/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This file contains codegen for the X86 ISA */
#include "codegen_x86.h"
#include "art_method.h"
#include "base/logging.h"
#include "dex/quick/dex_file_to_method_inliner_map.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "gc/accounting/card_table.h"
#include "mirror/object_array-inl.h"
#include "utils/dex_cache_arrays_layout-inl.h"
#include "x86_lir.h"
namespace art {
/*
* The sparse table in the literal pool is an array of <key,displacement>
* pairs.
*/
void X86Mir2Lir::GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
GenSmallSparseSwitch(mir, table_offset, rl_src);
}
/*
* Code pattern will look something like:
*
* mov r_val, ..
* call 0
* pop r_start_of_method
* sub r_start_of_method, ..
* mov r_key_reg, r_val
* sub r_key_reg, low_key
* cmp r_key_reg, size-1 ; bound check
* ja done
* mov r_disp, [r_start_of_method + r_key_reg * 4 + table_offset]
* add r_start_of_method, r_disp
* jmp r_start_of_method
* done:
*/
void X86Mir2Lir::GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
const uint16_t* table = mir_graph_->GetTable(mir, table_offset);
// Add the table to the list - we'll process it later
SwitchTable* tab_rec =
static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
tab_rec->switch_mir = mir;
tab_rec->table = table;
tab_rec->vaddr = current_dalvik_offset_;
int size = table[1];
switch_tables_.push_back(tab_rec);
// Get the switch value
rl_src = LoadValue(rl_src, kCoreReg);
int low_key = s4FromSwitchData(&table[2]);
RegStorage keyReg;
// Remove the bias, if necessary
if (low_key == 0) {
keyReg = rl_src.reg;
} else {
keyReg = AllocTemp();
OpRegRegImm(kOpSub, keyReg, rl_src.reg, low_key);
}
// Bounds check - if < 0 or >= size continue following switch
OpRegImm(kOpCmp, keyReg, size - 1);
LIR* branch_over = OpCondBranch(kCondHi, nullptr);
RegStorage addr_for_jump;
if (cu_->target64) {
RegStorage table_base = AllocTempWide();
// Load the address of the table into table_base.
LIR* lea = RawLIR(current_dalvik_offset_, kX86Lea64RM, table_base.GetReg(), kRIPReg,
256, 0, WrapPointer(tab_rec));
lea->flags.fixup = kFixupSwitchTable;
AppendLIR(lea);
// Load the offset from the table out of the table.
addr_for_jump = AllocTempWide();
NewLIR5(kX86MovsxdRA, addr_for_jump.GetReg(), table_base.GetReg(), keyReg.GetReg(), 2, 0);
// Add the offset from the table to the table base.
OpRegReg(kOpAdd, addr_for_jump, table_base);
tab_rec->anchor = nullptr; // Unused for x86-64.
} else {
// Get the PC to a register and get the anchor.
LIR* anchor;
RegStorage r_pc = GetPcAndAnchor(&anchor);
// Load the displacement from the switch table.
addr_for_jump = AllocTemp();
NewLIR5(kX86PcRelLoadRA, addr_for_jump.GetReg(), r_pc.GetReg(), keyReg.GetReg(),
2, WrapPointer(tab_rec));
// Add displacement and r_pc to get the address.
OpRegReg(kOpAdd, addr_for_jump, r_pc);
tab_rec->anchor = anchor;
}
// ..and go!
NewLIR1(kX86JmpR, addr_for_jump.GetReg());
/* branch_over target here */
LIR* target = NewLIR0(kPseudoTargetLabel);
branch_over->target = target;
}
void X86Mir2Lir::GenMoveException(RegLocation rl_dest) {
int ex_offset = cu_->target64 ?
