/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This file contains codegen for the X86 ISA */ #include "codegen_x86.h" #include "art_method.h" #include "base/logging.h" #include "dex/quick/dex_file_to_method_inliner_map.h" #include "dex/quick/mir_to_lir-inl.h" #include "driver/compiler_driver.h" #include "driver/compiler_options.h" #include "gc/accounting/card_table.h" #include "mirror/object_array-inl.h" #include "utils/dex_cache_arrays_layout-inl.h" #include "x86_lir.h" namespace art { /* * The sparse table in the literal pool is an array of <key,displacement> * pairs. */ void X86Mir2Lir::GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) { GenSmallSparseSwitch(mir, table_offset, rl_src); } /* * Code pattern will look something like: * * mov r_val, .. * call 0 * pop r_start_of_method * sub r_start_of_method, .. * mov r_key_reg, r_val * sub r_key_reg, low_key * cmp r_key_reg, size-1 ; bound check * ja done * mov r_disp, [r_start_of_method + r_key_reg * 4 + table_offset] * add r_start_of_method, r_disp * jmp r_start_of_method * done: */ void X86Mir2Lir::GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) { const uint16_t* table = mir_graph_->GetTable(mir, table_offset); // Add the table to the list - we'll process it later SwitchTable* tab_rec = static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData)); tab_rec->switch_mir = mir; tab_rec->table = table; tab_rec->vaddr = current_dalvik_offset_; int size = table[1]; switch_tables_.push_back(tab_rec); // Get the switch value rl_src = LoadValue(rl_src, kCoreReg); int low_key = s4FromSwitchData(&table[2]); RegStorage keyReg; // Remove the bias, if necessary if (low_key == 0) { keyReg = rl_src.reg; } else { keyReg = AllocTemp(); OpRegRegImm(kOpSub, keyReg, rl_src.reg, low_key); } // Bounds check - if < 0 or >= size continue following switch OpRegImm(kOpCmp, keyReg, size - 1); LIR* branch_over = OpCondBranch(kCondHi, nullptr); RegStorage addr_for_jump; if (cu_->target64) { RegStorage table_base = AllocTempWide(); // Load the address of the table into table_base. LIR* lea = RawLIR(current_dalvik_offset_, kX86Lea64RM, table_base.GetReg(), kRIPReg, 256, 0, WrapPointer(tab_rec)); lea->flags.fixup = kFixupSwitchTable; AppendLIR(lea); // Load the offset from the table out of the table. addr_for_jump = AllocTempWide(); NewLIR5(kX86MovsxdRA, addr_for_jump.GetReg(), table_base.GetReg(), keyReg.GetReg(), 2, 0); // Add the offset from the table to the table base. OpRegReg(kOpAdd, addr_for_jump, table_base); tab_rec->anchor = nullptr; // Unused for x86-64. } else { // Get the PC to a register and get the anchor. LIR* anchor; RegStorage r_pc = GetPcAndAnchor(&anchor); // Load the displacement from the switch table. addr_for_jump = AllocTemp(); NewLIR5(kX86PcRelLoadRA, addr_for_jump.GetReg(), r_pc.GetReg(), keyReg.GetReg(), 2, WrapPointer(tab_rec)); // Add displacement and r_pc to get the address. OpRegReg(kOpAdd, addr_for_jump, r_pc); tab_rec->anchor = anchor; } // ..and go! NewLIR1(kX86JmpR, addr_for_jump.GetReg()); /* branch_over target here */ LIR* target = NewLIR0(kPseudoTargetLabel); branch_over->target = target; } void X86Mir2Lir::GenMoveException(RegLocation rl_dest) { int ex_offset = cu_->target64 ? Thread::ExceptionOffset<8>().Int32Value() : Thread::ExceptionOffset<4>().Int32Value(); RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true); NewLIR2(cu_->target64 ? kX86Mov64RT : kX86Mov32RT, rl_result.reg.GetReg(), ex_offset); NewLIR2(cu_->target64 ? kX86Mov64TI : kX86Mov32TI, ex_offset, 0); StoreValue(rl_dest, rl_result); } void X86Mir2Lir::UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) { DCHECK_EQ(tgt_addr_reg.Is64Bit(), cu_->target64); RegStorage reg_card_base = AllocTempRef(); RegStorage reg_card_no = AllocTempRef(); int ct_offset = cu_->target64 ? Thread::CardTableOffset<8>().Int32Value() : Thread::CardTableOffset<4>().Int32Value(); NewLIR2(cu_->target64 ? kX86Mov64RT : kX86Mov32RT, reg_card_base.GetReg(), ct_offset); OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift); StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte); FreeTemp(reg_card_base); FreeTemp(reg_card_no); } static dwarf::Reg DwarfCoreReg(bool is_x86_64, int num) { return is_x86_64 ? dwarf::Reg::X86_64Core(num) : dwarf::Reg::X86Core(num); } void