// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_SPARSEMATRIXBASE_H
#define EIGEN_SPARSEMATRIXBASE_H
namespace Eigen {
/** \ingroup SparseCore_Module
*
* \class SparseMatrixBase
*
* \brief Base class of any sparse matrices or sparse expressions
*
* \tparam Derived
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIXBASE_PLUGIN.
*/
template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
{
public:
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::add_const_on_value_type_if_arithmetic<
typename internal::packet_traits<Scalar>::type
>::type PacketReturnType;
typedef SparseMatrixBase StorageBaseType;
typedef EigenBase<Derived> Base;
template<typename OtherDerived>
Derived& operator=(const EigenBase<OtherDerived> &other)
{
other.derived().evalTo(derived());
return derived();
}
enum {
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
/**< The number of rows at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
/**< The number of columns at compile-time. This is just a copy of the value provided
* by the \a Derived type. If a value is not known at compile-time,
* it is set to the \a Dynamic constant.
* \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */
SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime>::ret),
/**< This is equal to the number of coefficients, i.e. the number of
* rows times the number of columns, or to \a Dynamic if this is not
* known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */
MaxRowsAtCompileTime = RowsAtCompileTime,
MaxColsAtCompileTime = ColsAtCompileTime,
MaxSizeAtCompileTime = (internal::size_at_compile_time<MaxRowsAtCompileTime,
MaxColsAtCompileTime>::ret),
IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1,
/**< This is set to true if either the number of rows or the number of
* columns is known at compile-time to be equal to 1. Indeed, in that case,
* we are dealing with a column-vector (if there is only one column) or with
* a row-vector (if there is only one row). */
Flags = internal::traits<Derived>::Flags,
/**< This stores expression \ref flags flags which may or may not be inherited by new expressions
* constructed from this one. See the \ref flags "list of flags".
*/
CoeffReadCost = internal::traits<Derived>::CoeffReadCost,
/**< This is a rough measure of how expensive it is to read one coefficient from
* this expression.
*/
IsRowMajor = Flags&RowMajorBit ? 1 : 0,
InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime)
: int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime),
#ifndef EIGEN_PARSED_BY_DOXYGEN
_HasDirectAccess = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC
#endif
};
/** \internal the return type of MatrixBase::adjoint() */
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::Transpose<const Derived> >,
Transpose<const Derived>
>::type AdjointReturnType;
typedef SparseMatrix<Scalar, Flags&RowMajorBit ? RowMajor : ColMajor, Index> PlainObject;
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is the "real scalar" type; if the \a Scalar type is already real numbers
* (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If
* \a Scalar is \a std::complex<T> then RealScalar is \a T.
*
* \sa class NumTraits
*/
typedef typename NumTraits<Scalar>::Real RealScalar;
/** \internal the return type of coeff()
*/
typedef typename internal::conditional<_HasDirectAccess, const Scalar&, Scalar>::type CoeffReturnType;
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Matrix<Scalar,Dynamic,Dynamic> > ConstantReturnType;
/** type of the equivalent square matrix */
typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime),
EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType;
inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
inline Derived& derived() { return *static_cast<Derived*>(this); }
inline Derived& const_cast_derived() const
{ return *static_cast<Derived*>(const_cast<SparseMatrixBase*>(this)); }
#endif // not EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::SparseMatrixBase
# include "../plugins/CommonCwiseUnaryOps.h"
# include "../plugins/CommonCwiseBinaryOps.h"
# include "../plugins/MatrixCwiseUnaryOps.h"
# include "../plugins/MatrixCwiseBinaryOps.h"
# include "../plugins/BlockMethods.h"
# ifdef EIGEN_SPARSEMATRIXBASE_PLUGIN
# include EIGEN_SPARSEMATRIXBASE_PLUGIN
# endif
# undef EIGEN_CURRENT_STORAGE_BASE_CLASS
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
/** \returns the number of rows. \sa cols() */
inline Index rows() const { return derived().rows(); }
/** \returns the number of columns. \sa rows() */
inline Index cols() const { return derived().cols(); }
/** \returns the number of coefficients, which is \a rows()*cols().
* \sa rows(), cols(). */
inline Index size() const { return rows() * cols(); }
/** \returns the number of nonzero coefficients which is in practice the number
* of stored coefficients. */
inline Index nonZeros() const { return derived().nonZeros(); }
/** \returns true if either the number of rows or the number of columns is equal to 1.
