/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkDisplacementMapEffect.h"
#include "SkReadBuffer.h"
#include "SkWriteBuffer.h"
#include "SkUnPreMultiply.h"
#include "SkColorPriv.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrCoordTransform.h"
#include "gl/GrGLProcessor.h"
#include "gl/builders/GrGLProgramBuilder.h"
#include "GrTBackendProcessorFactory.h"
#endif
namespace {
#define kChannelSelectorKeyBits 3; // Max value is 4, so 3 bits are required at most
template<SkDisplacementMapEffect::ChannelSelectorType type>
uint32_t getValue(SkColor, const SkUnPreMultiply::Scale*) {
SkDEBUGFAIL("Unknown channel selector");
return 0;
}
template<> uint32_t getValue<SkDisplacementMapEffect::kR_ChannelSelectorType>(
SkColor l, const SkUnPreMultiply::Scale* table) {
return SkUnPreMultiply::ApplyScale(table[SkGetPackedA32(l)], SkGetPackedR32(l));
}
template<> uint32_t getValue<SkDisplacementMapEffect::kG_ChannelSelectorType>(
SkColor l, const SkUnPreMultiply::Scale* table) {
return SkUnPreMultiply::ApplyScale(table[SkGetPackedA32(l)], SkGetPackedG32(l));
}
template<> uint32_t getValue<SkDisplacementMapEffect::kB_ChannelSelectorType>(
SkColor l, const SkUnPreMultiply::Scale* table) {
return SkUnPreMultiply::ApplyScale(table[SkGetPackedA32(l)], SkGetPackedB32(l));
}
template<> uint32_t getValue<SkDisplacementMapEffect::kA_ChannelSelectorType>(
SkColor l, const SkUnPreMultiply::Scale*) {
return SkGetPackedA32(l);
}
template<SkDisplacementMapEffect::ChannelSelectorType typeX,
SkDisplacementMapEffect::ChannelSelectorType typeY>
void computeDisplacement(const SkVector& scale, SkBitmap* dst,
SkBitmap* displ, const SkIPoint& offset,
SkBitmap* src,
const SkIRect& bounds)
{
static const SkScalar Inv8bit = SkScalarDiv(SK_Scalar1, 255.0f);
const int srcW = src->width();
const int srcH = src->height();
const SkVector scaleForColor = SkVector::Make(SkScalarMul(scale.fX, Inv8bit),
SkScalarMul(scale.fY, Inv8bit));
const SkVector scaleAdj = SkVector::Make(SK_ScalarHalf - SkScalarMul(scale.fX, SK_ScalarHalf),
SK_ScalarHalf - SkScalarMul(scale.fY, SK_ScalarHalf));
const SkUnPreMultiply::Scale* table = SkUnPreMultiply::GetScaleTable();
SkPMColor* dstPtr = dst->getAddr32(0, 0);
for (int y = bounds.top(); y < bounds.bottom(); ++y) {
const SkPMColor* displPtr = displ->getAddr32(bounds.left() + offset.fX,
y + offset.fY);
for (int x = bounds.left(); x < bounds.right(); ++x, ++displPtr) {
const SkScalar displX = SkScalarMul(scaleForColor.fX,
SkIntToScalar(getValue<typeX>(*displPtr, table))) + scaleAdj.fX;
const SkScalar displY = SkScalarMul(scaleForColor.fY,
SkIntToScalar(getValue<typeY>(*displPtr, table))) + scaleAdj.fY;
// Truncate the displacement values
const int srcX = x + SkScalarTruncToInt(displX);
const int srcY = y + SkScalarTruncToInt(displY);
*dstPtr++ = ((srcX < 0) || (srcX >= srcW) || (srcY < 0) || (srcY >= srcH)) ?
