; TextureDerivateCase::TextureDerivateCase (Context& context, const char* name, const char* description, DerivateFunc func, glu::DataType type, glu::Precision precision, deUint32 hint, SurfaceType surfaceType, int numSamples) : TriangleDerivateCase (context, name, description) , m_func (func) , m_texture (DE_NULL) { m_dataType = type; m_precision = precision; m_coordDataType = glu::TYPE_FLOAT_VEC2; m_coordPrecision = glu::PRECISION_HIGHP; m_hint = hint; m_surfaceType = surfaceType; m_numSamples = numSamples; } TextureDerivateCase::~TextureDerivateCase (void) { delete m_texture; } void TextureDerivateCase::init (void) { // Generate shader { const char* fragmentTmpl = "#version 300 es\n" "in highp vec2 v_coord;\n" "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" "uniform ${PRECISION} sampler2D u_sampler;\n" "uniform ${PRECISION} ${DATATYPE} u_scale;\n" "uniform ${PRECISION} ${DATATYPE} u_bias;\n" "void main (void)\n" "{\n" " ${PRECISION} vec4 tex = texture(u_sampler, v_coord);\n" " ${PRECISION} ${DATATYPE} res = ${FUNC}(tex${SWIZZLE}) * u_scale + u_bias;\n" " o_color = ${CAST_TO_OUTPUT};\n" "}\n"; const bool packToInt = m_surfaceType == SURFACETYPE_FLOAT_FBO; map<string, string> fragmentParams; fragmentParams["OUTPUT_TYPE"] = glu::getDataTypeName(packToInt ? glu::TYPE_UINT_VEC4 : glu::TYPE_FLOAT_VEC4); fragmentParams["OUTPUT_PREC"] = glu::getPrecisionName(packToInt ? glu::PRECISION_HIGHP : m_precision); fragmentParams["PRECISION"] = glu::getPrecisionName(m_precision); fragmentParams["DATATYPE"] = glu::getDataTypeName(m_dataType); fragmentParams["FUNC"] = getDerivateFuncName(m_func); fragmentParams["SWIZZLE"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "" : m_dataType == glu::TYPE_FLOAT_VEC3 ? ".xyz" : m_dataType == glu::TYPE_FLOAT_VEC2 ? ".xy" : /* TYPE_FLOAT */ ".x"; if (packToInt) { fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "floatBitsToUint(res)" : m_dataType == glu::TYPE_FLOAT_VEC3 ? "floatBitsToUint(vec4(res, 1.0))" : m_dataType == glu::TYPE_FLOAT_VEC2 ? "floatBitsToUint(vec4(res, 0.0, 1.0))" : /* TYPE_FLOAT */ "floatBitsToUint(vec4(res, 0.0, 0.0, 1.0))"; } else { fragmentParams["CAST_TO_OUTPUT"] = m_dataType == glu::TYPE_FLOAT_VEC4 ? "res" : m_dataType == glu::TYPE_FLOAT_VEC3 ? "vec4(res, 1.0)" : m_dataType == glu::TYPE_FLOAT_VEC2 ? "vec4(res, 0.0, 1.0)" : /* TYPE_FLOAT */ "vec4(res, 0.0, 0.0, 1.0)"; } m_fragmentSrc = tcu::StringTemplate(fragmentTmpl).specialize(fragmentParams); } // Texture size matches viewport and nearest sampling is used. Thus texture sampling // is equal to just interpolating the texture value range. // Determine value range for texture. switch (m_precision) { case glu::PRECISION_HIGHP: m_texValueMin = tcu::Vec4(-97.f, 0.2f, 71.f, 74.f); m_texValueMax = tcu::Vec4(-13.2f, -77.f, 44.f, 76.f); break; case glu::PRECISION_MEDIUMP: m_texValueMin = tcu::Vec4(-37.0f, 47.f, -7.f, 0.0f); m_texValueMax = tcu::Vec4(-1.0f, 12.f, 7.f, 19.f); break; case glu::PRECISION_LOWP: m_texValueMin = tcu::Vec4(0.0f, -1.0f, 0.0f, 1.0f); m_texValueMax = tcu::Vec4(1.0f, 1.0f, -1.0f, -1.0f); break; default: DE_ASSERT(false); } // Lowp and mediump cases use RGBA16F format, while highp uses RGBA32F. { const tcu::IVec2 viewportSize = getViewportSize(); DE_ASSERT(!m_texture); m_texture = new glu::Texture2D(m_context.getRenderContext(), m_precision == glu::PRECISION_HIGHP ? GL_RGBA32F : GL_RGBA16F, viewportSize.x(), viewportSize.y()); m_texture->getRefTexture().allocLevel(0); } // Texture