// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_X64
#include "src/arguments.h"
#include "src/ic-inl.h"
#include "src/codegen.h"
#include "src/stub-cache.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
static void ProbeTable(Isolate* isolate,
MacroAssembler* masm,
Code::Flags flags,
StubCache::Table table,
Register receiver,
Register name,
// The offset is scaled by 4, based on
// kHeapObjectTagSize, which is two bits
Register offset) {
// We need to scale up the pointer by 2 when the offset is scaled by less
// than the pointer size.
ASSERT(kPointerSize == kInt64Size
? kPointerSizeLog2 == kHeapObjectTagSize + 1
: kPointerSizeLog2 == kHeapObjectTagSize);
ScaleFactor scale_factor = kPointerSize == kInt64Size ? times_2 : times_1;
ASSERT_EQ(3 * kPointerSize, sizeof(StubCache::Entry));
// The offset register holds the entry offset times four (due to masking
// and shifting optimizations).
ExternalReference key_offset(isolate->stub_cache()->key_reference(table));
ExternalReference value_offset(isolate->stub_cache()->value_reference(table));
Label miss;
// Multiply by 3 because there are 3 fields per entry (name, code, map).
__ leap(offset, Operand(offset, offset, times_2, 0));
__ LoadAddress(kScratchRegister, key_offset);
// Check that the key in the entry matches the name.
// Multiply entry offset by 16 to get the entry address. Since the
// offset register already holds the entry offset times four, multiply
// by a further four.
__ cmpl(name, Operand(kScratchRegister, offset, scale_factor, 0));
__ j(not_equal, &miss);
// Get the map entry from the cache.
// Use key_offset + kPointerSize * 2, rather than loading map_offset.
__ movp(kScratchRegister,
Operand(kScratchRegister, offset, scale_factor, kPointerSize * 2));
__ cmpp(kScratchRegister, FieldOperand(receiver, HeapObject::kMapOffset));
__ j(not_equal, &miss);
// Get the code entry from the cache.
__ LoadAddress(kScratchRegister, value_offset);
__ movp(kScratchRegister,
Operand(kScratchRegister, offset, scale_factor, 0));
// Check that the flags match what we're looking for.
__ movl(offset, FieldOperand(kScratchRegister, Code::kFlagsOffset));
__ andp(offset, Immediate(~Code::kFlagsNotUsedInLookup));
__ cmpl(offset, Immediate(flags));
__ j(not_equal, &miss);
#ifdef DEBUG
if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
__ jmp(&miss);
} else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
__ jmp(&miss);
}
#endif
// Jump to the first instruction in the code stub.
__ addp(kScratchRegister, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(kScratchRegister);
__ bind(&miss);
}
void StubCompiler::GenerateDictionaryNegativeLookup(MacroAssembler* masm,
Label* miss_label,
Register receiver,
Handle<Name> name,
Register scratch0,
Register scratch1) {
ASSERT(name->IsUniqueName());
ASSERT(!receiver.is(scratch0));
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->negative_lookups(), 1);
__ IncrementCounter(counters->negative_lookups_miss(), 1);
__ movp(scratch0, FieldOperand(receiver, HeapObject::kMapOffset));
const int kInterceptorOrAccessCheckNeededMask =
(1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
// Bail out if the receiver has a named interceptor or requires access checks.
__ testb(FieldOperand(scratch0, Map::kBitFieldOffset),
Immediate(kInterceptorOrAccessCheckNeededMask));
__ j(not_zero, miss_label);
// Check that receiver is a JSObject.
__ CmpInstanceType(scratch0, FIRST_SPEC_OBJECT_TYPE);
__ j(below, miss_label);
// Load properties array.
Register properties = scratch0;
__ movp(properties, FieldOperand(receiver, JSObject::kPropertiesOffset));
// Check that the properties array is a dictionary.
