// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MAPPED_SPARSEMATRIX_H #define EIGEN_MAPPED_SPARSEMATRIX_H namespace Eigen { /** \class MappedSparseMatrix * * \brief Sparse matrix * * \param _Scalar the scalar type, i.e. the type of the coefficients * * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme. * */ namespace internal { template<typename _Scalar, int _Flags, typename _Index> struct traits<MappedSparseMatrix<_Scalar, _Flags, _Index> > : traits<SparseMatrix<_Scalar, _Flags, _Index> > {}; } template<typename _Scalar, int _Flags, typename _Index> class MappedSparseMatrix : public SparseMatrixBase<MappedSparseMatrix<_Scalar, _Flags, _Index> > { public: EIGEN_SPARSE_PUBLIC_INTERFACE(MappedSparseMatrix) enum { IsRowMajor = Base::IsRowMajor }; protected: Index m_outerSize; Index m_innerSize; Index m_nnz; Index* m_outerIndex; Index* m_innerIndices; Scalar* m_values; public: inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; } inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; } inline Index innerSize() const { return m_innerSize; } inline Index outerSize() const { return m_outerSize; } bool isCompressed() const { return true; } //---------------------------------------- // direct access interface inline const Scalar* valuePtr() const { return m_values; } inline Scalar* valuePtr() { return m_values; } inline const Index* innerIndexPtr() const { return m_innerIndices; } inline Index* innerIndexPtr() { return m_innerIndices; } inline const Index* outerIndexPtr() const { return m_outerIndex; } inline Index* outerIndexPtr() { return m_outerIndex; } //---------------------------------------- inline Scalar coeff(Index row, Index col) const { const Index outer = IsRowMajor ? row : col; const Index inner = IsRowMajor ? col : row; Index start = m_outerIndex[outer]; Index end = m_outerIndex[outer+1]; if (start==end) return Scalar(0); else if (end>0 && inner==m_innerIndices[end-1]) return m_values[end-1]; // ^^ optimization: let's first check if it is the last coefficient // (very common in high level algorithms) const Index* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end-1],inner); const Index id = r-&m_innerIndices[0]; return ((*r==inner) && (id<end)) ? m_values[id] : Scalar(0); } inline Scalar& coeffRef(Index row, Index col) { const Index outer = IsRowMajor ? row : col; const Index inner = IsRowMajor ? col : row; Index start = m_outerIndex[outer]; Index end = m_outerIndex[outer+1]; eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix"); eigen_assert(end>start && "coeffRef cannot be called on a zero coefficient"); Index* r = std::lower_bound(&m_innerIndices[start],&m_innerIndices[end],inner); const Index id = r-&m_innerIndices[0]; eigen_assert((*r==inner) && (id<end) && "coeffRef cannot be called on a zero coefficient"); return m_values[id]; } class InnerIterator; class ReverseInnerIterator; /** \returns the number of non zero coefficients */ inline Index nonZeros() const { return m_nnz; } inline MappedSparseMatrix(Index rows, Index cols, Index nnz, Index* outerIndexPtr, Index* innerIndexPtr, Scalar* valuePtr) : m_outerSize(IsRowMajor?rows:cols), m_innerSize(IsRowMajor?cols:rows), m_nnz(nnz), m_outerIndex(outerIndexPtr), m_innerIndices(innerIndexPtr), m_values(valuePtr) {} /** Empty destructor */ inline ~MappedSparseMatrix() {} }; template<typename Scalar, int _Flags, typename _Index> class MappedSparseMatrix<Scalar,_Flags,_Index>::InnerIterator { public: InnerIterator(const MappedSparseMatrix& mat, Index outer) : m_matrix(mat), m_outer(outer), m_id(mat.outerIndexPtr()[outer]), m_start(m_id), m_end(mat.outerIndexPtr()[outer+1]) {} inline InnerIterator& operator++() { m_id++; return *this; } inline Scalar value() const { return m_matrix.valuePtr()[m_id]; } inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.valuePtr()[m_id]); } inline Index index() const { return m_matrix.innerIndexPtr()[m_id]; } inline Index row() const { return IsRowMajor ? m_outer : index(); } inline Index col() const { return IsRowMajor ? index() : m_outer; } inline operator bool() const { return (m_id < m_end) && (m_id>=m_start); } protected: const MappedSparseMatrix& m_matrix; const Index m_outer; Index m_id; const Index m_start; const Index m_end; }; template<typename Scalar, int _Flags, typename _Index> class MappedSparseMatrix<Scalar,_Flags,_Index>::ReverseInnerIterator { public: ReverseInnerIterator(const MappedSparseMatrix& mat, Index outer) : m_matrix(mat), m_outer(outer), m_id(mat.outerIndexPtr()[outer+1]), m_start(mat.outerIndexPtr()[outer]), m_end(m_id) {} inline ReverseInnerIterator& operator--() { m_id--; return *this; } inline Scalar value() const { return m_matrix.valuePtr()[m_id-1]; } inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.valuePtr()[m_id-1]); } inline Index index() const { return m_matrix.innerIndexPtr()[m_id-1]; } inline Index row() const { return IsRowMajor ? m_outer : index(); } inline Index col() const { return IsRowMajor ? index() : m_outer; } inline operator bool() const { return (m_id <= m_end) && (m_id>m_start); } protected: const MappedSparseMatrix& m_matrix; const Index m_outer; Index m_id; const Index m_start; const Index m_end; }; } // end namespace Eigen #endif // EIGEN_MAPPED_SPARSEMATRIX_H