coordinates m_coordMin = tcu::Vec4(0.0f); m_coordMax = tcu::Vec4(1.0f); // Fill with gradients. { const tcu::PixelBufferAccess level0 = m_texture->getRefTexture().getLevel(0); for (int y = 0; y < level0.getHeight(); y++) { for (int x = 0; x < level0.getWidth(); x++) { const float xf = (float(x)+0.5f) / float(level0.getWidth()); const float yf = (float(y)+0.5f) / float(level0.getHeight()); const tcu::Vec4 s = tcu::Vec4(xf, yf, (xf+yf)/2.0f, 1.0f - (xf+yf)/2.0f); level0.setPixel(m_texValueMin + (m_texValueMax - m_texValueMin)*s, x, y); } } } m_texture->upload(); if (m_surfaceType == SURFACETYPE_FLOAT_FBO) { // No scale or bias used for accuracy. m_derivScale = tcu::Vec4(1.0f); m_derivBias = tcu::Vec4(0.0f); } else { // Compute scale - bias that normalizes to 0..1 range. const tcu::IVec2 viewportSize = getViewportSize(); const float w = float(viewportSize.x()); const float h = float(viewportSize.y()); const tcu::Vec4 dx = (m_texValueMax - m_texValueMin) / tcu::Vec4(w, w, w*0.5f, -w*0.5f); const tcu::Vec4 dy = (m_texValueMax - m_texValueMin) / tcu::Vec4(h, h, h*0.5f, -h*0.5f); switch (m_func) { case DERIVATE_DFDX: m_derivScale = 0.5f / dx; break; case DERIVATE_DFDY: m_derivScale = 0.5f / dy; break; case DERIVATE_FWIDTH: m_derivScale = 0.5f / (tcu::abs(dx) + tcu::abs(dy)); break; default: DE_ASSERT(false); } m_derivBias = tcu::Vec4(0.0f, 0.0f, 0.0f, 0.0f); } } void TextureDerivateCase::deinit (void) { delete m_texture; m_texture = DE_NULL; } void TextureDerivateCase::setupRenderState (deUint32 program) { const glw::Functions& gl = m_context.getRenderContext().getFunctions(); const int texUnit = 1; gl.activeTexture (GL_TEXTURE0+texUnit); gl.bindTexture (GL_TEXTURE_2D, m_texture->getGLTexture()); gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl.texParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); gl.uniform1i (gl.getUniformLocation(program, "u_sampler"), texUnit); } bool TextureDerivateCase::verify (const tcu::ConstPixelBufferAccess& result, const tcu::PixelBufferAccess& errorMask) { // \note Edges are ignored in comparison if (result.getWidth() < 2 || result.getHeight() < 2) throw tcu::NotSupportedError("Too small viewport"); tcu::ConstPixelBufferAccess compareArea = tcu::getSubregion(result, 1, 1, result.getWidth()-2, result.getHeight()-2); tcu::PixelBufferAccess maskArea = tcu::getSubregion(errorMask, 1, 1, errorMask.getWidth()-2, errorMask.getHeight()-2); const tcu::Vec4 xScale = tcu::Vec4(1.0f, 0.0f, 0.5f, -0.5f); const tcu::Vec4 yScale = tcu::Vec4(0.0f, 1.0f, 0.5f, -0.5f); const float w = float(result.getWidth()); const float h = float(result.getHeight()); const tcu::Vec4 surfaceThreshold = getSurfaceThreshold() / abs(m_derivScale); if (m_func == DERIVATE_DFDX || m_func == DERIVATE_DFDY) { const bool isX = m_func == DERIVATE_DFDX; const float div = isX ? w : h; const tcu::Vec4 scale = isX ? xScale : yScale; const tcu::Vec4 reference = ((m_texValueMax - m_texValueMin) / div) * scale; const tcu::Vec4 opThreshold = getDerivateThreshold(m_precision, m_texValueMin*scale, m_texValueMax*scale, reference); const tcu::Vec4 threshold = max(surfaceThreshold, opThreshold); const int numComps = glu::getDataTypeFloatScalars(m_dataType); m_testCtx.getLog() << tcu::TestLog::Message << "Verifying result image.