__ CompareRoot(FieldOperand(properties, HeapObject::kMapOffset),
Heap::kHashTableMapRootIndex);
__ j(not_equal, miss_label);
Label done;
NameDictionaryLookupStub::GenerateNegativeLookup(masm,
miss_label,
&done,
properties,
name,
scratch1);
__ bind(&done);
__ DecrementCounter(counters->negative_lookups_miss(), 1);
}
void StubCache::GenerateProbe(MacroAssembler* masm,
Code::Flags flags,
Register receiver,
Register name,
Register scratch,
Register extra,
Register extra2,
Register extra3) {
Isolate* isolate = masm->isolate();
Label miss;
USE(extra); // The register extra is not used on the X64 platform.
USE(extra2); // The register extra2 is not used on the X64 platform.
USE(extra3); // The register extra2 is not used on the X64 platform.
// Make sure that code is valid. The multiplying code relies on the
// entry size being 3 * kPointerSize.
ASSERT(sizeof(Entry) == 3 * kPointerSize);
// Make sure the flags do not name a specific type.
ASSERT(Code::ExtractTypeFromFlags(flags) == 0);
// Make sure that there are no register conflicts.
ASSERT(!scratch.is(receiver));
ASSERT(!scratch.is(name));
// Check scratch register is valid, extra and extra2 are unused.
ASSERT(!scratch.is(no_reg));
ASSERT(extra2.is(no_reg));
ASSERT(extra3.is(no_reg));
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1);
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Get the map of the receiver and compute the hash.
__ movl(scratch, FieldOperand(name, Name::kHashFieldOffset));
// Use only the low 32 bits of the map pointer.
__ addl(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ xorp(scratch, Immediate(flags));
// We mask out the last two bits because they are not part of the hash and
// they are always 01 for maps. Also in the two 'and' instructions below.
__ andp(scratch, Immediate((kPrimaryTableSize - 1) << kHeapObjectTagSize));
// Probe the primary table.
ProbeTable(isolate, masm, flags, kPrimary, receiver, name, scratch);
// Primary miss: Compute hash for secondary probe.
__ movl(scratch, FieldOperand(name, Name::kHashFieldOffset));
__ addl(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ xorp(scratch, Immediate(flags));
__ andp(scratch, Immediate((kPrimaryTableSize - 1) << kHeapObjectTagSize));
__ subl(scratch, name);
__ addl(scratch, Immediate(flags));
__ andp(scratch, Immediate((kSecondaryTableSize - 1) << kHeapObjectTagSize));
// Probe the secondary table.
ProbeTable(isolate, masm, flags, kSecondary, receiver, name, scratch);
// Cache miss: Fall-through and let caller handle the miss by
// entering the runtime system.
__ bind(&miss);
__ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1);
}
void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm,
int index,
Register prototype) {
// Load the global or builtins object from the current context.
__ movp(prototype,
Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
// Load the native context from the global or builtins object.
__ movp(prototype,
FieldOperand(prototype, GlobalObject::kNativeContextOffset));
// Load the function from the native context.
__ movp(prototype, Operand(prototype, Context::SlotOffset(index)));
// Load the initial map. The global functions all have initial maps.
__ movp(prototype,
FieldOperand(prototype, JSFunction::kPrototypeOrInitialMapOffset));
// Load the prototype from the initial map.
__ movp(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype(
MacroAssembler* masm,
int index,
Register prototype,
Label* miss) {
Isolate* isolate = masm->isolate();
// Get the global function with the given index.
Handle<JSFunction> function(
JSFunction::cast(isolate->native_context()->get(index)));
// Check we're still in the same context.
Register scratch = prototype;
const int offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX);
__ movp(scratch, Operand(rsi, offset));
__ movp(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset));
__ Cmp(Operand(scratch, Context::SlotOffset(index)), function);
__ j(not_equal, miss);
// Load its initial map. The global functions all have initial maps.
__ Move(prototype, Handle<Map>(function->initial_map()));
// Load the prototype from the initial map.
__ movp(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* miss_label) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss_label);
// Check that the object is a JS array.
__ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch);
__ j(not_equal, miss_label);
// Load length directly from the JS array.