0 : *(src->getAddr32(srcX, srcY));
}
}
}
template<SkDisplacementMapEffect::ChannelSelectorType typeX>
void computeDisplacement(SkDisplacementMapEffect::ChannelSelectorType yChannelSelector,
const SkVector& scale, SkBitmap* dst,
SkBitmap* displ, const SkIPoint& offset,
SkBitmap* src,
const SkIRect& bounds)
{
switch (yChannelSelector) {
case SkDisplacementMapEffect::kR_ChannelSelectorType:
computeDisplacement<typeX, SkDisplacementMapEffect::kR_ChannelSelectorType>(
scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kG_ChannelSelectorType:
computeDisplacement<typeX, SkDisplacementMapEffect::kG_ChannelSelectorType>(
scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kB_ChannelSelectorType:
computeDisplacement<typeX, SkDisplacementMapEffect::kB_ChannelSelectorType>(
scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kA_ChannelSelectorType:
computeDisplacement<typeX, SkDisplacementMapEffect::kA_ChannelSelectorType>(
scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kUnknown_ChannelSelectorType:
default:
SkDEBUGFAIL("Unknown Y channel selector");
}
}
void computeDisplacement(SkDisplacementMapEffect::ChannelSelectorType xChannelSelector,
SkDisplacementMapEffect::ChannelSelectorType yChannelSelector,
const SkVector& scale, SkBitmap* dst,
SkBitmap* displ, const SkIPoint& offset,
SkBitmap* src,
const SkIRect& bounds)
{
switch (xChannelSelector) {
case SkDisplacementMapEffect::kR_ChannelSelectorType:
computeDisplacement<SkDisplacementMapEffect::kR_ChannelSelectorType>(
yChannelSelector, scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kG_ChannelSelectorType:
computeDisplacement<SkDisplacementMapEffect::kG_ChannelSelectorType>(
yChannelSelector, scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kB_ChannelSelectorType:
computeDisplacement<SkDisplacementMapEffect::kB_ChannelSelectorType>(
yChannelSelector, scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kA_ChannelSelectorType:
computeDisplacement<SkDisplacementMapEffect::kA_ChannelSelectorType>(
yChannelSelector, scale, dst, displ, offset, src, bounds);
break;
case SkDisplacementMapEffect::kUnknown_ChannelSelectorType:
default:
SkDEBUGFAIL("Unknown X channel selector");
}
}
bool channel_selector_type_is_valid(SkDisplacementMapEffect::ChannelSelectorType cst) {
switch (cst) {
case SkDisplacementMapEffect::kUnknown_ChannelSelectorType:
case SkDisplacementMapEffect::kR_ChannelSelectorType:
case SkDisplacementMapEffect::kG_ChannelSelectorType:
case SkDisplacementMapEffect::kB_ChannelSelectorType:
case SkDisplacementMapEffect::kA_ChannelSelectorType:
return true;
default:
break;
}
return false;
}
} // end namespace
///////////////////////////////////////////////////////////////////////////////
SkDisplacementMapEffect* SkDisplacementMapEffect::Create(ChannelSelectorType xChannelSelector,
ChannelSelectorType yChannelSelector,
SkScalar scale,
SkImageFilter* displacement,
SkImageFilter* color,
const CropRect* cropRect, uint32_t uniqueID) {
if (!channel_selector_type_is_valid(xChannelSelector) ||
!channel_selector_type_is_valid(yChannelSelector)) {
return NULL;
}
SkImageFilter* inputs[2] = { displacement, color };
return SkNEW_ARGS(SkDisplacementMapEffect, (xChannelSelector, yChannelSelector, scale,
inputs, cropRect, uniqueID));
}
SkDisplacementMapEffect::SkDisplacementMapEffect(ChannelSelectorType xChannelSelector,
ChannelSelectorType yChannelSelector,
SkScalar scale,
SkImageFilter* inputs[2],
const CropRect* cropRect,
uint32_t uniqueID)
: INHERITED(2, inputs, cropRect, uniqueID)
, fXChannelSelector(xChannelSelector)
, fYChannelSelector(yChannelSelector)
, fScale(scale)
{
}
SkDisplacementMapEffect::~SkDisplacementMapEffect() {
}
#ifdef SK_SUPPORT_LEGACY_DEEPFLATTENING
SkDisplacementMapEffect::SkDisplacementMapEffect(SkReadBuffer& buffer)
: INHERITED(2, buffer)
{
fXChannelSelector = (SkDisplacementMapEffect::ChannelSelectorType) buffer.readInt();
fYChannelSelector = (SkDisplacementMapEffect::ChannelSelectorType) buffer.readInt();
fScale = buffer.readScalar();
buffer.validate(channel_selector_type_is_valid(fXChannelSelector) &&
channel_selector_type_is_valid(fYChannelSelector) &&
SkScalarIsFinite(fScale));
}
#endif
SkFlattenable* SkDisplacementMapEffect::CreateProc(SkReadBuffer& buffer) {
SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 2);
ChannelSelectorType xsel = (ChannelSelectorType)buffer.readInt();
ChannelSelectorType ysel = (ChannelSelectorType)buffer.readInt();
SkScalar scale = buffer.readScalar();
return Create(xsel, ysel, scale, common.getInput(0), common.getInput(1), &common.cropRect(), common.uniqueID());
}
void SkDisplacementMapEffect::flatten(SkWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeInt((int) fXChannelSelector);
buffer.writeInt((int) fYChannelSelector);
buffer.writeScalar(fScale);
}
bool SkDisplacementMapEffect::onFilterImage(Proxy* proxy,
const SkBitmap& src,
const Context& ctx,
SkBitmap* dst,
SkIPoint* offset) const {
SkBitmap displ = src, color = src;
const SkImageFilter* colorInput = getColorInput();
const SkImageFilter* displInput = getDisplacementInput();
SkIPoint colorOffset = SkIPoint::Make(0, 0), displOffset = SkIPoint::Make(0, 0);
if ((colorInput && !colorInput->filterImage(proxy, src, ctx, &color, &colorOffset)) ||
(displInput && !displInput->filterImage(proxy, src, ctx, &displ, &displOffset))) {
return false;
}
if ((displ.colorType() != kN32_SkColorType) ||
(color.colorType() != kN32_SkColorType)) {
return false;
}
SkIRect bounds;
// Since computeDisplacement does bounds checking on color pixel access, we don't need to pad
// the color bitmap to bounds here.