\n" << "\tValid derivative is " << LogVecComps(reference, numComps) << " with threshold " << LogVecComps(threshold, numComps) << tcu::TestLog::EndMessage; // short circuit if result is strictly within the normal value error bounds. // This improves performance significantly. if (verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, reference, threshold, m_derivScale, m_derivBias, LOG_NOTHING)) { m_testCtx.getLog() << tcu::TestLog::Message << "No incorrect derivatives found, result valid." << tcu::TestLog::EndMessage; return true; } // some pixels exceed error bounds calculated for normal values. Verify that these // potentially invalid pixels are in fact valid due to (for example) subnorm flushing. m_testCtx.getLog() << tcu::TestLog::Message << "Initial verification failed, verifying image by calculating accurate error bounds for each result pixel.\n" << "\tVerifying each result derivative is within its range of legal result values." << tcu::TestLog::EndMessage; { const tcu::Vec4 valueRamp = (m_texValueMax - m_texValueMin); Linear2DFunctionEvaluator function; function.matrix.setRow(0, tcu::Vec3(valueRamp.x() / w, 0.0f, m_texValueMin.x())); function.matrix.setRow(1, tcu::Vec3(0.0f, valueRamp.y() / h, m_texValueMin.y())); function.matrix.setRow(2, tcu::Vec3(valueRamp.z() / w, valueRamp.z() / h, m_texValueMin.z() + m_texValueMin.z()) / 2.0f); function.matrix.setRow(3, tcu::Vec3(-valueRamp.w() / w, -valueRamp.w() / h, m_texValueMax.w() + m_texValueMax.w()) / 2.0f); return reverifyConstantDerivateWithFlushRelaxations(m_testCtx.getLog(), compareArea, maskArea, m_dataType, m_precision, m_derivScale, m_derivBias, surfaceThreshold, m_func, function); } } else { DE_ASSERT(m_func == DERIVATE_FWIDTH); const tcu::Vec4 dx = ((m_texValueMax - m_texValueMin) / w) * xScale; const tcu::Vec4 dy = ((m_texValueMax - m_texValueMin) / h) * yScale; const tcu::Vec4 reference = tcu::abs(dx) + tcu::abs(dy); const tcu::Vec4 dxThreshold = getDerivateThreshold(m_precision, m_texValueMin*xScale, m_texValueMax*xScale, dx); const tcu::Vec4 dyThreshold = getDerivateThreshold(m_precision, m_texValueMin*yScale, m_texValueMax*yScale, dy); const tcu::Vec4 threshold = max(surfaceThreshold, max(dxThreshold, dyThreshold)); return verifyConstantDerivate(m_testCtx.getLog(), compareArea, maskArea, m_dataType, reference, threshold, m_derivScale, m_derivBias); } } ShaderDerivateTests::ShaderDerivateTests (Context& context) : TestCaseGroup(context, "derivate", "Derivate Function Tests") { } ShaderDerivateTests::~ShaderDerivateTests (void) { } struct FunctionSpec { std::string name; DerivateFunc function; glu::DataType dataType; glu::Precision precision; FunctionSpec (const std::string& name_, DerivateFunc function_, glu::DataType dataType_, glu::Precision precision_) : name (name_) , function (function_) , dataType (dataType_) , precision (precision_) { } }; void ShaderDerivateTests::init (void) { static const struct { const char* name; const char* description; const char* source; } s_linearDerivateCases[] = { { "linear", "Basic derivate of linearly interpolated argument", "#version 300 es\n" "in ${PRECISION} ${DATATYPE} v_coord;\n" "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" "uniform ${PRECISION} ${DATATYPE} u_scale;\n" "uniform ${PRECISION} ${DATATYPE} u_bias;\n" "void main (void)\n" "{\n" " ${PRECISION} ${DATATYPE} res = ${FUNC}(v_coord) * u_scale + u_bias;\n" " o_color = ${CAST_TO_OUTPUT};\n" "}\n" }, { "in_function", "Derivate of linear function argument", "#version 300 es\n" "in ${PRECISION} ${DATATYPE} v_coord;\n" "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" "uniform ${PRECISION} ${DATATYPE} u_scale;\n" "uniform ${PRECISION} ${DATATYPE} u_bias;\n" "\n" "${PRECISION} ${DATATYPE} computeRes (${PRECISION} ${DATATYPE} value)\n" "{\n" " return ${FUNC}(v_coord) * u_scale + u_bias;\n" "}\n" "\n" "void main (void)\n" "{\n" " ${PRECISION} ${DATATYPE} res = computeRes(v_coord);\n" " o_color = ${CAST_TO_OUTPUT};\n" "}\n" }, { "static_if", "Derivate of linearly interpolated value in static if", "#version 300 es\n" "in ${PRECISION} ${DATATYPE} v_coord;\n" "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" "uniform ${PRECISION} ${DATATYPE} u_scale;\n" "uniform ${PRECISION} ${DATATYPE} u_bias;\n" "void main (void)\n" "{\n" " ${PRECISION} ${DATATYPE} res;\n" " if (false)\n" " res = ${FUNC}(-v_coord) * u_scale + u_bias;\n" " else\n" " res = ${FUNC}(v_coord) * u_scale + u_bias;\n" " o_color = ${CAST_TO_OUTPUT};\n" "}\n" }, { "static_loop", "Derivate of linearly interpolated value in static loop", "#version 300 es\n" "in ${PRECISION} ${DATATYPE} v_coord;\n" "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" "uniform ${PRECISION} ${DATATYPE} u_scale;\n" "uniform ${PRECISION} ${DATATYPE} u_bias;\n" "void main (void)\n" "{\n" " ${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n" " for (int i = 0; i < 2; i++)\n" " res += ${FUNC}(v_coord * float(i));\n" " res = res * u_scale + u_bias;\n" " o_color = ${CAST_TO_OUTPUT};\n" "}\n" }, { "static_switch", "Derivate of linearly interpolated value in static switch", "#version 300 es\n" "in ${PRECISION} ${DATATYPE} v_coord;\n" "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" "uniform ${PRECISION} ${DATATYPE} u_scale;\n" "uniform ${PRECISION} ${DATATYPE} u_bias;\n" "void main (void)\n" "{\n" " ${PRECISION} ${DATATYPE} res;\n" " switch (1)\n" " {\n" " case 0: res = ${FUNC}(-v_coord) * u_scale + u_bias; break;\n" " case 1: res = ${FUNC}(v_coord) * u_scale + u_bias; break;\n" " }\n" " o_color = ${CAST_TO_OUTPUT};\n" "}\n" }, { "uniform_if", "Derivate of linearly interpolated value in uniform if", "#version 300 es\n" "in ${PRECISION} ${DATATYPE} v_coord;\n" "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" "uniform ${PRECISION} ${DATATYPE} u_scale;\n" "uniform ${PRECISION} ${DATATYPE} u_bias;\n" "uniform bool ub_true;\n" "void main (void)\n" "{\n" " ${PRECISION} ${DATATYPE} res;\n" " if (ub_true)" " res = ${FUNC}(v_coord) * u_scale + u_bias;\n" " else\n" " res = ${FUNC}(-v_coord) * u_scale + u_bias;\n" " o_color = ${CAST_TO_OUTPUT};\n" "}\n" }, { "uniform_loop", "Derivate of linearly interpolated value in uniform loop", "#version 300 es\n" "in ${PRECISION} ${DATATYPE} v_coord;\n" "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" "uniform ${PRECISION} ${DATATYPE} u_scale;\n" "uniform ${PRECISION} ${DATATYPE} u_bias;\n" "uniform int ui_two;\n" "void main (void)\n" "{\n" " ${PRECISION} ${DATATYPE} res = ${DATATYPE}(0.0);\n" " for (int i = 0; i < ui_two; i++)\n" " res += ${FUNC}(v_coord * float(i));\n" " res = res * u_scale + u_bias;\n" " o_color = ${CAST_TO_OUTPUT};\n" "}\n" }, { "uniform_switch", "Derivate of linearly interpolated value in uniform switch", "#version 300 es\n" "in ${PRECISION} ${DATATYPE} v_coord;\n" "layout(location = 0) out ${OUTPUT_PREC} ${OUTPUT_TYPE} o_color;\n" "uniform ${PRECISION} ${DATATYPE} u_scale;\n" "uniform ${PRECISION} ${DATATYPE} u_bias;\n" "uniform int ui_one;\n" "void main (void)\n" "{\n" " ${PRECISION} ${DATATYPE} res;\n" " switch (ui_one)\n" " {\n" " case 0: res = ${FUNC}(-v_coord) * u_scale + u_bias; break;\n" " case 1: res = ${FUNC}(v_coord) * u_scale + u_bias; break;\n" " }\n" " o_color = ${CAST_TO_OUTPUT};\n" "}\n" }, }; static const struct { const char* name; SurfaceType surfaceType; int numSamples; } s_fboConfigs[] = { { "fbo", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0 }, { "fbo_msaa2", SURFACETYPE_UNORM_FBO, 2 }, { "fbo_msaa4", SURFACETYPE_UNORM_FBO, 4 }, { "fbo_float", SURFACETYPE_FLOAT_FBO, 0 }, }; static const struct { const char* name; deUint32 hint; } s_hints[] = { { "fastest", GL_FASTEST }, { "nicest", GL_NICEST }, }; static const struct { const char* name; SurfaceType surfaceType; int numSamples; } s_hintFboConfigs[] = { { "default", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0 }, { "fbo_msaa4", SURFACETYPE_UNORM_FBO, 4 }, { "fbo_float", SURFACETYPE_FLOAT_FBO, 0 } }; static const struct { const char* name; SurfaceType surfaceType; int numSamples; deUint32 hint; } s_textureConfigs[] = { { "basic", SURFACETYPE_DEFAULT_FRAMEBUFFER, 0, GL_DONT_CARE }, { "msaa4", SURFACETYPE_UNORM_FBO, 4, GL_DONT_CARE }, { "float_fastest", SURFACETYPE_FLOAT_FBO, 0, GL_FASTEST }, { "float_nicest", SURFACETYPE_FLOAT_FBO, 0, GL_NICEST }, }; // .dfdx, .dfdy, .fwidth for (int funcNdx = 0; funcNdx < DERIVATE_LAST; funcNdx++) { const DerivateFunc function = DerivateFunc(funcNdx); tcu::TestCaseGroup* const functionGroup = new tcu::TestCaseGroup(m_testCtx, getDerivateFuncCaseName(function), getDerivateFuncName(function)); addChild(functionGroup); // .constant - no precision variants, checks that derivate of constant arguments is 0 { tcu::TestCaseGroup* const constantGroup = new tcu::TestCaseGroup(m_testCtx, "constant", "Derivate of constant argument"); functionGroup->addChild(constantGroup); for (int vecSize = 1; vecSize <= 4; vecSize++) { const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT; constantGroup->addChild(new ConstantDerivateCase(m_context, glu::getDataTypeName(dataType), "", function, dataType)); } } // Cases based on LinearDerivateCase for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_linearDerivateCases); caseNdx++) { tcu::TestCaseGroup* const linearCaseGroup = new tcu::TestCaseGroup(m_testCtx, s_linearDerivateCases[caseNdx].name, s_linearDerivateCases[caseNdx].description); const char* source = s_linearDerivateCases[caseNdx].source; functionGroup->addChild(linearCaseGroup); for (int vecSize = 1; vecSize <= 4; vecSize++) { for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++) { const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT; const glu::Precision precision = glu::Precision(precNdx); const SurfaceType surfaceType = SURFACETYPE_DEFAULT_FRAMEBUFFER; const int numSamples = 0; const deUint32 hint = GL_DONT_CARE; ostringstream caseName; if (caseNdx != 0 && precision == glu::PRECISION_LOWP) continue; // Skip as lowp doesn't actually produce any bits when rendered to default FB. caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision); linearCaseGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples, source)); } } } // Fbo cases for (int caseNdx = 0; caseNdx < DE_LENGTH_OF_ARRAY(s_fboConfigs); caseNdx++) { tcu::TestCaseGroup* const fboGroup = new tcu::TestCaseGroup(m_testCtx, s_fboConfigs[caseNdx].name, "Derivate usage when rendering into FBO"); const char* source = s_linearDerivateCases[0].source; // use source from .linear group const SurfaceType surfaceType = s_fboConfigs[caseNdx].surfaceType; const int numSamples = s_fboConfigs[caseNdx].numSamples; functionGroup->addChild(fboGroup); for (int vecSize = 1; vecSize <= 4; vecSize++) { for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++) { const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT; const glu::Precision precision = glu::Precision(precNdx); const deUint32 hint = GL_DONT_CARE; ostringstream caseName; if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP) continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT. caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision); fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples, source)); } } } // .fastest, .nicest for (int hintCaseNdx = 0; hintCaseNdx < DE_LENGTH_OF_ARRAY(s_hints); hintCaseNdx++) { tcu::TestCaseGroup* const hintGroup = new tcu::TestCaseGroup(m_testCtx, s_hints[hintCaseNdx].name, "Shader derivate hints"); const char* source = s_linearDerivateCases[0].source; // use source from .linear group const deUint32 hint = s_hints[hintCaseNdx].hint; functionGroup->addChild(hintGroup); for (int fboCaseNdx = 0; fboCaseNdx < DE_LENGTH_OF_ARRAY(s_hintFboConfigs); fboCaseNdx++) { tcu::TestCaseGroup* const fboGroup = new tcu::TestCaseGroup(m_testCtx, s_hintFboConfigs[fboCaseNdx].name, ""); const SurfaceType surfaceType = s_hintFboConfigs[fboCaseNdx].surfaceType; const int numSamples = s_hintFboConfigs[fboCaseNdx].numSamples; hintGroup->addChild(fboGroup); for (int vecSize = 1; vecSize <= 4; vecSize++) { for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++) { const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT; const glu::Precision precision = glu::Precision(precNdx); ostringstream caseName; if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP) continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT. caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision); fboGroup->addChild(new LinearDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples, source)); } } } } // .texture { tcu::TestCaseGroup* const textureGroup = new tcu::TestCaseGroup(m_testCtx, "texture", "Derivate of texture lookup result"); functionGroup->addChild(textureGroup); for (int texCaseNdx = 0; texCaseNdx < DE_LENGTH_OF_ARRAY(s_textureConfigs); texCaseNdx++) { tcu::TestCaseGroup* const caseGroup = new tcu::TestCaseGroup(m_testCtx, s_textureConfigs[texCaseNdx].name, ""); const SurfaceType surfaceType = s_textureConfigs[texCaseNdx].surfaceType; const int numSamples = s_textureConfigs[texCaseNdx].numSamples; const deUint32 hint = s_textureConfigs[texCaseNdx].hint; textureGroup->addChild(caseGroup); for (int vecSize = 1; vecSize <= 4; vecSize++) { for (int precNdx = 0; precNdx < glu::PRECISION_LAST; precNdx++) { const glu::DataType dataType = vecSize > 1 ? glu::getDataTypeFloatVec(vecSize) : glu::TYPE_FLOAT; const glu::Precision precision = glu::Precision(precNdx); ostringstream caseName; if (surfaceType != SURFACETYPE_FLOAT_FBO && precision == glu::PRECISION_LOWP) continue; // Skip as lowp doesn't actually produce any bits when rendered to U8 RT. caseName << glu::getDataTypeName(dataType) << "_" << glu::getPrecisionName(precision); caseGroup->addChild(new TextureDerivateCase(m_context, caseName.str().c_str(), "", function, dataType, precision, hint, surfaceType, numSamples)); } } } } } } } // Functional } // gles3 } // deqp