/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkDisplacementMapEffect.h" #include "SkReadBuffer.h" #include "SkWriteBuffer.h" #include "SkUnPreMultiply.h" #include "SkColorPriv.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrCoordTransform.h" #include "gl/GrGLProcessor.h" #include "gl/builders/GrGLProgramBuilder.h" #include "GrTBackendProcessorFactory.h" #endif namespace { #define kChannelSelectorKeyBits 3; // Max value is 4, so 3 bits are required at most template<SkDisplacementMapEffect::ChannelSelectorType type> uint32_t getValue(SkColor, const SkUnPreMultiply::Scale*) { SkDEBUGFAIL("Unknown channel selector"); return 0; } template<> uint32_t getValue<SkDisplacementMapEffect::kR_ChannelSelectorType>( SkColor l, const SkUnPreMultiply::Scale* table) { return SkUnPreMultiply::ApplyScale(table[SkGetPackedA32(l)], SkGetPackedR32(l)); } template<> uint32_t getValue<SkDisplacementMapEffect::kG_ChannelSelectorType>( SkColor l, const SkUnPreMultiply::Scale* table) { return SkUnPreMultiply::ApplyScale(table[SkGetPackedA32(l)], SkGetPackedG32(l)); } template<> uint32_t getValue<SkDisplacementMapEffect::kB_ChannelSelectorType>( SkColor l, const SkUnPreMultiply::Scale* table) { return SkUnPreMultiply::ApplyScale(table[SkGetPackedA32(l)], SkGetPackedB32(l)); } template<> uint32_t getValue<SkDisplacementMapEffect::kA_ChannelSelectorType>( SkColor l, const SkUnPreMultiply::Scale*) { return SkGetPackedA32(l); } template<SkDisplacementMapEffect::ChannelSelectorType typeX, SkDisplacementMapEffect::ChannelSelectorType typeY> void computeDisplacement(const SkVector& scale, SkBitmap* dst, SkBitmap* displ, const SkIPoint& offset, SkBitmap* src, const SkIRect& bounds) { static const SkScalar Inv8bit = SkScalarDiv(SK_Scalar1, 255.0f); const int srcW = src->width(); const int srcH = src->height(); const SkVector scaleForColor = SkVector::Make(SkScalarMul(scale.fX, Inv8bit), SkScalarMul(scale.fY, Inv8bit)); const SkVector scaleAdj = SkVector::Make(SK_ScalarHalf - SkScalarMul(scale.fX, SK_ScalarHalf), SK_ScalarHalf - SkScalarMul(scale.fY, SK_ScalarHalf)); const SkUnPreMultiply::Scale* table = SkUnPreMultiply::GetScaleTable(); SkPMColor* dstPtr = dst->getAddr32(0, 0); for (int y = bounds.top(); y < bounds.bottom(); ++y) { const SkPMColor* displPtr = displ->getAddr32(bounds.left() + offset.fX, y + offset.fY); for (int x = bounds.left(); x < bounds.right(); ++x, ++displPtr) { const SkScalar displX = SkScalarMul(scaleForColor.fX, SkIntToScalar(getValue<typeX>(*displPtr, table))) + scaleAdj.fX; const SkScalar displY = SkScalarMul(scaleForColor.fY, SkIntToScalar(getValue<typeY>(*displPtr, table))) + scaleAdj.fY; // Truncate the displacement values const int srcX = x + SkScalarTruncToInt(displX); const int srcY = y + SkScalarTruncToInt(displY); *dstPtr++ = ((srcX < 0) || (srcX >= srcW) || (srcY < 0) || (srcY >= srcH)) ? 0 : *(src->getAddr32(srcX, srcY)); } } } template<SkDisplacementMapEffect::ChannelSelectorType typeX> void computeDisplacement(SkDisplacementMapEffect::ChannelSelectorType yChannelSelector, const SkVector& scale, SkBitmap* dst, SkBitmap* displ, const SkIPoint& offset, SkBitmap* src, const SkIRect& bounds) { switch (yChannelSelector) { case SkDisplacementMapEffect::kR_ChannelSelectorType: computeDisplacement<typeX, SkDisplacementMapEffect::kR_ChannelSelectorType>( scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kG_ChannelSelectorType: computeDisplacement<typeX, SkDisplacementMapEffect::kG_ChannelSelectorType>( scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kB_ChannelSelectorType: computeDisplacement<typeX, SkDisplacementMapEffect::kB_ChannelSelectorType>( scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kA_ChannelSelectorType: computeDisplacement<typeX, SkDisplacementMapEffect::kA_ChannelSelectorType>( scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kUnknown_ChannelSelectorType: default: SkDEBUGFAIL("Unknown Y channel selector"); } } void computeDisplacement(SkDisplacementMapEffect::ChannelSelectorType xChannelSelector, SkDisplacementMapEffect::ChannelSelectorType yChannelSelector, const SkVector& scale, SkBitmap* dst, SkBitmap* displ, const SkIPoint& offset, SkBitmap* src, const SkIRect& bounds) { switch (xChannelSelector) { case SkDisplacementMapEffect::kR_ChannelSelectorType: computeDisplacement<SkDisplacementMapEffect::kR_ChannelSelectorType>( yChannelSelector, scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kG_ChannelSelectorType: computeDisplacement<SkDisplacementMapEffect::kG_ChannelSelectorType>( yChannelSelector, scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kB_ChannelSelectorType: computeDisplacement<SkDisplacementMapEffect::kB_ChannelSelectorType>( yChannelSelector, scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kA_ChannelSelectorType: computeDisplacement<SkDisplacementMapEffect::kA_ChannelSelectorType>( yChannelSelector, scale, dst, displ, offset, src, bounds); break; case SkDisplacementMapEffect::kUnknown_ChannelSelectorType: default: SkDEBUGFAIL("Unknown X channel selector"); } } bool channel_selector_type_is_valid(SkDisplacementMapEffect::ChannelSelectorType cst) { switch (cst) { case SkDisplacementMapEffect::kUnknown_ChannelSelectorType: case SkDisplacementMapEffect::kR_ChannelSelectorType: case SkDisplacementMapEffect::kG_ChannelSelectorType: case SkDisplacementMapEffect::kB_ChannelSelectorType: case SkDisplacementMapEffect::kA_ChannelSelectorType: return true; default: break; } return false; } } // end namespace /////////////////////////////////////////////////////////////////////////////// SkDisplacementMapEffect* SkDisplacementMapEffect::Create(ChannelSelectorType xChannelSelector, ChannelSelectorType yChannelSelector, SkScalar scale, SkImageFilter* displacement, SkImageFilter* color, const CropRect* cropRect, uint32_t uniqueID) { if (!channel_selector_type_is_valid(xChannelSelector) || !channel_selector_type_is_valid(yChannelSelector)) { return NULL; } SkImageFilter* inputs[2] = { displacement, color }; return SkNEW_ARGS(SkDisplacementMapEffect, (xChannelSelector, yChannelSelector, scale, inputs, cropRect, uniqueID)); } SkDisplacementMapEffect::SkDisplacementMapEffect(ChannelSelectorType xChannelSelector, ChannelSelectorType yChannelSelector, SkScalar scale, SkImageFilter* inputs[2], const CropRect* cropRect, uint32_t uniqueID) : INHERITED(2, inputs, cropRect, uniqueID) , fXChannelSelector(xChannelSelector) , fYChannelSelector(yChannelSelector) , fScale(scale) { } SkDisplacementMapEffect::~SkDisplacementMapEffect() { } #ifdef SK_SUPPORT_LEGACY_DEEPFLATTENING SkDisplacementMapEffect::SkDisplacementMapEffect(SkReadBuffer& buffer) : INHERITED(2, buffer) { fXChannelSelector = (SkDisplacementMapEffect::ChannelSelectorType) buffer.readInt(); fYChannelSelector = (SkDisplacementMapEffect::ChannelSelectorType) buffer.readInt(); fScale = buffer.readScalar(); buffer.validate(channel_selector_type_is_valid(fXChannelSelector) && channel_selector_type_is_valid(fYChannelSelector) && SkScalarIsFinite(fScale)); } #endif SkFlattenable* SkDisplacementMapEffect::CreateProc(SkReadBuffer& buffer) { SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 2); ChannelSelectorType xsel = (ChannelSelectorType)buffer.readInt(); ChannelSelectorType ysel = (ChannelSelectorType)buffer.readInt(); SkScalar scale = buffer.readScalar(); return