if (!this->applyCropRect(ctx, color, colorOffset, &bounds)) {
return false;
}
SkIRect displBounds;
if (!this->applyCropRect(ctx, proxy, displ, &displOffset, &displBounds, &displ)) {
return false;
}
if (!bounds.intersect(displBounds)) {
return false;
}
SkAutoLockPixels alp_displacement(displ), alp_color(color);
if (!displ.getPixels() || !color.getPixels()) {
return false;
}
if (!dst->tryAllocPixels(color.info().makeWH(bounds.width(), bounds.height()))) {
return false;
}
SkVector scale = SkVector::Make(fScale, fScale);
ctx.ctm().mapVectors(&scale, 1);
SkIRect colorBounds = bounds;
colorBounds.offset(-colorOffset);
computeDisplacement(fXChannelSelector, fYChannelSelector, scale, dst,
&displ, colorOffset - displOffset, &color, colorBounds);
offset->fX = bounds.left();
offset->fY = bounds.top();
return true;
}
void SkDisplacementMapEffect::computeFastBounds(const SkRect& src, SkRect* dst) const {
if (getColorInput()) {
getColorInput()->computeFastBounds(src, dst);
} else {
*dst = src;
}
dst->outset(fScale * SK_ScalarHalf, fScale * SK_ScalarHalf);
}
bool SkDisplacementMapEffect::onFilterBounds(const SkIRect& src, const SkMatrix& ctm,
SkIRect* dst) const {
SkIRect bounds = src;
SkVector scale = SkVector::Make(fScale, fScale);
ctm.mapVectors(&scale, 1);
bounds.outset(SkScalarCeilToInt(scale.fX * SK_ScalarHalf),
SkScalarCeilToInt(scale.fY * SK_ScalarHalf));
if (getColorInput()) {
return getColorInput()->filterBounds(bounds, ctm, dst);
}
*dst = bounds;
return true;
}
///////////////////////////////////////////////////////////////////////////////
#if SK_SUPPORT_GPU
class GrGLDisplacementMapEffect : public GrGLFragmentProcessor {
public:
GrGLDisplacementMapEffect(const GrBackendProcessorFactory&,
const GrProcessor&);
virtual ~GrGLDisplacementMapEffect();
virtual void emitCode(GrGLProgramBuilder*,
const GrFragmentProcessor&,
const GrProcessorKey&,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray&) SK_OVERRIDE;
static inline void GenKey(const GrProcessor&, const GrGLCaps&, GrProcessorKeyBuilder*);
virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE;
private:
SkDisplacementMapEffect::ChannelSelectorType fXChannelSelector;
SkDisplacementMapEffect::ChannelSelectorType fYChannelSelector;
GrGLProgramDataManager::UniformHandle fScaleUni;
typedef GrGLFragmentProcessor INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
class GrDisplacementMapEffect : public GrFragmentProcessor {
public:
static GrFragmentProcessor* Create(
SkDisplacementMapEffect::ChannelSelectorType xChannelSelector,
SkDisplacementMapEffect::ChannelSelectorType yChannelSelector, SkVector scale,
GrTexture* displacement, const SkMatrix& offsetMatrix, GrTexture* color) {
return SkNEW_ARGS(GrDisplacementMapEffect, (xChannelSelector,
yChannelSelector,
scale,
displacement,
offsetMatrix,
color));
}
virtual ~GrDisplacementMapEffect();
virtual const GrBackendFragmentProcessorFactory& getFactory() const SK_OVERRIDE;
SkDisplacementMapEffect::ChannelSelectorType xChannelSelector() const
{ return fXChannelSelector; }
SkDisplacementMapEffect::ChannelSelectorType yChannelSelector() const
{ return fYChannelSelector; }
const SkVector& scale() const { return fScale; }
typedef GrGLDisplacementMapEffect GLProcessor;
static const char* Name() { return "DisplacementMap"; }
virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE;
private:
virtual bool onIsEqual(const GrProcessor&) const SK_OVERRIDE;
GrDisplacementMapEffect(SkDisplacementMapEffect::ChannelSelectorType xChannelSelector,
SkDisplacementMapEffect::ChannelSelectorType yChannelSelector,
const SkVector& scale,
