// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSEMATRIXBASE_H #define EIGEN_SPARSEMATRIXBASE_H namespace Eigen { /** \ingroup SparseCore_Module * * \class SparseMatrixBase * * \brief Base class of any sparse matrices or sparse expressions * * \tparam Derived * * This class can be extended with the help of the plugin mechanism described on the page * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIXBASE_PLUGIN. */ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived> { public: typedef typename internal::traits<Derived>::Scalar Scalar; typedef typename internal::packet_traits<Scalar>::type PacketScalar; typedef typename internal::traits<Derived>::StorageKind StorageKind; typedef typename internal::traits<Derived>::Index Index; typedef typename internal::add_const_on_value_type_if_arithmetic< typename internal::packet_traits<Scalar>::type >::type PacketReturnType; typedef SparseMatrixBase StorageBaseType; typedef EigenBase<Derived> Base; template<typename OtherDerived> Derived& operator=(const EigenBase<OtherDerived> &other) { other.derived().evalTo(derived()); return derived(); } enum { RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime, /**< The number of rows at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), ColsAtCompileTime, SizeAtCompileTime */ ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime, /**< The number of columns at compile-time. This is just a copy of the value provided * by the \a Derived type. If a value is not known at compile-time, * it is set to the \a Dynamic constant. * \sa MatrixBase::rows(), MatrixBase::cols(), RowsAtCompileTime, SizeAtCompileTime */ SizeAtCompileTime = (internal::size_at_compile_time<internal::traits<Derived>::RowsAtCompileTime, internal::traits<Derived>::ColsAtCompileTime>::ret), /**< This is equal to the number of coefficients, i.e. the number of * rows times the number of columns, or to \a Dynamic if this is not * known at compile-time. \sa RowsAtCompileTime, ColsAtCompileTime */ MaxRowsAtCompileTime = RowsAtCompileTime, MaxColsAtCompileTime = ColsAtCompileTime, MaxSizeAtCompileTime = (internal::size_at_compile_time<MaxRowsAtCompileTime, MaxColsAtCompileTime>::ret), IsVectorAtCompileTime = RowsAtCompileTime == 1 || ColsAtCompileTime == 1, /**< This is set to true if either the number of rows or the number of * columns is known at compile-time to be equal to 1. Indeed, in that case, * we are dealing with a column-vector (if there is only one column) or with * a row-vector (if there is only one row). */ Flags = internal::traits<Derived>::Flags, /**< This stores expression \ref flags flags which may or may not be inherited by new expressions * constructed from this one. See the \ref flags "list of flags". */ CoeffReadCost = internal::traits<Derived>::CoeffReadCost, /**< This is a rough measure of how expensive it is to read one coefficient from * this expression. */ IsRowMajor = Flags&RowMajorBit ? 1 : 0, InnerSizeAtCompileTime = int(IsVectorAtCompileTime) ? int(SizeAtCompileTime) : int(IsRowMajor) ? int(ColsAtCompileTime) : int(RowsAtCompileTime), #ifndef EIGEN_PARSED_BY_DOXYGEN _HasDirectAccess = (int(Flags)&DirectAccessBit) ? 1 : 0 // workaround sunCC #endif }; /** \internal the return type of MatrixBase::adjoint() */ typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::Transpose<const Derived> >, Transpose<const Derived> >::type AdjointReturnType; typedef SparseMatrix<Scalar, Flags&RowMajorBit ? RowMajor : ColMajor, Index> PlainObject; #ifndef EIGEN_PARSED_BY_DOXYGEN /** This is the "real scalar" type; if the \a Scalar type is already real numbers * (e.g. int, float or double) then \a RealScalar is just the same as \a Scalar. If * \a Scalar is \a std::complex<T> then RealScalar is \a T. * * \sa class NumTraits */ typedef typename