Create(xsel, ysel, scale, common.getInput(0), common.getInput(1), &common.cropRect(), common.uniqueID()); } void SkDisplacementMapEffect::flatten(SkWriteBuffer& buffer) const { this->INHERITED::flatten(buffer); buffer.writeInt((int) fXChannelSelector); buffer.writeInt((int) fYChannelSelector); buffer.writeScalar(fScale); } bool SkDisplacementMapEffect::onFilterImage(Proxy* proxy, const SkBitmap& src, const Context& ctx, SkBitmap* dst, SkIPoint* offset) const { SkBitmap displ = src, color = src; const SkImageFilter* colorInput = getColorInput(); const SkImageFilter* displInput = getDisplacementInput(); SkIPoint colorOffset = SkIPoint::Make(0, 0), displOffset = SkIPoint::Make(0, 0); if ((colorInput && !colorInput->filterImage(proxy, src, ctx, &color, &colorOffset)) || (displInput && !displInput->filterImage(proxy, src, ctx, &displ, &displOffset))) { return false; } if ((displ.colorType() != kN32_SkColorType) || (color.colorType() != kN32_SkColorType)) { return false; } SkIRect bounds; // Since computeDisplacement does bounds checking on color pixel access, we don't need to pad // the color bitmap to bounds here. if (!this->applyCropRect(ctx, color, colorOffset, &bounds)) { return false; } SkIRect displBounds; if (!this->applyCropRect(ctx, proxy, displ, &displOffset, &displBounds, &displ)) { return false; } if (!bounds.intersect(displBounds)) { return false; } SkAutoLockPixels alp_displacement(displ), alp_color(color); if (!displ.getPixels() || !color.getPixels()) { return false; } if (!dst->tryAllocPixels(color.info().makeWH(bounds.width(), bounds.height()))) { return false; } SkVector scale = SkVector::Make(fScale, fScale); ctx.ctm().mapVectors(&scale, 1); SkIRect colorBounds = bounds; colorBounds.offset(-colorOffset); computeDisplacement(fXChannelSelector, fYChannelSelector, scale, dst, &displ, colorOffset - displOffset, &color, colorBounds); offset->fX = bounds.left(); offset->fY = bounds.top(); return true; } void SkDisplacementMapEffect::computeFastBounds(const SkRect& src, SkRect* dst) const { if (getColorInput()) { getColorInput()->computeFastBounds(src, dst); } else { *dst = src; } dst->outset(fScale * SK_ScalarHalf, fScale * SK_ScalarHalf); } bool SkDisplacementMapEffect::onFilterBounds(const SkIRect& src, const SkMatrix& ctm, SkIRect* dst) const { SkIRect bounds = src; SkVector scale = SkVector::Make(fScale, fScale); ctm.mapVectors(&scale, 1); bounds.outset(SkScalarCeilToInt(scale.fX * SK_ScalarHalf), SkScalarCeilToInt(scale.fY * SK_ScalarHalf)); if (getColorInput()) { return getColorInput()->filterBounds(bounds, ctm, dst); } *dst = bounds; return true; } /////////////////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU class GrGLDisplacementMapEffect : public GrGLFragmentProcessor { public: GrGLDisplacementMapEffect(const GrBackendProcessorFactory&, const GrProcessor&); virtual ~GrGLDisplacementMapEffect(); virtual void emitCode(GrGLProgramBuilder*, const GrFragmentProcessor&, const GrProcessorKey&, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray&) SK_OVERRIDE; static inline void GenKey(const GrProcessor&, const GrGLCaps&, GrProcessorKeyBuilder*); virtual void setData(const GrGLProgramDataManager&, const GrProcessor&) SK_OVERRIDE; private: SkDisplacementMapEffect::ChannelSelectorType fXChannelSelector; SkDisplacementMapEffect::ChannelSelectorType fYChannelSelector; GrGLProgramDataManager::UniformHandle fScaleUni; typedef GrGLFragmentProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// class GrDisplacementMapEffect : public GrFragmentProcessor { public: static GrFragmentProcessor* Create( SkDisplacementMapEffect::ChannelSelectorType xChannelSelector, SkDisplacementMapEffect::ChannelSelectorType yChannelSelector, SkVector