__ movp(rax, FieldOperand(receiver, JSArray::kLengthOffset));
__ ret(0);
}
void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm,
Register receiver,
Register result,
Register scratch,
Label* miss_label) {
__ TryGetFunctionPrototype(receiver, result, miss_label);
if (!result.is(rax)) __ movp(rax, result);
__ ret(0);
}
void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm,
Register dst,
Register src,
bool inobject,
int index,
Representation representation) {
ASSERT(!representation.IsDouble());
int offset = index * kPointerSize;
if (!inobject) {
// Calculate the offset into the properties array.
offset = offset + FixedArray::kHeaderSize;
__ movp(dst, FieldOperand(src, JSObject::kPropertiesOffset));
src = dst;
}
__ movp(dst, FieldOperand(src, offset));
}
static void PushInterceptorArguments(MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
Handle<JSObject> holder_obj) {
STATIC_ASSERT(StubCache::kInterceptorArgsNameIndex == 0);
STATIC_ASSERT(StubCache::kInterceptorArgsInfoIndex == 1);
STATIC_ASSERT(StubCache::kInterceptorArgsThisIndex == 2);
STATIC_ASSERT(StubCache::kInterceptorArgsHolderIndex == 3);
STATIC_ASSERT(StubCache::kInterceptorArgsLength == 4);
__ Push(name);
Handle<InterceptorInfo> interceptor(holder_obj->GetNamedInterceptor());
ASSERT(!masm->isolate()->heap()->InNewSpace(*interceptor));
__ Move(kScratchRegister, interceptor);
__ Push(kScratchRegister);
__ Push(receiver);
__ Push(holder);
}
static void CompileCallLoadPropertyWithInterceptor(
MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
Handle<JSObject> holder_obj,
IC::UtilityId id) {
PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
__ CallExternalReference(
ExternalReference(IC_Utility(id), masm->isolate()),
StubCache::kInterceptorArgsLength);
}
// Generate call to api function.
void StubCompiler::GenerateFastApiCall(MacroAssembler* masm,
const CallOptimization& optimization,
Handle<Map> receiver_map,
Register receiver,
Register scratch_in,
bool is_store,
int argc,
Register* values) {
ASSERT(optimization.is_simple_api_call());
__ PopReturnAddressTo(scratch_in);
// receiver
__ Push(receiver);
// Write the arguments to stack frame.
for (int i = 0; i < argc; i++) {
Register arg = values[argc-1-i];
ASSERT(!receiver.is(arg));
ASSERT(!scratch_in.is(arg));
__ Push(arg);
}
__ PushReturnAddressFrom(scratch_in);
// Stack now matches JSFunction abi.
// Abi for CallApiFunctionStub.
Register callee = rax;
Register call_data = rbx;
Register holder = rcx;
Register api_function_address = rdx;
Register scratch = rdi; // scratch_in is no longer valid.
// Put holder in place.
CallOptimization::HolderLookup holder_lookup;
Handle<JSObject> api_holder = optimization.LookupHolderOfExpectedType(
receiver_map,
&holder_lookup);
switch (holder_lookup) {
case CallOptimization::kHolderIsReceiver:
__ Move(holder, receiver);
break;
case CallOptimization::kHolderFound:
__ Move(holder, api_holder);
break;
case CallOptimization::kHolderNotFound:
UNREACHABLE();
break;
}
Isolate* isolate = masm->isolate();
Handle<JSFunction> function = optimization.constant_function();
Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
Handle<Object> call_data_obj(api_call_info->data(), isolate);
// Put callee in place.
__ Move(callee, function);
bool call_data_undefined = false;
// Put call_data in place.
if (isolate->heap()->InNewSpace(*call_data_obj)) {
__ Move(scratch, api_call_info);
__ movp(call_data, FieldOperand(scratch, CallHandlerInfo::kDataOffset));
} else if (call_data_obj->IsUndefined()) {
call_data_undefined = true;
__ LoadRoot(call_data, Heap::kUndefinedValueRootIndex);
} else {
__ Move(call_data, call_data_obj);
}
// Put api_function_address in place.