GrTexture* displacement, const SkMatrix& offsetMatrix,
GrTexture* color);
GR_DECLARE_FRAGMENT_PROCESSOR_TEST;
GrCoordTransform fDisplacementTransform;
GrTextureAccess fDisplacementAccess;
GrCoordTransform fColorTransform;
GrTextureAccess fColorAccess;
SkDisplacementMapEffect::ChannelSelectorType fXChannelSelector;
SkDisplacementMapEffect::ChannelSelectorType fYChannelSelector;
SkVector fScale;
typedef GrFragmentProcessor INHERITED;
};
bool SkDisplacementMapEffect::filterImageGPU(Proxy* proxy, const SkBitmap& src, const Context& ctx,
SkBitmap* result, SkIPoint* offset) const {
SkBitmap colorBM = src;
SkIPoint colorOffset = SkIPoint::Make(0, 0);
if (getColorInput() && !getColorInput()->getInputResultGPU(proxy, src, ctx, &colorBM,
&colorOffset)) {
return false;
}
SkBitmap displacementBM = src;
SkIPoint displacementOffset = SkIPoint::Make(0, 0);
if (getDisplacementInput() &&
!getDisplacementInput()->getInputResultGPU(proxy, src, ctx, &displacementBM,
&displacementOffset)) {
return false;
}
SkIRect bounds;
// Since GrDisplacementMapEffect does bounds checking on color pixel access, we don't need to
// pad the color bitmap to bounds here.
if (!this->applyCropRect(ctx, colorBM, colorOffset, &bounds)) {
return false;
}
SkIRect displBounds;
if (!this->applyCropRect(ctx, proxy, displacementBM,
&displacementOffset, &displBounds, &displacementBM)) {
return false;
}
if (!bounds.intersect(displBounds)) {
return false;
}
GrTexture* color = colorBM.getTexture();
GrTexture* displacement = displacementBM.getTexture();
GrContext* context = color->getContext();
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit;
desc.fWidth = bounds.width();
desc.fHeight = bounds.height();
desc.fConfig = kSkia8888_GrPixelConfig;
GrAutoScratchTexture ast(context, desc);
if (NULL == ast.texture()) {
return false;
}
SkAutoTUnref<GrTexture> dst(ast.detach());
GrContext::AutoRenderTarget art(context, dst->asRenderTarget());
SkVector scale = SkVector::Make(fScale, fScale);
ctx.ctm().mapVectors(&scale, 1);
GrPaint paint;
SkMatrix offsetMatrix = GrCoordTransform::MakeDivByTextureWHMatrix(displacement);
offsetMatrix.preTranslate(SkIntToScalar(colorOffset.fX - displacementOffset.fX),
SkIntToScalar(colorOffset.fY - displacementOffset.fY));
paint.addColorProcessor(
GrDisplacementMapEffect::Create(fXChannelSelector,
fYChannelSelector,
scale,
displacement,
offsetMatrix,
color))->unref();
SkIRect colorBounds = bounds;
colorBounds.offset(-colorOffset);
GrContext::AutoMatrix am;
am.setIdentity(context);
SkMatrix matrix;
matrix.setTranslate(-SkIntToScalar(colorBounds.x()),
-SkIntToScalar(colorBounds.y()));
context->concatMatrix(matrix);
context->drawRect(paint, SkRect::Make(colorBounds));
offset->fX = bounds.left();
offset->fY = bounds.top();
WrapTexture(dst, bounds.width(), bounds.height(), result);
return true;
}
///////////////////////////////////////////////////////////////////////////////
GrDisplacementMapEffect::GrDisplacementMapEffect(
SkDisplacementMapEffect::ChannelSelectorType xChannelSelector,
SkDisplacementMapEffect::ChannelSelectorType yChannelSelector,
const SkVector& scale,
GrTexture* displacement,
const SkMatrix& offsetMatrix,
GrTexture* color)
: fDisplacementTransform(kLocal_GrCoordSet, offsetMatrix, displacement)
, fDisplacementAccess(displacement)
, fColorTransform(kLocal_GrCoordSet, color)
, fColorAccess(color)
, fXChannelSelector(xChannelSelector)
, fYChannelSelector(yChannelSelector)
, fScale(scale) {
this->addCoordTransform(&fDisplacementTransform);
this->addTextureAccess(&fDisplacementAccess);
this->addCoordTransform(&fColorTransform);