scale, GrTexture* displacement, const SkMatrix& offsetMatrix, GrTexture* color) { return SkNEW_ARGS(GrDisplacementMapEffect, (xChannelSelector, yChannelSelector, scale, displacement, offsetMatrix, color)); } virtual ~GrDisplacementMapEffect(); virtual const GrBackendFragmentProcessorFactory& getFactory() const SK_OVERRIDE; SkDisplacementMapEffect::ChannelSelectorType xChannelSelector() const { return fXChannelSelector; } SkDisplacementMapEffect::ChannelSelectorType yChannelSelector() const { return fYChannelSelector; } const SkVector& scale() const { return fScale; } typedef GrGLDisplacementMapEffect GLProcessor; static const char* Name() { return "DisplacementMap"; } virtual void getConstantColorComponents(GrColor* color, uint32_t* validFlags) const SK_OVERRIDE; private: virtual bool onIsEqual(const GrProcessor&) const SK_OVERRIDE; GrDisplacementMapEffect(SkDisplacementMapEffect::ChannelSelectorType xChannelSelector, SkDisplacementMapEffect::ChannelSelectorType yChannelSelector, const SkVector& scale, GrTexture* displacement, const SkMatrix& offsetMatrix, GrTexture* color); GR_DECLARE_FRAGMENT_PROCESSOR_TEST; GrCoordTransform fDisplacementTransform; GrTextureAccess fDisplacementAccess; GrCoordTransform fColorTransform; GrTextureAccess fColorAccess; SkDisplacementMapEffect::ChannelSelectorType fXChannelSelector; SkDisplacementMapEffect::ChannelSelectorType fYChannelSelector; SkVector fScale; typedef GrFragmentProcessor INHERITED; }; bool SkDisplacementMapEffect::filterImageGPU(Proxy* proxy, const SkBitmap& src, const Context& ctx, SkBitmap* result, SkIPoint* offset) const { SkBitmap colorBM = src; SkIPoint colorOffset = SkIPoint::Make(0, 0); if (getColorInput() && !getColorInput()->getInputResultGPU(proxy, src, ctx, &colorBM, &colorOffset)) { return false; } SkBitmap displacementBM = src; SkIPoint displacementOffset = SkIPoint::Make(0, 0); if (getDisplacementInput() && !getDisplacementInput()->getInputResultGPU(proxy, src, ctx, &displacementBM, &displacementOffset)) { return false; } SkIRect bounds; // Since GrDisplacementMapEffect does bounds checking on color pixel access, we don't need to // pad the color bitmap to bounds here. if (!this->applyCropRect(ctx, colorBM, colorOffset, &bounds)) { return false; } SkIRect displBounds; if (!this->applyCropRect(ctx, proxy, displacementBM, &displacementOffset, &displBounds, &displacementBM)) { return false; } if (!bounds.intersect(displBounds)) { return false; } GrTexture* color = colorBM.getTexture(); GrTexture* displacement = displacementBM.getTexture(); GrContext* context = color->getContext(); GrTextureDesc desc; desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit; desc.fWidth = bounds.width(); desc.fHeight = bounds.height(); desc.fConfig = kSkia8888_GrPixelConfig; GrAutoScratchTexture ast(context, desc); if (NULL == ast.texture()) { return false; } SkAutoTUnref<GrTexture> dst(ast.detach()); GrContext::AutoRenderTarget art(context, dst->asRenderTarget()); SkVector scale = SkVector::Make(fScale, fScale); ctx.ctm().mapVectors(&scale, 1); GrPaint paint; SkMatrix offsetMatrix = GrCoordTransform::MakeDivByTextureWHMatrix(displacement); offsetMatrix.preTranslate(SkIntToScalar(colorOffset.fX - displacementOffset.fX), SkIntToScalar(colorOffset.fY - displacementOffset.fY)); paint.addColorProcessor( GrDisplacementMapEffect::Create(fXChannelSelector, fYChannelSelector, scale, displacement, offsetMatrix, color))->unref(); SkIRect colorBounds = bounds; colorBounds.offset(-colorOffset); GrContext::AutoMatrix am; am.setIdentity(context); SkMatrix matrix; matrix.setTranslate(-SkIntToScalar(colorBounds.x()), -SkIntToScalar(colorBounds.y())); context->concatMatrix(matrix); context->drawRect(paint, SkRect::Make(colorBounds)); offset->fX = bounds.left(); offset->fY = bounds.top(); WrapTexture(dst, bounds.width(), bounds.height(), result); return true; } /////////////////////////////////////////////////////////////////////////////// GrDisplacementMapEffect::GrDisplacementMapEffect( SkDisplacementMapEffect::ChannelSelectorType xChannelSelector, SkDisplacementMapEffect::ChannelSelectorType yChannelSelector, const SkVector& scale, GrTexture* displacement, const SkMatrix& offsetMatrix, GrTexture* color) : fDisplacementTransform(kLocal_GrCoordSet, offsetMatrix, displacement) , fDisplacementAccess(displacement) , fColorTransform(kLocal_GrCoordSet, color) , fColorAccess(color) , fXChannelSelector(xChannelSelector) , fYChannelSelector(yChannelSelector) , fScale(scale) { this->addCoordTransform(&fDisplacementTransform); this->addTextureAccess(&fDisplacementAccess); this->addCoordTransform(&fColorTransform); this->addTextureAccess(&fColorAccess); this->setWillNotUseInputColor(); } GrDisplacementMapEffect::~GrDisplacementMapEffect() { } bool GrDisplacementMapEffect::onIsEqual(const GrProcessor& sBase) const { const GrDisplacementMapEffect& s = sBase.cast<GrDisplacementMapEffect>(); return fDisplacementAccess.getTexture() == s.fDisplacementAccess.getTexture() && fColorAccess.getTexture() == s.fColorAccess.getTexture() && fXChannelSelector == s.fXChannelSelector && fYChannelSelector == s.fYChannelSelector && fScale == s.fScale; } const GrBackendFragmentProcessorFactory& GrDisplacementMapEffect::getFactory() const { return GrTBackendFragmentProcessorFactory<GrDisplacementMapEffect>::getInstance(); } void GrDisplacementMapEffect::getConstantColorComponents(GrColor*, uint32_t* validFlags) const { // Any displacement offset bringing a pixel out of bounds will output a color of (0,0,0,0), // so the only way we'd get a constant alpha is if the input color image has a constant alpha // and no displacement offset push any texture coordinates out of bounds OR if the constant // alpha is 0. Since this isn't trivial to compute at this point, let's assume the output is // not of constant color when a displacement effect is applied. *validFlags = 0; } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrDisplacementMapEffect); GrFragmentProcessor* GrDisplacementMapEffect::TestCreate(SkRandom* random, GrContext*, const GrDrawTargetCaps&, GrTexture* textures[]) { int texIdxDispl = random->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; int texIdxColor = random->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; static const int kMaxComponent = 4; SkDisplacementMapEffect::ChannelSelectorType xChannelSelector = static_cast<SkDisplacementMapEffect::ChannelSelectorType>( random->nextRangeU(1, kMaxComponent)); SkDisplacementMapEffect::ChannelSelectorType yChannelSelector = static_cast<SkDisplacementMapEffect::ChannelSelectorType>( random->nextRangeU(1, kMaxComponent)); SkVector scale = SkVector::Make(random->nextRangeScalar(0, 100.0f), random->nextRangeScalar(0, 100.0f)); return GrDisplacementMapEffect::Create(xChannelSelector, yChannelSelector, scale, textures[texIdxDispl], SkMatrix::I(), textures[texIdxColor]); } /////////////////////////////////////////////////////////////////////////////// GrGLDisplacementMapEffect::GrGLDisplacementMapEffect(const GrBackendProcessorFactory& factory, const GrProcessor& proc) : INHERITED(factory) , fXChannelSelector(proc.cast<GrDisplacementMapEffect>().xChannelSelector()) , fYChannelSelector(proc.cast<GrDisplacementMapEffect>().yChannelSelector()) { } GrGLDisplacementMapEffect::~GrGLDisplacementMapEffect() { } void GrGLDisplacementMapEffect::emitCode(GrGLProgramBuilder* builder, const