NumTraits<Scalar>::Real RealScalar; /** \internal the return type of coeff() */ typedef typename internal::conditional<_HasDirectAccess, const Scalar&, Scalar>::type CoeffReturnType; /** \internal Represents a matrix with all coefficients equal to one another*/ typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Matrix<Scalar,Dynamic,Dynamic> > ConstantReturnType; /** type of the equivalent square matrix */ typedef Matrix<Scalar,EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime), EIGEN_SIZE_MAX(RowsAtCompileTime,ColsAtCompileTime)> SquareMatrixType; inline const Derived& derived() const { return *static_cast<const Derived*>(this); } inline Derived& derived() { return *static_cast<Derived*>(this); } inline Derived& const_cast_derived() const { return *static_cast<Derived*>(const_cast<SparseMatrixBase*>(this)); } #endif // not EIGEN_PARSED_BY_DOXYGEN #define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::SparseMatrixBase # include "../plugins/CommonCwiseUnaryOps.h" # include "../plugins/CommonCwiseBinaryOps.h" # include "../plugins/MatrixCwiseUnaryOps.h" # include "../plugins/MatrixCwiseBinaryOps.h" # include "../plugins/BlockMethods.h" # ifdef EIGEN_SPARSEMATRIXBASE_PLUGIN # include EIGEN_SPARSEMATRIXBASE_PLUGIN # endif # undef EIGEN_CURRENT_STORAGE_BASE_CLASS #undef EIGEN_CURRENT_STORAGE_BASE_CLASS /** \returns the number of rows. \sa cols() */ inline Index rows() const { return derived().rows(); } /** \returns the number of columns. \sa rows() */ inline Index cols() const { return derived().cols(); } /** \returns the number of coefficients, which is \a rows()*cols(). * \sa rows(), cols(). */ inline Index size() const { return rows() * cols(); } /** \returns the number of nonzero coefficients which is in practice the number * of stored coefficients. */ inline Index nonZeros() const { return derived().nonZeros(); } /** \returns true if either the number of rows or the number of columns is equal to 1. * In other words, this function returns * \code rows()==1 || cols()==1 \endcode * \sa rows(), cols(), IsVectorAtCompileTime. */ inline bool isVector() const { return rows()==1 || cols()==1; } /** \returns the size of the storage major dimension, * i.e., the number of columns for a columns major matrix, and the number of rows otherwise */ Index outerSize() const { return (int(Flags)&RowMajorBit) ? this->rows() : this->cols(); } /** \returns the size of the inner dimension according to the storage order, * i.e., the number of rows for a columns major matrix, and the number of cols otherwise */ Index innerSize() const { return (int(Flags)&RowMajorBit) ? this->cols() : this->rows(); } bool isRValue() const { return m_isRValue; } Derived& markAsRValue() { m_isRValue = true; return derived(); } SparseMatrixBase() : m_isRValue(false) { /* TODO check flags */ } template<typename OtherDerived> Derived& operator=(const ReturnByValue<OtherDerived>& other) { other.evalTo(derived()); return derived(); } template<typename OtherDerived> inline Derived& operator=(const SparseMatrixBase<OtherDerived>& other) { return assign(other.derived()); } inline Derived& operator=(const Derived& other) { // if (other.isRValue()) // derived().swap(other.const_cast_derived()); // else return assign(other.derived()); } protected: template<typename OtherDerived> inline Derived& assign(const OtherDerived& other) { const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit); const Index outerSize = (int(OtherDerived::Flags) & RowMajorBit) ? other.rows() : other.cols(); if ((!transpose) && other.isRValue()) { // eval without temporary derived().resize(other.rows(), other.cols()); derived().setZero(); derived().reserve((std::max)(this->rows(),this->cols())*2); for (Index j=0; j<outerSize; ++j) { derived().startVec(j); for (typename OtherDerived::InnerIterator it(other, j); it; ++it) { Scalar v = it.value(); derived().insertBackByOuterInner(j,it.index()) = v; } } derived().finalize(); } else { assignGeneric(other); } return derived(); } template<typename OtherDerived> inline void assignGeneric(const OtherDerived& other) { //const bool transpose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit); eigen_assert(( ((internal::traits<Derived>::SupportedAccessPatterns&OuterRandomAccessPattern)==OuterRandomAccessPattern) || (!((Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit)))) && "the transpose operation is supposed to be handled in SparseMatrix::operator="); enum { Flip = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit) }; const Index outerSize = other.outerSize(); //typedef typename internal::conditional<transpose, LinkedVectorMatrix<Scalar,Flags&RowMajorBit>, Derived>::type TempType; // thanks to shallow copies, we always eval to a tempary Derived temp(other.rows(), other.cols()); temp.reserve((std::max)(this->rows(),this->cols())*2); for (Index j=0; j<outerSize; ++j) { temp.startVec(j); for (typename OtherDerived::InnerIterator it(other.derived(), j); it; ++it) { Scalar v = it.value(); temp.insertBackByOuterInner(Flip?it.index():j,Flip?j:it.index()) = v; } } temp.finalize(); derived() = temp.markAsRValue(); } public: template<typename Lhs, typename Rhs> inline Derived& operator=(const SparseSparseProduct<Lhs,Rhs>& product); friend std::ostream & operator << (std::ostream & s, const SparseMatrixBase& m) { typedef typename Derived::Nested Nested; typedef typename internal::remove_all<Nested>::type NestedCleaned; if (Flags&RowMajorBit) { const Nested nm(m.derived()); for (Index row=0; row<nm.outerSize(); ++row) { Index col = 0; for (typename NestedCleaned::InnerIterator it(nm.derived(), row); it; ++it) { for ( ; col<it.index(); ++col) s << "0 "; s << it.value() << " "; ++col; } for ( ; col<m.cols(); ++col) s << "0 "; s << std::endl; } } else { const Nested nm(m.derived()); if (m.cols() == 1) { Index row = 0; for (typename NestedCleaned::InnerIterator it(nm.derived(), 0); it; ++it) { for ( ; row<it.index(); ++row) s << "0" << std::endl; s << it.value() << std::endl; ++row; } for ( ; row<m.rows(); ++row) s << "0" << std::endl; } else { SparseMatrix<Scalar, RowMajorBit, Index> trans = m; s << static_cast<const SparseMatrixBase<SparseMatrix<Scalar, RowMajorBit, Index> >&>(trans); } } return s; } template<typename OtherDerived> Derived& operator+=(const SparseMatrixBase<OtherDerived>& other); template<typename OtherDerived> Derived& operator-=(const SparseMatrixBase<OtherDerived>& other); Derived& operator*=(const Scalar& other); Derived& operator/=(const Scalar& other); #define EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE \ CwiseBinaryOp< \ internal::scalar_product_op< \ typename internal::scalar_product_traits< \ typename internal::traits<Derived>::Scalar, \ typename internal::traits<OtherDerived>::Scalar \ >::ReturnType \ >, \ const Derived, \ const OtherDerived \ > template<typename OtherDerived> EIGEN_STRONG_INLINE const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE cwiseProduct(const MatrixBase<OtherDerived> &other) const; // sparse * sparse template<typename OtherDerived> const typename SparseSparseProductReturnType<Derived,OtherDerived>::Type operator*(const SparseMatrixBase<OtherDerived> &other) const; // sparse * diagonal template<typename OtherDerived> const SparseDiagonalProduct<Derived,OtherDerived> operator*(const DiagonalBase<OtherDerived> &other) const; // diagonal * sparse template<typename OtherDerived> friend const SparseDiagonalProduct<OtherDerived,Derived> operator*(const DiagonalBase<OtherDerived> &lhs, const SparseMatrixBase& rhs) { return SparseDiagonalProduct<OtherDerived,Derived>(lhs.derived(), rhs.derived()); } /** dense * sparse (return a dense object unless it is an outer product) */ template<typename OtherDerived> friend const typename DenseSparseProductReturnType<OtherDerived,Derived>::Type operator*(const MatrixBase<OtherDerived>& lhs, const Derived& rhs) { return typename DenseSparseProductReturnType<OtherDerived,Derived>::Type(lhs.derived(),rhs); } /** sparse * dense (returns a dense object unless it is an outer product) */ template<typename OtherDerived> const typename SparseDenseProductReturnType<Derived,OtherDerived>::Type operator*(const MatrixBase<OtherDerived> &other) const; /** \returns an expression of P H P^-1 where H is the matrix represented by \c *this */ SparseSymmetricPermutationProduct<Derived,Upper|Lower> twistedBy(const PermutationMatrix<Dynamic,Dynamic,Index>& perm) const { return SparseSymmetricPermutationProduct<Derived,Upper|Lower>(derived(), perm); } template<typename OtherDerived> Derived& operator*=(const SparseMatrixBase<OtherDerived>& other); #ifdef EIGEN2_SUPPORT // deprecated template<typename OtherDerived> typename internal::plain_matrix_type_column_major<OtherDerived>::type solveTriangular(const MatrixBase<OtherDerived>& other) const; // deprecated template<typename OtherDerived> void solveTriangularInPlace(MatrixBase<OtherDerived>& other) const; #endif // EIGEN2_SUPPORT template<int Mode> inline const SparseTriangularView<Derived, Mode> triangularView() const; template<unsigned int UpLo> inline const SparseSelfAdjointView<Derived, UpLo> selfadjointView() const; template<unsigned int UpLo> inline SparseSelfAdjointView<Derived, UpLo> selfadjointView(); template<typename OtherDerived> Scalar dot(const MatrixBase<OtherDerived>& other) const; template<typename OtherDerived> Scalar dot(const SparseMatrixBase<OtherDerived>& other) const; RealScalar squaredNorm() const; RealScalar norm() const; RealScalar blueNorm() const; Transpose<Derived> transpose() { return derived(); } const Transpose<const Derived> transpose() const { return derived(); } const AdjointReturnType adjoint() const { return transpose(); } // inner-vector typedef Block<Derived,IsRowMajor?1:Dynamic,IsRowMajor?Dynamic:1,true> InnerVectorReturnType; typedef Block<const Derived,IsRowMajor?1:Dynamic,IsRowMajor?Dynamic:1,true> ConstInnerVectorReturnType; InnerVectorReturnType innerVector(Index outer); const ConstInnerVectorReturnType innerVector(Index outer) const; // set of inner-vectors Block<Derived,Dynamic,Dynamic,true> innerVectors(Index outerStart, Index outerSize); const Block<const Derived,Dynamic,Dynamic,true> innerVectors(Index outerStart, Index outerSize) const; /** \internal use operator= */ template<typename DenseDerived> void evalTo(MatrixBase<DenseDerived>& dst) const { dst.setZero(); for (Index j=0; j<outerSize(); ++j) for (typename Derived::InnerIterator i(derived(),j); i; ++i) dst.coeffRef(i.row(),i.col()) = i.value(); } Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> toDense() const { return derived(); } template<typename OtherDerived> bool isApprox(const SparseMatrixBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const { return toDense().isApprox(other.toDense(),prec); } template<typename OtherDerived> bool isApprox(const MatrixBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const { return toDense().isApprox(other,prec); } /** \returns the matrix or vector obtained by evaluating this expression. * * Notice that in the case of a plain matrix or vector (not an expression) this function just returns * a const reference, in order to avoid a useless copy. */ inline const typename internal::eval<Derived>::type eval() const { return typename internal::eval<Derived>::type(derived()); } Scalar sum() const; protected: bool m_isRValue; }; } // end namespace Eigen #endif // EIGEN_SPARSEMATRIXBASE_H