// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MAPPED_SPARSEMATRIX_H
#define EIGEN_MAPPED_SPARSEMATRIX_H
namespace Eigen {
/** \class MappedSparseMatrix
*
* \brief Sparse matrix
*
* \param _Scalar the scalar type, i.e. the type of the coefficients
*
* See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme.
*
*/
namespace internal {
template<typename _Scalar, int _Flags, typename _Index>
struct traits<MappedSparseMatrix<_Scalar, _Flags, _Index> > : traits<SparseMatrix<_Scalar, _Flags, _Index> >
{};
}
template<typename _Scalar, int _Flags, typename _Index>
class MappedSparseMatrix
: public SparseMatrixBase<MappedSparseMatrix<_Scalar, _Flags, _Index> >
{
public:
EIGEN_SPARSE_PUBLIC_INTERFACE(MappedSparseMatrix)
enum { IsRowMajor = Base::IsRowMajor };
protected:
Index m_outerSize;
Index m_innerSize;
Index m_nnz;
Index* m_outerIndex;
Index* m_innerIndices;
Scalar* m_values;
public:
inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; }
inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; }
inline Index innerSize() const { return m_innerSize; }
inline Index outerSize() const { return m_outerSize; }
bool isCompressed() const { return true; }
//----------------------------------------
// direct access interface
inline const Scalar* valuePtr() const { return m_values; }
inline Scalar* valuePtr() { return m_values; }
inline const Index* innerIndexPtr() const { return m_innerIndices; }
inline Index* innerIndexPtr() { return m_innerIndices; }
inline const Index* outerIndexPtr() const { return m_outerIndex; }
inline Index* outerIndexPtr() { return m_outerIndex; }
//----------------------------------------
inline Scalar coeff(Index row, Index col) const
{
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
Index start = m_outerIndex[outer];
Index end = m_outerIndex[outer+1];
if (start==end)
return Scalar(0);
else if (end>0 && inner==m_innerIndices[end-1])
return m_values[end-1];
// ^^ optimization: let's first check if it is the last coefficient
// (very common in high level algorithms)
const Index* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end-1],inner);
const Index id = r-&m_innerIndices[0];
return ((*r==inner) && (id<end)) ? m_values[id] : Scalar(0);
}
inline Scalar& coeffRef(Index row, Index col)
{
const Index outer = IsRowMajor ? row : col;
const Index inner = IsRowMajor ? col : row;
Index start = m_outerIndex[outer];
Index end = m_outerIndex[outer+1];
eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix");
eigen_assert(end>start && "coeffRef cannot be called on a zero coefficient");
Index* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end],inner);
const Index id = r-&m_innerIndices[0];
eigen_assert((*r==inner) && (id<end) && "coeffRef cannot be called on a zero coefficient");
return m_values[id];
}
class InnerIterator;
class ReverseInnerIterator;
/** \returns the number of non zero coefficients */
inline Index nonZeros() const { return m_nnz; }
inline MappedSparseMatrix(Index rows, Index cols, Index nnz, Index* outerIndexPtr, Index* innerIndexPtr, Scalar* valuePtr)
: m_outerSize(IsRowMajor?rows:cols), m_innerSize(IsRowMajor?cols:rows), m_nnz(nnz), m_outerIndex(outerIndexPtr),
m_innerIndices(innerIndexPtr), m_values(valuePtr)
{}
/** Empty destructor */
inline ~MappedSparseMatrix() {}
};
template<typename Scalar, int _Flags, typename _Index>
class MappedSparseMatrix<Scalar,_Flags,_Index>::InnerIterator
{
public:
InnerIterator(const MappedSparseMatrix& mat, Index outer)
: m_matrix(mat),
m_outer(outer),
m_id(mat.outerIndexPtr()[outer]),
m_start(m_id),
m_end(mat.outerIndexPtr()[outer+1])
{}
inline InnerIterator& operator++() { m_id++; return *this; }
inline Scalar value() const { return m_matrix.valuePtr()[m_id]; }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.valuePtr()[m_id]); }
inline Index index() const { return m_matrix.innerIndexPtr()[m_id]; }
inline Index row() const { return IsRowMajor ? m_outer : index(); }
inline Index col() const { return IsRowMajor ? index() : m_outer; }
inline operator bool() const { return (m_id < m_end) && (m_id>=m_start); }
protected:
const MappedSparseMatrix& m_matrix;
const Index m_outer;
Index m_id;
const Index m_start;
const Index m_end;
};
template<typename Scalar, int _Flags, typename _Index>
class MappedSparseMatrix<Scalar,_Flags,_Index>::ReverseInnerIterator
{
public:
ReverseInnerIterator(const MappedSparseMatrix& mat, Index outer)
: m_matrix(mat),
m_outer(outer),
m_id(mat.outerIndexPtr()[outer+1]),
m_start(mat.outerIndexPtr()[outer]),
m_end(m_id)
{}
inline ReverseInnerIterator& operator--() { m_id--; return *this; }
inline Scalar value() const { return m_matrix.valuePtr()[m_id-1]; }
inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.valuePtr()[m_id-1]); }
inline Index index() const { return m_matrix.innerIndexPtr()[m_id-1]; }
inline Index row() const { return IsRowMajor ? m_outer : index(); }
inline Index col() const { return IsRowMajor ? index() : m_outer; }
inline operator bool() const { return (m_id <= m_end) && (m_id>m_start); }
protected:
const MappedSparseMatrix& m_matrix;
const Index m_outer;
Index m_id;
const Index m_start;
const Index m_end;
};
} // end namespace Eigen
#endif // EIGEN_MAPPED_SPARSEMATRIX_H