X86Mir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) { /* * On entry, rX86_ARG0, rX86_ARG1, rX86_ARG2 are live. Let the register * allocation mechanism know so it doesn't try to use any of them when * expanding the frame or flushing. This leaves the utility * code with no spare temps. */ const RegStorage arg0 = TargetReg32(kArg0); const RegStorage arg1 = TargetReg32(kArg1); const RegStorage arg2 = TargetReg32(kArg2); LockTemp(arg0); LockTemp(arg1); LockTemp(arg2); /* * We can safely skip the stack overflow check if we're * a leaf *and* our frame size < fudge factor. */ const InstructionSet isa = cu_->target64 ? kX86_64 : kX86; bool skip_overflow_check = mir_graph_->MethodIsLeaf() && !FrameNeedsStackCheck(frame_size_, isa); const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32; // If we doing an implicit stack overflow check, perform the load immediately // before the stack pointer is decremented and anything is saved. if (!skip_overflow_check && cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) { // Implicit stack overflow check. // test eax,[esp + -overflow] int overflow = GetStackOverflowReservedBytes(isa); NewLIR3(kX86Test32RM, rs_rAX.GetReg(), rs_rSP.GetReg(), -overflow); MarkPossibleStackOverflowException(); } /* Build frame, return address already on stack */ cfi_.SetCurrentCFAOffset(GetInstructionSetPointerSize(cu_->instruction_set)); OpRegImm(kOpSub, rs_rSP, frame_size_ - GetInstructionSetPointerSize(cu_->instruction_set)); cfi_.DefCFAOffset(frame_size_); /* Spill core callee saves */ SpillCoreRegs(); SpillFPRegs(); if (!skip_overflow_check) { class StackOverflowSlowPath : public LIRSlowPath { public: StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, size_t sp_displace) : LIRSlowPath(m2l, branch), sp_displace_(sp_displace) { } void Compile() OVERRIDE { m2l_->ResetRegPool(); m2l_->ResetDefTracking(); GenerateTargetLabel(kPseudoThrowTarget); const RegStorage local_rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32; m2l_->OpRegImm(kOpAdd, local_rs_rSP, sp_displace_); m2l_->cfi().AdjustCFAOffset(-sp_displace_); m2l_->ClobberCallerSave(); // Assumes codegen and target are in thumb2 mode. m2l_->CallHelper(RegStorage::InvalidReg(), kQuickThrowStackOverflow, false /* MarkSafepointPC */, false /* UseLink */); m2l_->cfi().AdjustCFAOffset(sp_displace_); } private: const size_t sp_displace_; }; if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) { // TODO: for large frames we should do something like: // spill ebp // lea ebp, [esp + frame_size] // cmp ebp, fs:[stack_end_] // jcc stack_overflow_exception // mov esp, ebp // in case a signal comes in that's not using an alternate signal stack and the large frame // may have moved us outside of the reserved area at the end of the stack. // cmp rs_rX86_SP, fs:[stack_end_]; jcc throw_slowpath if (cu_->target64) { OpRegThreadMem(kOpCmp, rs_rX86_SP_64, Thread::StackEndOffset<8>()); } else { OpRegThreadMem(kOpCmp, rs_rX86_SP_32, Thread::StackEndOffset<4>()); } LIR* branch = OpCondBranch(kCondUlt, nullptr); AddSlowPath( new(arena_)StackOverflowSlowPath(this, branch, frame_size_ - GetInstructionSetPointerSize(cu_->instruction_set))); } } FlushIns(ArgLocs, rl_method); // We can promote the PC of an anchor for PC-relative addressing to a register // if it's used at least twice. Without investigating where we should lazily // load the reference, we conveniently load it after flushing inputs. if (pc_rel_base_reg_.Valid()) { DCHECK(!cu_->target64); setup_pc_rel_base_reg_ = OpLoadPc(pc_rel_base_reg_); } FreeTemp(arg0); FreeTemp(arg1); FreeTemp(arg2); } void X86Mir2Lir::GenExitSequence() { cfi_.RememberState(); /* * In the exit path, rX86_RET0/rX86_RET1 are live - make sure they aren't * allocated by the register utilities as temps. */ LockTemp(rs_rX86_RET0); LockTemp(rs_rX86_RET1); UnSpillCoreRegs(); UnSpillFPRegs(); /* Remove frame except for return address */ const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32; int adjust = frame_size_ - GetInstructionSetPointerSize(cu_->instruction_set); OpRegImm(kOpAdd, rs_rSP, adjust); cfi_.AdjustCFAOffset(-adjust); // There is only the return PC on the stack now. NewLIR0(kX86Ret); // The CFI should be restored for any code that follows the exit block. cfi_.RestoreState(); cfi_.DefCFAOffset(frame_size_); } void X86Mir2Lir::GenSpecialExitSequence() { NewLIR0(kX86Ret); } void X86Mir2Lir::GenSpecialEntryForSuspend() { // Keep 16-byte stack alignment, there's already the return address, so // - for 32-bit push EAX, i.e. ArtMethod*, ESI, EDI, // - for 64-bit push RAX, i.e. ArtMethod*. const int kRegSize = cu_->target64 ? 