* In other words, this function returns
* \code rows()==1 || cols()==1 \endcode
* \sa rows(), cols(), IsVectorAtCompileTime. */
inline bool isVector() const { return rows()==1 || cols()==1; }
/** \returns the size of the storage major dimension,
* i.e., the number of columns for a columns major matrix, and the number of rows otherwise */
Index outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); }
/** \returns the size of the inner dimension according to the storage order,
* i.e., the number of rows for a columns major matrix, and the number of cols otherwise */
Index innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); }
bool isRValue() const { return m_isRValue; }
Derived& markAsRValue() { m_isRValue = true; return derived(); }
SparseMatrixBase() : m_isRValue(false) { /* TODO check flags */ }
template<typename OtherDerived>
Derived& operator=(const ReturnByValue<OtherDerived>& other)
{
other.evalTo(derived());
return derived();
}
template<typename OtherDerived>
inline Derived& operator=(const SparseMatrixBase<OtherDerived>& other)
{
return assign(other.derived());
}
inline Derived& operator=(const Derived& other)
{
// if (other.isRValue())
// derived().swap(other.const_cast_derived());
// else
return assign(other.derived());
}
protected:
template<typename OtherDerived>
inline Derived& assign(const OtherDerived& other)
{
const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
const Index outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? other.rows() : other.cols();
if ((!transpose) && other.isRValue())
{
// eval without temporary
derived().resize(other.rows(), other.cols());
derived().setZero();
derived().reserve((std::max)(this->rows(),this->cols())*2);
for (Index j=0; j<outerSize; ++j)
{
derived().startVec(j);
for (typename OtherDerived::InnerIterator it(other, j); it; ++it)
{
Scalar v = it.value();
derived().insertBackByOuterInner(j,it.index()) = v;
}
}
derived().finalize();
}
else
{
assignGeneric(other);
}
return derived();
}
template<typename OtherDerived>
inline void assignGeneric(const OtherDerived& other)
{
//const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
eigen_assert(( ((internal::traits<Derived>::SupportedAccessPatterns&OuterRandomAccessPattern)==OuterRandomAccessPattern) ||
(!((Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit)))) &&
"the transpose operation is supposed to be handled in SparseMatrix::operator=");
enum { Flip = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit) };
const Index outerSize = other.outerSize();
//typedef typename internal::conditional<transpose, LinkedVectorMatrix<Scalar,Flags&RowMajorBit>, Derived>::type TempType;
// thanks to shallow copies, we always eval to a tempary
Derived temp(other.rows(), other.cols());
temp.reserve((std::max)(this->rows(),this->cols())*2);
for (Index j=0; j<outerSize; ++j)
{
temp.startVec(j);
for (typename OtherDerived::InnerIterator it(other.derived(), j); it; ++it)
{
Scalar v = it.value();
temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v;
}
}
temp.finalize();
derived() = temp.markAsRValue();
}
public:
template<typename Lhs, typename Rhs>
inline Derived& operator=(const SparseSparseProduct<Lhs,Rhs>& product);
friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m)
{
typedef typename Derived::Nested Nested;
typedef typename internal::remove_all<Nested>::type NestedCleaned;
if (Flags&RowMajorBit)
{
const Nested nm(m.derived());
for (Index row=0; row<nm.outerSize(); ++row)
{
Index col = 0;
for (typename NestedCleaned::InnerIterator it(nm.derived(), row); it; ++it)
{
for ( ; col<it.index(); ++col)
s << "0 ";
s << it.value() << " ";
++col;
}
for ( ; col<m.cols(); ++col)
s << "0 ";
s << std::endl;
}
}
else
{
const Nested nm(m.derived());
if (m.cols() == 1) {
Index row = 0;
for (typename NestedCleaned::InnerIterator it(nm.derived(), 0); it; ++it)
{
for ( ; row<it.index(); ++row)
s << "0" << std::endl;
s << it.value() << std::endl;
++row;
}
for ( ; row<m.rows(); ++row)
s << "0" << std::endl;
}
else
{
SparseMatrix<Scalar, RowMajorBit, Index> trans = m;
s << static_cast<const SparseMatrixBase<SparseMatrix<Scalar, RowMajorBit, Index> >&>(trans);
}
}
return s;
}
template<typename OtherDerived>
Derived& operator+=(const SparseMatrixBase<OtherDerived>& other);
template<typename OtherDerived>
Derived& operator-=(const SparseMatrixBase<OtherDerived>& other);
Derived& operator*=(const Scalar& other);
Derived& operator/=(const Scalar& other);
#define EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE \
CwiseBinaryOp< \
internal::scalar_product_op< \
typename internal::scalar_product_traits< \
typename internal::traits<Derived>::Scalar, \