this->addTextureAccess(&fColorAccess);
this->setWillNotUseInputColor();
}
GrDisplacementMapEffect::~GrDisplacementMapEffect() {
}
bool GrDisplacementMapEffect::onIsEqual(const GrProcessor& sBase) const {
const GrDisplacementMapEffect& s = sBase.cast<GrDisplacementMapEffect>();
return fDisplacementAccess.getTexture() == s.fDisplacementAccess.getTexture() &&
fColorAccess.getTexture() == s.fColorAccess.getTexture() &&
fXChannelSelector == s.fXChannelSelector &&
fYChannelSelector == s.fYChannelSelector &&
fScale == s.fScale;
}
const GrBackendFragmentProcessorFactory& GrDisplacementMapEffect::getFactory() const {
return GrTBackendFragmentProcessorFactory<GrDisplacementMapEffect>::getInstance();
}
void GrDisplacementMapEffect::getConstantColorComponents(GrColor*,
uint32_t* validFlags) const {
// Any displacement offset bringing a pixel out of bounds will output a color of (0,0,0,0),
// so the only way we'd get a constant alpha is if the input color image has a constant alpha
// and no displacement offset push any texture coordinates out of bounds OR if the constant
// alpha is 0. Since this isn't trivial to compute at this point, let's assume the output is
// not of constant color when a displacement effect is applied.
*validFlags = 0;
}
///////////////////////////////////////////////////////////////////////////////
GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrDisplacementMapEffect);
GrFragmentProcessor* GrDisplacementMapEffect::TestCreate(SkRandom* random,
GrContext*,
const GrDrawTargetCaps&,
GrTexture* textures[]) {
int texIdxDispl = random->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx :
GrProcessorUnitTest::kAlphaTextureIdx;
int texIdxColor = random->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx :
GrProcessorUnitTest::kAlphaTextureIdx;
static const int kMaxComponent = 4;
SkDisplacementMapEffect::ChannelSelectorType xChannelSelector =
static_cast<SkDisplacementMapEffect::ChannelSelectorType>(
random->nextRangeU(1, kMaxComponent));
SkDisplacementMapEffect::ChannelSelectorType yChannelSelector =
static_cast<SkDisplacementMapEffect::ChannelSelectorType>(
random->nextRangeU(1, kMaxComponent));
SkVector scale = SkVector::Make(random->nextRangeScalar(0, 100.0f),
random->nextRangeScalar(0, 100.0f));
return GrDisplacementMapEffect::Create(xChannelSelector, yChannelSelector, scale,
textures[texIdxDispl], SkMatrix::I(),
textures[texIdxColor]);
}
///////////////////////////////////////////////////////////////////////////////
GrGLDisplacementMapEffect::GrGLDisplacementMapEffect(const GrBackendProcessorFactory& factory,
const GrProcessor& proc)
: INHERITED(factory)
, fXChannelSelector(proc.cast<GrDisplacementMapEffect>().xChannelSelector())
, fYChannelSelector(proc.cast<GrDisplacementMapEffect>().yChannelSelector()) {
}
GrGLDisplacementMapEffect::~GrGLDisplacementMapEffect() {
}
void GrGLDisplacementMapEffect::emitCode(GrGLProgramBuilder* builder,
const GrFragmentProcessor&,
const GrProcessorKey& key,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray& coords,
const TextureSamplerArray& samplers) {
sk_ignore_unused_variable(inputColor);
fScaleUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility,
kVec2f_GrSLType, "Scale");
const char* scaleUni = builder->getUniformCStr(fScaleUni);
const char* dColor = "dColor";
const char* cCoords = "cCoords";
const char* outOfBounds = "outOfBounds";
const char* nearZero = "1e-6"; // Since 6.10352e−5 is the smallest half float, use
// a number smaller than that to approximate 0, but
// leave room for 32-bit float GPU rounding errors.