8 : 4; cfi_.SetCurrentCFAOffset(kRegSize); // Return address. if (!cu_->target64) { DCHECK(!IsTemp(rs_rSI)); DCHECK(!IsTemp(rs_rDI)); core_spill_mask_ = (1u << rs_rDI.GetRegNum()) | (1u << rs_rSI.GetRegNum()) | (1u << rs_rRET.GetRegNum()); num_core_spills_ = 3u; } else { core_spill_mask_ = (1u << rs_rRET.GetRegNum()); num_core_spills_ = 1u; } fp_spill_mask_ = 0u; num_fp_spills_ = 0u; frame_size_ = 16u; core_vmap_table_.clear(); fp_vmap_table_.clear(); if (!cu_->target64) { NewLIR1(kX86Push32R, rs_rDI.GetReg()); cfi_.AdjustCFAOffset(kRegSize); cfi_.RelOffset(DwarfCoreReg(cu_->target64, rs_rDI.GetRegNum()), 0); NewLIR1(kX86Push32R, rs_rSI.GetReg()); cfi_.AdjustCFAOffset(kRegSize); cfi_.RelOffset(DwarfCoreReg(cu_->target64, rs_rSI.GetRegNum()), 0); } NewLIR1(kX86Push32R, TargetReg(kArg0, kRef).GetReg()); // ArtMethod* cfi_.AdjustCFAOffset(kRegSize); // Do not generate CFI for scratch register. } void X86Mir2Lir::GenSpecialExitForSuspend() { const int kRegSize = cu_->target64 ? 8 : 4; // Pop the frame. (ArtMethod* no longer needed but restore it anyway.) NewLIR1(kX86Pop32R, TargetReg(kArg0, kRef).GetReg()); // ArtMethod* cfi_.AdjustCFAOffset(-kRegSize); if (!cu_->target64) { NewLIR1(kX86Pop32R, rs_rSI.GetReg()); cfi_.AdjustCFAOffset(-kRegSize); cfi_.Restore(DwarfCoreReg(cu_->target64, rs_rSI.GetRegNum())); NewLIR1(kX86Pop32R, rs_rDI.GetReg()); cfi_.AdjustCFAOffset(-kRegSize); cfi_.Restore(DwarfCoreReg(cu_->target64, rs_rDI.GetRegNum())); } } void X86Mir2Lir::GenImplicitNullCheck(RegStorage reg, int opt_flags) { if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) { return; } // Implicit null pointer check. // test eax,[arg1+0] NewLIR3(kX86Test32RM, rs_rAX.GetReg(), reg.GetReg(), 0); MarkPossibleNullPointerException(opt_flags); } /* * Bit of a hack here - in the absence of a real scheduling pass, * emit the next instruction in static & direct invoke sequences. */ int X86Mir2Lir::X86NextSDCallInsn(CompilationUnit* cu, CallInfo* info, int state, const MethodReference& target_method, uint32_t, uintptr_t direct_code ATTRIBUTE_UNUSED, uintptr_t direct_method, InvokeType type) { X86Mir2Lir* cg = static_cast<X86Mir2Lir*>(cu->cg.get()); if (info->string_init_offset != 0) { RegStorage arg0_ref = cg->TargetReg(kArg0, kRef); switch (state) { case 0: { // Grab target method* from thread pointer cg->NewLIR2(kX86Mov32RT, arg0_ref.GetReg(), info->string_init_offset); break; } default: return -1; } } else if (direct_method != 0) { switch (state) { case 0: // Get the current Method* [sets kArg0] if (direct_method != static_cast<uintptr_t>(-1)) { auto target_reg = cg->TargetReg(kArg0, kRef); if (target_reg.Is64Bit()) { cg->LoadConstantWide(target_reg, direct_method); } else { cg->LoadConstant(target_reg, direct_method); } } else { cg->LoadMethodAddress(target_method, type, kArg0); } break; default: return -1; } } else if (cg->CanUseOpPcRelDexCacheArrayLoad()) { switch (state) { case 0: { CHECK_EQ(cu->dex_file, target_method.dex_file); size_t offset = cg->dex_cache_arrays_layout_.MethodOffset(target_method.dex_method_index); cg->OpPcRelDexCacheArrayLoad(cu->dex_file, offset, cg->TargetReg(kArg0, kRef), cu->target64); break; } default: return -1; } } else { RegStorage arg0_ref = cg->TargetReg(kArg0, kRef); switch (state) { case 0: // Get the current Method* [sets kArg0] // TUNING: we can save a reg copy if Method* has been promoted. cg->LoadCurrMethodDirect(arg0_ref); break; case 1: // Get method->dex_cache_resolved_methods_ cg->LoadRefDisp(arg0_ref, ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(), arg0_ref, kNotVolatile); break; case 2: { // Grab target method* CHECK_EQ(cu->dex_file, target_method.dex_file); const size_t pointer_size = GetInstructionSetPointerSize(cu->instruction_set); cg->LoadWordDisp(arg0_ref, mirror::Array::DataOffset(pointer_size).Uint32Value() + target_method.dex_method_index * pointer_size, arg0_ref); break; } default: return -1; } } return state + 1; } NextCallInsn X86Mir2Lir::GetNextSDCallInsn() { return X86NextSDCallInsn; } } // namespace art