Thread::ExceptionOffset<8>().Int32Value() :
Thread::ExceptionOffset<4>().Int32Value();
RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
NewLIR2(cu_->target64 ? kX86Mov64RT : kX86Mov32RT, rl_result.reg.GetReg(), ex_offset);
NewLIR2(cu_->target64 ? kX86Mov64TI : kX86Mov32TI, ex_offset, 0);
StoreValue(rl_dest, rl_result);
}
void X86Mir2Lir::UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) {
DCHECK_EQ(tgt_addr_reg.Is64Bit(), cu_->target64);
RegStorage reg_card_base = AllocTempRef();
RegStorage reg_card_no = AllocTempRef();
int ct_offset = cu_->target64 ?
Thread::CardTableOffset<8>().Int32Value() :
Thread::CardTableOffset<4>().Int32Value();
NewLIR2(cu_->target64 ? kX86Mov64RT : kX86Mov32RT, reg_card_base.GetReg(), ct_offset);
OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte);
FreeTemp(reg_card_base);
FreeTemp(reg_card_no);
}
static dwarf::Reg DwarfCoreReg(bool is_x86_64, int num) {
return is_x86_64 ? dwarf::Reg::X86_64Core(num) : dwarf::Reg::X86Core(num);
}
void X86Mir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
/*
* On entry, rX86_ARG0, rX86_ARG1, rX86_ARG2 are live. Let the register
* allocation mechanism know so it doesn't try to use any of them when
* expanding the frame or flushing. This leaves the utility
* code with no spare temps.
*/
const RegStorage arg0 = TargetReg32(kArg0);
const RegStorage arg1 = TargetReg32(kArg1);
const RegStorage arg2 = TargetReg32(kArg2);
LockTemp(arg0);
LockTemp(arg1);
LockTemp(arg2);
/*
* We can safely skip the stack overflow check if we're
* a leaf *and* our frame size < fudge factor.
*/
const InstructionSet isa = cu_->target64 ? kX86_64 : kX86;
bool skip_overflow_check = mir_graph_->MethodIsLeaf() && !FrameNeedsStackCheck(frame_size_, isa);
const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
// If we doing an implicit stack overflow check, perform the load immediately
// before the stack pointer is decremented and anything is saved.
if (!skip_overflow_check &&
cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
// Implicit stack overflow check.
// test eax,[esp + -overflow]
int overflow = GetStackOverflowReservedBytes(isa);
NewLIR3(kX86Test32RM, rs_rAX.GetReg(), rs_rSP.GetReg(), -overflow);
MarkPossibleStackOverflowException();
}
/* Build frame, return address already on stack */
cfi_.SetCurrentCFAOffset(GetInstructionSetPointerSize(cu_->instruction_set));
OpRegImm(kOpSub, rs_rSP, frame_size_ - GetInstructionSetPointerSize(cu_->instruction_set));
cfi_.DefCFAOffset(frame_size_);
/* Spill core callee saves */
SpillCoreRegs();
SpillFPRegs();
if (!skip_overflow_check) {
class StackOverflowSlowPath : public LIRSlowPath {
public:
StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, size_t sp_displace)
: LIRSlowPath(m2l, branch), sp_displace_(sp_displace) {
}
void Compile() OVERRIDE {
m2l_->ResetRegPool();
m2l_->ResetDefTracking();
GenerateTargetLabel(kPseudoThrowTarget);
const RegStorage local_rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
m2l_->OpRegImm(kOpAdd, local_rs_rSP, sp_displace_);
m2l_->cfi().AdjustCFAOffset(-sp_displace_);
m2l_->ClobberCallerSave();
// Assumes codegen and target are in thumb2 mode.
m2l_->CallHelper(RegStorage::InvalidReg(), kQuickThrowStackOverflow,
false /* MarkSafepointPC */, false /* UseLink */);
m2l_->cfi().AdjustCFAOffset(sp_displace_);
}
private:
const size_t sp_displace_;
};
if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
// TODO: for large frames we should do something like:
// spill ebp
// lea ebp, [esp + frame_size]
// cmp ebp, fs:[stack_end_]
// jcc stack_overflow_exception
// mov esp, ebp
// in case a signal comes in that's not using an alternate signal stack and the large frame
// may have moved us outside of the reserved area at the end of the stack.