GrGLFragmentShaderBuilder* fsBuilder = builder->getFragmentShaderBuilder();
fsBuilder->codeAppendf("\t\tvec4 %s = ", dColor);
fsBuilder->appendTextureLookup(samplers[0], coords[0].c_str(), coords[0].getType());
fsBuilder->codeAppend(";\n");
// Unpremultiply the displacement
fsBuilder->codeAppendf("\t\t%s.rgb = (%s.a < %s) ? vec3(0.0) : clamp(%s.rgb / %s.a, 0.0, 1.0);",
dColor, dColor, nearZero, dColor, dColor);
fsBuilder->codeAppendf("\t\tvec2 %s = %s + %s*(%s.",
cCoords, coords[1].c_str(), scaleUni, dColor);
switch (fXChannelSelector) {
case SkDisplacementMapEffect::kR_ChannelSelectorType:
fsBuilder->codeAppend("r");
break;
case SkDisplacementMapEffect::kG_ChannelSelectorType:
fsBuilder->codeAppend("g");
break;
case SkDisplacementMapEffect::kB_ChannelSelectorType:
fsBuilder->codeAppend("b");
break;
case SkDisplacementMapEffect::kA_ChannelSelectorType:
fsBuilder->codeAppend("a");
break;
case SkDisplacementMapEffect::kUnknown_ChannelSelectorType:
default:
SkDEBUGFAIL("Unknown X channel selector");
}
switch (fYChannelSelector) {
case SkDisplacementMapEffect::kR_ChannelSelectorType:
fsBuilder->codeAppend("r");
break;
case SkDisplacementMapEffect::kG_ChannelSelectorType:
fsBuilder->codeAppend("g");
break;
case SkDisplacementMapEffect::kB_ChannelSelectorType:
fsBuilder->codeAppend("b");
break;
case SkDisplacementMapEffect::kA_ChannelSelectorType:
fsBuilder->codeAppend("a");
break;
case SkDisplacementMapEffect::kUnknown_ChannelSelectorType:
default:
SkDEBUGFAIL("Unknown Y channel selector");
}
fsBuilder->codeAppend("-vec2(0.5));\t\t");
// FIXME : This can be achieved with a "clamp to border" texture repeat mode and
// a 0 border color instead of computing if cCoords is out of bounds here.
fsBuilder->codeAppendf(
"bool %s = (%s.x < 0.0) || (%s.y < 0.0) || (%s.x > 1.0) || (%s.y > 1.0);\t\t",
outOfBounds, cCoords, cCoords, cCoords, cCoords);
fsBuilder->codeAppendf("%s = %s ? vec4(0.0) : ", outputColor, outOfBounds);
fsBuilder->appendTextureLookup(samplers[1], cCoords, coords[1].getType());
fsBuilder->codeAppend(";\n");
}
void GrGLDisplacementMapEffect::setData(const GrGLProgramDataManager& pdman,
const GrProcessor& proc) {
const GrDisplacementMapEffect& displacementMap = proc.cast<GrDisplacementMapEffect>();
GrTexture* colorTex = displacementMap.texture(1);
SkScalar scaleX = SkScalarDiv(displacementMap.scale().fX, SkIntToScalar(colorTex->width()));
SkScalar scaleY = SkScalarDiv(displacementMap.scale().fY, SkIntToScalar(colorTex->height()));
pdman.set2f(fScaleUni, SkScalarToFloat(scaleX),
colorTex->origin() == kTopLeft_GrSurfaceOrigin ?
SkScalarToFloat(scaleY) : SkScalarToFloat(-scaleY));
}
void GrGLDisplacementMapEffect::GenKey(const GrProcessor& proc,
const GrGLCaps&, GrProcessorKeyBuilder* b) {
const GrDisplacementMapEffect& displacementMap = proc.cast<GrDisplacementMapEffect>();
uint32_t xKey = displacementMap.xChannelSelector();
uint32_t yKey = displacementMap.yChannelSelector() << kChannelSelectorKeyBits;
b->add32(xKey | yKey);
}
#endif