Address function_address = v8::ToCData<Address>(api_call_info->callback());
__ Move(
api_function_address, function_address, RelocInfo::EXTERNAL_REFERENCE);
// Jump to stub.
CallApiFunctionStub stub(isolate, is_store, call_data_undefined, argc);
__ TailCallStub(&stub);
}
void StoreStubCompiler::GenerateRestoreName(MacroAssembler* masm,
Label* label,
Handle<Name> name) {
if (!label->is_unused()) {
__ bind(label);
__ Move(this->name(), name);
}
}
void StubCompiler::GenerateCheckPropertyCell(MacroAssembler* masm,
Handle<JSGlobalObject> global,
Handle<Name> name,
Register scratch,
Label* miss) {
Handle<PropertyCell> cell =
JSGlobalObject::EnsurePropertyCell(global, name);
ASSERT(cell->value()->IsTheHole());
__ Move(scratch, cell);
__ Cmp(FieldOperand(scratch, Cell::kValueOffset),
masm->isolate()->factory()->the_hole_value());
__ j(not_equal, miss);
}
void StoreStubCompiler::GenerateNegativeHolderLookup(
MacroAssembler* masm,
Handle<JSObject> holder,
Register holder_reg,
Handle<Name> name,
Label* miss) {
if (holder->IsJSGlobalObject()) {
GenerateCheckPropertyCell(
masm, Handle<JSGlobalObject>::cast(holder), name, scratch1(), miss);
} else if (!holder->HasFastProperties() && !holder->IsJSGlobalProxy()) {
GenerateDictionaryNegativeLookup(
masm, miss, holder_reg, name, scratch1(), scratch2());
}
}
// Receiver_reg is preserved on jumps to miss_label, but may be destroyed if
// store is successful.
void StoreStubCompiler::GenerateStoreTransition(MacroAssembler* masm,
Handle<JSObject> object,
LookupResult* lookup,
Handle<Map> transition,
Handle<Name> name,
Register receiver_reg,
Register storage_reg,
Register value_reg,
Register scratch1,
Register scratch2,
Register unused,
Label* miss_label,
Label* slow) {
int descriptor = transition->LastAdded();
DescriptorArray* descriptors = transition->instance_descriptors();
PropertyDetails details = descriptors->GetDetails(descriptor);
Representation representation = details.representation();
ASSERT(!representation.IsNone());
if (details.type() == CONSTANT) {
Handle<Object> constant(descriptors->GetValue(descriptor), masm->isolate());
__ Cmp(value_reg, constant);
__ j(not_equal, miss_label);
} else if (representation.IsSmi()) {
__ JumpIfNotSmi(value_reg, miss_label);
} else if (representation.IsHeapObject()) {
__ JumpIfSmi(value_reg, miss_label);
HeapType* field_type = descriptors->GetFieldType(descriptor);
HeapType::Iterator<Map> it = field_type->Classes();
if (!it.Done()) {
Label do_store;
while (true) {
__ CompareMap(value_reg, it.Current());
it.Advance();
if (it.Done()) {
__ j(not_equal, miss_label);
break;
}
__ j(equal, &do_store, Label::kNear);
}
__ bind(&do_store);
}
} else if (representation.IsDouble()) {
Label do_store, heap_number;
__ AllocateHeapNumber(storage_reg, scratch1, slow);
__ JumpIfNotSmi(value_reg, &heap_number);
__ SmiToInteger32(scratch1, value_reg);
__ Cvtlsi2sd(xmm0, scratch1);
__ jmp(&do_store);
__ bind(&heap_number);
__ CheckMap(value_reg, masm->isolate()->factory()->heap_number_map(),
miss_label, DONT_DO_SMI_CHECK);
__ movsd(xmm0, FieldOperand(value_reg, HeapNumber::kValueOffset));
__ bind(&do_store);
__ movsd(FieldOperand(storage_reg, HeapNumber::kValueOffset), xmm0);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
// Perform map transition for the receiver if necessary.
if (details.type() == FIELD &&
object->map()->unused_property_fields() == 0) {
// The properties must be extended before we can store the value.