// cmp rs_rX86_SP, fs:[stack_end_]; jcc throw_slowpath
if (cu_->target64) {
OpRegThreadMem(kOpCmp, rs_rX86_SP_64, Thread::StackEndOffset<8>());
} else {
OpRegThreadMem(kOpCmp, rs_rX86_SP_32, Thread::StackEndOffset<4>());
}
LIR* branch = OpCondBranch(kCondUlt, nullptr);
AddSlowPath(
new(arena_)StackOverflowSlowPath(this, branch,
frame_size_ -
GetInstructionSetPointerSize(cu_->instruction_set)));
}
}
FlushIns(ArgLocs, rl_method);
// We can promote the PC of an anchor for PC-relative addressing to a register
// if it's used at least twice. Without investigating where we should lazily
// load the reference, we conveniently load it after flushing inputs.
if (pc_rel_base_reg_.Valid()) {
DCHECK(!cu_->target64);
setup_pc_rel_base_reg_ = OpLoadPc(pc_rel_base_reg_);
}
FreeTemp(arg0);
FreeTemp(arg1);
FreeTemp(arg2);
}
void X86Mir2Lir::GenExitSequence() {
cfi_.RememberState();
/*
* In the exit path, rX86_RET0/rX86_RET1 are live - make sure they aren't
* allocated by the register utilities as temps.
*/
LockTemp(rs_rX86_RET0);
LockTemp(rs_rX86_RET1);
UnSpillCoreRegs();
UnSpillFPRegs();
/* Remove frame except for return address */
const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
int adjust = frame_size_ - GetInstructionSetPointerSize(cu_->instruction_set);
OpRegImm(kOpAdd, rs_rSP, adjust);
cfi_.AdjustCFAOffset(-adjust);
// There is only the return PC on the stack now.
NewLIR0(kX86Ret);
// The CFI should be restored for any code that follows the exit block.
cfi_.RestoreState();
cfi_.DefCFAOffset(frame_size_);
}
void X86Mir2Lir::GenSpecialExitSequence() {
NewLIR0(kX86Ret);
}
void X86Mir2Lir::GenSpecialEntryForSuspend() {
// Keep 16-byte stack alignment, there's already the return address, so
// - for 32-bit push EAX, i.e. ArtMethod*, ESI, EDI,
// - for 64-bit push RAX, i.e. ArtMethod*.
const int kRegSize = cu_->target64 ? 8 : 4;
cfi_.SetCurrentCFAOffset(kRegSize); // Return address.
if (!cu_->target64) {
DCHECK(!IsTemp(rs_rSI));
DCHECK(!IsTemp(rs_rDI));
core_spill_mask_ =
(1u << rs_rDI.GetRegNum()) | (1u << rs_rSI.GetRegNum()) | (1u << rs_rRET.GetRegNum());
num_core_spills_ = 3u;
} else {
core_spill_mask_ = (1u << rs_rRET.GetRegNum());
num_core_spills_ = 1u;
}
fp_spill_mask_ = 0u;
num_fp_spills_ = 0u;
frame_size_ = 16u;
core_vmap_table_.clear();
fp_vmap_table_.clear();
if (!cu_->target64) {
NewLIR1(kX86Push32R, rs_rDI.GetReg());
cfi_.AdjustCFAOffset(kRegSize);
cfi_.RelOffset(DwarfCoreReg(cu_->target64, rs_rDI.GetRegNum()), 0);
NewLIR1(kX86Push32R, rs_rSI.GetReg());
cfi_.AdjustCFAOffset(kRegSize);
cfi_.RelOffset(DwarfCoreReg(cu_->target64, rs_rSI.GetRegNum()), 0);
}
NewLIR1(kX86Push32R, TargetReg(kArg0, kRef).GetReg()); // ArtMethod*
cfi_.AdjustCFAOffset(kRegSize);
// Do not generate CFI for scratch register.
}
void X86Mir2Lir::GenSpecialExitForSuspend() {
const int kRegSize = cu_->target64 ? 8 : 4;
// Pop the frame. (ArtMethod* no longer needed but restore it anyway.)