GrFragmentProcessor&, const GrProcessorKey& key, const char* outputColor, const char* inputColor, const TransformedCoordsArray& coords, const TextureSamplerArray& samplers) { sk_ignore_unused_variable(inputColor); fScaleUni = builder->addUniform(GrGLProgramBuilder::kFragment_Visibility, kVec2f_GrSLType, "Scale"); const char* scaleUni = builder->getUniformCStr(fScaleUni); const char* dColor = "dColor"; const char* cCoords = "cCoords"; const char* outOfBounds = "outOfBounds"; const char* nearZero = "1e-6"; // Since 6.10352e−5 is the smallest half float, use // a number smaller than that to approximate 0, but // leave room for 32-bit float GPU rounding errors. GrGLFragmentShaderBuilder* fsBuilder = builder->getFragmentShaderBuilder(); fsBuilder->codeAppendf("\t\tvec4 %s = ", dColor); fsBuilder->appendTextureLookup(samplers[0], coords[0].c_str(), coords[0].getType()); fsBuilder->codeAppend(";\n"); // Unpremultiply the displacement fsBuilder->codeAppendf("\t\t%s.rgb = (%s.a < %s) ? vec3(0.0) : clamp(%s.rgb / %s.a, 0.0, 1.0);", dColor, dColor, nearZero, dColor, dColor); fsBuilder->codeAppendf("\t\tvec2 %s = %s + %s*(%s.", cCoords, coords[1].c_str(), scaleUni, dColor); switch (fXChannelSelector) { case SkDisplacementMapEffect::kR_ChannelSelectorType: fsBuilder->codeAppend("r"); break; case SkDisplacementMapEffect::kG_ChannelSelectorType: fsBuilder->codeAppend("g"); break; case SkDisplacementMapEffect::kB_ChannelSelectorType: fsBuilder->codeAppend("b"); break; case SkDisplacementMapEffect::kA_ChannelSelectorType: fsBuilder->codeAppend("a"); break; case SkDisplacementMapEffect::kUnknown_ChannelSelectorType: default: SkDEBUGFAIL("Unknown X channel selector"); } switch (fYChannelSelector) { case SkDisplacementMapEffect::kR_ChannelSelectorType: fsBuilder->codeAppend("r"); break; case SkDisplacementMapEffect::kG_ChannelSelectorType: fsBuilder->codeAppend("g"); break; case SkDisplacementMapEffect::kB_ChannelSelectorType: fsBuilder->codeAppend("b"); break; case SkDisplacementMapEffect::kA_ChannelSelectorType: fsBuilder->codeAppend("a"); break; case SkDisplacementMapEffect::kUnknown_ChannelSelectorType: default: SkDEBUGFAIL("Unknown Y channel selector"); } fsBuilder->codeAppend("-vec2(0.5));\t\t"); // FIXME : This can be achieved with a "clamp to border" texture repeat mode and // a 0 border color instead of computing if cCoords is out of bounds here. fsBuilder->codeAppendf( "bool %s = (%s.x < 0.0) || (%s.y < 0.0) || (%s.x > 1.0) || (%s.y > 1.0);\t\t", outOfBounds, cCoords, cCoords, cCoords, cCoords); fsBuilder->codeAppendf("%s = %s ? vec4(0.0) : ", outputColor, outOfBounds); fsBuilder->appendTextureLookup(samplers[1], cCoords, coords[1].getType()); fsBuilder->codeAppend(";\n"); } void GrGLDisplacementMapEffect::setData(const GrGLProgramDataManager& pdman, const GrProcessor& proc) { const GrDisplacementMapEffect& displacementMap = proc.cast<GrDisplacementMapEffect>(); GrTexture* colorTex = displacementMap.texture(1); SkScalar scaleX = SkScalarDiv(displacementMap.scale().fX, SkIntToScalar(colorTex->width())); SkScalar scaleY = SkScalarDiv(displacementMap.scale().fY, SkIntToScalar(colorTex->height())); pdman.set2f(fScaleUni, SkScalarToFloat(scaleX), colorTex->origin() == kTopLeft_GrSurfaceOrigin ? SkScalarToFloat(scaleY) : SkScalarToFloat(-scaleY)); } void GrGLDisplacementMapEffect::GenKey(const GrProcessor& proc, const GrGLCaps&, GrProcessorKeyBuilder* b) { const GrDisplacementMapEffect& displacementMap = proc.cast<GrDisplacementMapEffect>(); uint32_t xKey = displacementMap.xChannelSelector(); uint32_t yKey = displacementMap.yChannelSelector() << kChannelSelectorKeyBits; b->add32(xKey | yKey); } #endif