// We jump to a runtime call that extends the properties array.
__ PopReturnAddressTo(scratch1);
__ Push(receiver_reg);
__ Push(transition);
__ Push(value_reg);
__ PushReturnAddressFrom(scratch1);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage),
masm->isolate()),
3,
1);
return;
}
// Update the map of the object.
__ Move(scratch1, transition);
__ movp(FieldOperand(receiver_reg, HeapObject::kMapOffset), scratch1);
// Update the write barrier for the map field.
__ RecordWriteField(receiver_reg,
HeapObject::kMapOffset,
scratch1,
scratch2,
kDontSaveFPRegs,
OMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
if (details.type() == CONSTANT) {
ASSERT(value_reg.is(rax));
__ ret(0);
return;
}
int index = transition->instance_descriptors()->GetFieldIndex(
transition->LastAdded());
// Adjust for the number of properties stored in the object. Even in the
// face of a transition we can use the old map here because the size of the
// object and the number of in-object properties is not going to change.
index -= object->map()->inobject_properties();
// TODO(verwaest): Share this code as a code stub.
SmiCheck smi_check = representation.IsTagged()
? INLINE_SMI_CHECK : OMIT_SMI_CHECK;
if (index < 0) {
// Set the property straight into the object.
int offset = object->map()->instance_size() + (index * kPointerSize);
if (representation.IsDouble()) {
__ movp(FieldOperand(receiver_reg, offset), storage_reg);
} else {
__ movp(FieldOperand(receiver_reg, offset), value_reg);
}
if (!representation.IsSmi()) {
// Update the write barrier for the array address.
if (!representation.IsDouble()) {
__ movp(storage_reg, value_reg);
}
__ RecordWriteField(
receiver_reg, offset, storage_reg, scratch1, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, smi_check);
}
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Get the properties array (optimistically).
__ movp(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
if (representation.IsDouble()) {
__ movp(FieldOperand(scratch1, offset), storage_reg);
} else {
__ movp(FieldOperand(scratch1, offset), value_reg);
}
if (!representation.IsSmi()) {
// Update the write barrier for the array address.
if (!representation.IsDouble()) {
__ movp(storage_reg, value_reg);
}
__ RecordWriteField(
scratch1, offset, storage_reg, receiver_reg, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, smi_check);
}
}
// Return the value (register rax).
ASSERT(value_reg.is(rax));
__ ret(0);
}
// Both name_reg and receiver_reg are preserved on jumps to miss_label,
// but may be destroyed if store is successful.
void StoreStubCompiler::GenerateStoreField(MacroAssembler* masm,
Handle<JSObject> object,
LookupResult* lookup,
Register receiver_reg,
Register name_reg,
Register value_reg,
Register scratch1,
Register scratch2,
Label* miss_label) {
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
FieldIndex index = lookup->GetFieldIndex();
Representation representation = lookup->representation();
ASSERT(!representation.IsNone());
if (representation.IsSmi()) {
__ JumpIfNotSmi(value_reg, miss_label);
} else if (representation.IsHeapObject()) {
__ JumpIfSmi(value_reg, miss_label);
HeapType* field_type = lookup->GetFieldType();
HeapType::Iterator<Map> it = field_type->Classes();
if (!it.Done()) {
Label do_store;
while (true) {
__ CompareMap(value_reg, it.Current());
it.Advance();
if (it.Done()) {
__ j(not_equal, miss_label);
break;
}
__ j(equal, &do_store, Label::kNear);
}
__ bind(&do_store);
}
} else if (representation.IsDouble()) {
// Load the double storage.
if (index.is_inobject()) {
__ movp(scratch1, FieldOperand(receiver_reg, index.offset()));
} else {
__ movp(scratch1,
FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
__ movp(scratch1, FieldOperand(scratch1, index.offset()));
}
// Store the value into the storage.