NewLIR1(kX86Pop32R, TargetReg(kArg0, kRef).GetReg()); // ArtMethod*
cfi_.AdjustCFAOffset(-kRegSize);
if (!cu_->target64) {
NewLIR1(kX86Pop32R, rs_rSI.GetReg());
cfi_.AdjustCFAOffset(-kRegSize);
cfi_.Restore(DwarfCoreReg(cu_->target64, rs_rSI.GetRegNum()));
NewLIR1(kX86Pop32R, rs_rDI.GetReg());
cfi_.AdjustCFAOffset(-kRegSize);
cfi_.Restore(DwarfCoreReg(cu_->target64, rs_rDI.GetRegNum()));
}
}
void X86Mir2Lir::GenImplicitNullCheck(RegStorage reg, int opt_flags) {
if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
return;
}
// Implicit null pointer check.
// test eax,[arg1+0]
NewLIR3(kX86Test32RM, rs_rAX.GetReg(), reg.GetReg(), 0);
MarkPossibleNullPointerException(opt_flags);
}
/*
* Bit of a hack here - in the absence of a real scheduling pass,
* emit the next instruction in static & direct invoke sequences.
*/
int X86Mir2Lir::X86NextSDCallInsn(CompilationUnit* cu, CallInfo* info,
int state, const MethodReference& target_method,
uint32_t,
uintptr_t direct_code ATTRIBUTE_UNUSED, uintptr_t direct_method,
InvokeType type) {
X86Mir2Lir* cg = static_cast<X86Mir2Lir*>(cu->cg.get());
if (info->string_init_offset != 0) {
RegStorage arg0_ref = cg->TargetReg(kArg0, kRef);
switch (state) {
case 0: { // Grab target method* from thread pointer
cg->NewLIR2(kX86Mov32RT, arg0_ref.GetReg(), info->string_init_offset);
break;
}
default:
return -1;
}
} else if (direct_method != 0) {
switch (state) {
case 0: // Get the current Method* [sets kArg0]
if (direct_method != static_cast<uintptr_t>(-1)) {
auto target_reg = cg->TargetReg(kArg0, kRef);
if (target_reg.Is64Bit()) {
cg->LoadConstantWide(target_reg, direct_method);
} else {
cg->LoadConstant(target_reg, direct_method);
}
} else {
cg->LoadMethodAddress(target_method, type, kArg0);
}
break;
default:
return -1;
}
} else if (cg->CanUseOpPcRelDexCacheArrayLoad()) {
switch (state) {
case 0: {
CHECK_EQ(cu->dex_file, target_method.dex_file);
size_t offset = cg->dex_cache_arrays_layout_.MethodOffset(target_method.dex_method_index);
cg->OpPcRelDexCacheArrayLoad(cu->dex_file, offset, cg->TargetReg(kArg0, kRef),
cu->target64);
break;
}
default:
return -1;
}
} else {
RegStorage arg0_ref = cg->TargetReg(kArg0, kRef);
switch (state) {
case 0: // Get the current Method* [sets kArg0]
// TUNING: we can save a reg copy if Method* has been promoted.
cg->LoadCurrMethodDirect(arg0_ref);
break;
case 1: // Get method->dex_cache_resolved_methods_
cg->LoadRefDisp(arg0_ref,
ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(),
arg0_ref,
kNotVolatile);
break;
case 2: {
// Grab target method*
CHECK_EQ(cu->dex_file, target_method.dex_file);
const size_t pointer_size = GetInstructionSetPointerSize(cu->instruction_set);
cg->LoadWordDisp(arg0_ref,
mirror::Array::DataOffset(pointer_size).Uint32Value() +
target_method.dex_method_index * pointer_size,
arg0_ref);
break;
}
default:
return -1;
}
}
return state + 1;
}
NextCallInsn X86Mir2Lir::GetNextSDCallInsn() {
return X86NextSDCallInsn;
}
} // namespace art