typename internal::traits<OtherDerived>::Scalar \
>::ReturnType \
>, \
const Derived, \
const OtherDerived \
>
template<typename OtherDerived>
EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE
cwiseProduct(const MatrixBase<OtherDerived> &other) const;
// sparse * sparse
template<typename OtherDerived>
const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type
operator*(const SparseMatrixBase<OtherDerived> &other) const;
// sparse * diagonal
template<typename OtherDerived>
const SparseDiagonalProduct<Derived,OtherDerived>
operator*(const DiagonalBase<OtherDerived> &other) const;
// diagonal * sparse
template<typename OtherDerived> friend
const SparseDiagonalProduct<OtherDerived,Derived>
operator*(const DiagonalBase<OtherDerived> &lhs, const SparseMatrixBase& rhs)
{ return SparseDiagonalProduct<OtherDerived,Derived>(lhs.derived(), rhs.derived()); }
/** dense * sparse (return a dense object unless it is an outer product) */
template<typename OtherDerived> friend
const typename DenseSparseProductReturnType<OtherDerived,Derived>::Type
operator*(const MatrixBase<OtherDerived>& lhs, const Derived& rhs)
{ return typename DenseSparseProductReturnType<OtherDerived,Derived>::Type(lhs.derived(),rhs); }
/** sparse * dense (returns a dense object unless it is an outer product) */
template<typename OtherDerived>
const typename SparseDenseProductReturnType<Derived,OtherDerived>::Type
operator*(const MatrixBase<OtherDerived> &other) const;
/** \returns an expression of P H P^-1 where H is the matrix represented by \c *this */
SparseSymmetricPermutationProduct<Derived,Upper|Lower> twistedBy(const PermutationMatrix<Dynamic,Dynamic,Index>& perm) const
{
return SparseSymmetricPermutationProduct<Derived,Upper|Lower>(derived(), perm);
}
template<typename OtherDerived>
Derived& operator*=(const SparseMatrixBase<OtherDerived>& other);
#ifdef EIGEN2_SUPPORT
// deprecated
template<typename OtherDerived>
typename internal::plain_matrix_type_column_major<OtherDerived>::type
solveTriangular(const MatrixBase<OtherDerived>& other) const;
// deprecated
template<typename OtherDerived>
void solveTriangularInPlace(MatrixBase<OtherDerived>& other) const;
#endif // EIGEN2_SUPPORT
template<int Mode>
inline const SparseTriangularView<Derived, Mode> triangularView() const;
template<unsigned int UpLo> inline const SparseSelfAdjointView<Derived, UpLo> selfadjointView() const;
template<unsigned int UpLo> inline SparseSelfAdjointView<Derived, UpLo> selfadjointView();
template<typename OtherDerived> Scalar dot(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived> Scalar dot(const SparseMatrixBase<OtherDerived>& other) const;
RealScalar squaredNorm() const;
RealScalar norm() const;
RealScalar blueNorm() const;
Transpose<Derived> transpose() { return derived(); }
const Transpose<const Derived> transpose() const { return derived(); }
const AdjointReturnType adjoint() const { return transpose(); }
// inner-vector
typedef Block<Derived,IsRowMajor?1:Dynamic,IsRowMajor?Dynamic:1,true> InnerVectorReturnType;
typedef Block<const Derived,IsRowMajor?1:Dynamic,IsRowMajor?Dynamic:1,true> ConstInnerVectorReturnType;
InnerVectorReturnType innerVector(Index outer);
const ConstInnerVectorReturnType innerVector(Index outer) const;
// set of inner-vectors
Block<Derived,Dynamic,Dynamic,true> innerVectors(Index outerStart, Index outerSize);
const Block<const Derived,Dynamic,Dynamic,true> innerVectors(Index outerStart, Index outerSize) const;
/** \internal use operator= */
template<typename DenseDerived>
void evalTo(MatrixBase<DenseDerived>& dst) const
{
dst.setZero();
for (Index j=0; j<outerSize(); ++j)
for (typename Derived::InnerIterator i(derived(),j); i; ++i)
dst.coeffRef(i.row(),i.col()) = i.value();
}
Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> toDense() const
{
return derived();
}
template<typename OtherDerived>
bool isApprox(const SparseMatrixBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
{ return toDense().isApprox(other.toDense(),prec); }
template<typename OtherDerived>
bool isApprox(const MatrixBase<OtherDerived>& other,
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
{ return toDense().isApprox(other,prec); }
/** \returns the matrix or vector obtained by evaluating this expression.
*
* Notice that in the case of a plain matrix or vector (not an expression) this function just returns
* a const reference, in order to avoid a useless copy.
*/
inline const typename internal::eval<Derived>::type eval() const
{ return typename internal::eval<Derived>::type(derived()); }
Scalar sum() const;
protected:
bool m_isRValue;
};
} // end namespace Eigen
#endif // EIGEN_SPARSEMATRIXBASE_H