Label do_store, heap_number;
__ JumpIfNotSmi(value_reg, &heap_number);
__ SmiToInteger32(scratch2, value_reg);
__ Cvtlsi2sd(xmm0, scratch2);
__ jmp(&do_store);
__ bind(&heap_number);
__ CheckMap(value_reg, masm->isolate()->factory()->heap_number_map(),
miss_label, DONT_DO_SMI_CHECK);
__ movsd(xmm0, FieldOperand(value_reg, HeapNumber::kValueOffset));
__ bind(&do_store);
__ movsd(FieldOperand(scratch1, HeapNumber::kValueOffset), xmm0);
// Return the value (register rax).
ASSERT(value_reg.is(rax));
__ ret(0);
return;
}
// TODO(verwaest): Share this code as a code stub.
SmiCheck smi_check = representation.IsTagged()
? INLINE_SMI_CHECK : OMIT_SMI_CHECK;
if (index.is_inobject()) {
// Set the property straight into the object.
__ movp(FieldOperand(receiver_reg, index.offset()), value_reg);
if (!representation.IsSmi()) {
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ movp(name_reg, value_reg);
__ RecordWriteField(
receiver_reg, index.offset(), name_reg, scratch1, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, smi_check);
}
} else {
// Write to the properties array.
// Get the properties array (optimistically).
__ movp(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
__ movp(FieldOperand(scratch1, index.offset()), value_reg);
if (!representation.IsSmi()) {
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ movp(name_reg, value_reg);
__ RecordWriteField(
scratch1, index.offset(), name_reg, receiver_reg, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, smi_check);
}
}
// Return the value (register rax).
ASSERT(value_reg.is(rax));
__ ret(0);
}
void StubCompiler::GenerateTailCall(MacroAssembler* masm, Handle<Code> code) {
__ jmp(code, RelocInfo::CODE_TARGET);
}
#undef __
#define __ ACCESS_MASM((masm()))
Register StubCompiler::CheckPrototypes(Handle<HeapType> type,
Register object_reg,
Handle<JSObject> holder,
Register holder_reg,
Register scratch1,
Register scratch2,
Handle<Name> name,
Label* miss,
PrototypeCheckType check) {
Handle<Map> receiver_map(IC::TypeToMap(*type, isolate()));
// Make sure there's no overlap between holder and object registers.
ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg)
&& !scratch2.is(scratch1));
// Keep track of the current object in register reg. On the first
// iteration, reg is an alias for object_reg, on later iterations,
// it is an alias for holder_reg.
Register reg = object_reg;
int depth = 0;
Handle<JSObject> current = Handle<JSObject>::null();
if (type->IsConstant()) {
current = Handle<JSObject>::cast(type->AsConstant()->Value());
}
Handle<JSObject> prototype = Handle<JSObject>::null();
Handle<Map> current_map = receiver_map;
Handle<Map> holder_map(holder->map());
// Traverse the prototype chain and check the maps in the prototype chain for
// fast and global objects or do negative lookup for normal objects.
while (!current_map.is_identical_to(holder_map)) {
++depth;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
ASSERT(current_map->IsJSGlobalProxyMap() ||
!current_map->is_access_check_needed());
prototype = handle(JSObject::cast(current_map->prototype()));
if (current_map->is_dictionary_map() &&
!current_map->IsJSGlobalObjectMap() &&
!current_map->IsJSGlobalProxyMap()) {
if (!name->IsUniqueName()) {
ASSERT(name->IsString());
name = factory()->InternalizeString(Handle<String>::cast(name));
}
ASSERT(current.is_null() ||
current->property_dictionary()->FindEntry(name) ==
NameDictionary::kNotFound);
GenerateDictionaryNegativeLookup(masm(), miss, reg, name,
scratch1, scratch2);
__ movp(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
reg = holder_reg; // From now on the object will be in holder_reg.
__ movp(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
bool in_new_space = heap()->InNewSpace(*prototype);
if (in_new_space) {
// Save the map in scratch1 for later.
__ movp(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
}
if (depth != 1 || check == CHECK_ALL_MAPS) {
__ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK);
}
// Check access rights to the global object. This has to happen after
// the map check so that we know that the object is actually a global
// object.
if (current_map->IsJSGlobalProxyMap()) {
__ CheckAccessGlobalProxy(reg, scratch2, miss);
} else if (current_map->IsJSGlobalObjectMap()) {
GenerateCheckPropertyCell(
masm(), Handle<JSGlobalObject>::cast(current), name,
scratch2, miss);
}
reg = holder_reg; // From now on the object will be in holder_reg.
if (in_new_space) {
// The prototype is in new space; we cannot store a reference to it
// in the code. Load it from the map.
__ movp(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
// The prototype is in old space; load it directly.
__ Move(reg, prototype);
}
}
// Go to the next object in the prototype chain.
current = prototype;
current_map = handle(current->map());
}
// Log the check depth.
LOG(isolate(), IntEvent("check-maps-depth", depth + 1));
if (depth != 0 || check == CHECK_ALL_MAPS) {
// Check the holder map.
__ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK);
}
// Perform security check for access to the global object.
ASSERT(current_map->IsJSGlobalProxyMap() ||
!current_map->is_access_check_needed());
if (current_map->IsJSGlobalProxyMap()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
}
// Return the register containing the holder.
return reg;
}
void LoadStubCompiler::HandlerFrontendFooter(Handle<Name> name, Label* miss) {
if (!miss->is_unused()) {
Label success;
__ jmp(&success);
__ bind(miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
__ bind(&success);
}
}
void StoreStubCompiler::HandlerFrontendFooter(Handle<Name> name, Label* miss) {
if (!miss->is_unused()) {
Label success;
__ jmp(&success);
GenerateRestoreName(masm(), miss, name);
TailCallBuiltin(masm(), MissBuiltin(kind()));
__ bind(&success);
}
}
Register LoadStubCompiler::CallbackHandlerFrontend(
Handle<HeapType> type,
Register object_reg,
Handle<JSObject> holder,
Handle<Name> name,
Handle<Object> callback) {
Label miss;
Register reg = HandlerFrontendHeader(type, object_reg, holder, name, &miss);
if (!holder->HasFastProperties() && !holder->IsJSGlobalObject()) {
ASSERT(!reg.is(scratch2()));
ASSERT(!reg.is(scratch3()));
ASSERT(!reg.is(scratch4()));
// Load the properties dictionary.
Register dictionary = scratch4();
__ movp(dictionary, FieldOperand(reg, JSObject::kPropertiesOffset));
// Probe the dictionary.
Label probe_done;
NameDictionaryLookupStub::GeneratePositiveLookup(masm(),
&miss,
&probe_done,
dictionary,
this->name(),
scratch2(),
scratch3());
__ bind(&probe_done);
// If probing finds an entry in the dictionary, scratch3 contains the
// index into the dictionary. Check that the value is the callback.
Register index = scratch3();
const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ movp(scratch2(),
Operand(dictionary, index, times_pointer_size,
kValueOffset - kHeapObjectTag));
__ Move(scratch3(), callback, RelocInfo::EMBEDDED_OBJECT);
__ cmpp(scratch2(), scratch3());
__ j(not_equal, &miss);
}
HandlerFrontendFooter(name, &miss);
return reg;
}
void LoadStubCompiler::GenerateLoadField(Register reg,
Handle<JSObject> holder,
FieldIndex field,
Representation representation) {
if (!reg.is(receiver())) __ movp(receiver(), reg);
if (kind() == Code::LOAD_IC) {
LoadFieldStub stub(isolate(), field);
GenerateTailCall(masm(), stub.GetCode());
} else {
KeyedLoadFieldStub stub(isolate(), field);
GenerateTailCall(masm(), stub.GetCode());
}
}
void LoadStubCompiler::GenerateLoadCallback(
Register reg,
Handle<ExecutableAccessorInfo> callback) {
// Insert additional parameters into the stack frame above return address.
ASSERT(!scratch4().is(reg));
__ PopReturnAddressTo(scratch4());
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 3);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 4);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 6);
__ Push(receiver()); // receiver
if (heap()->InNewSpace(callback->data())) {
ASSERT(!scratch2().is(reg));
__ Move(scratch2(), callback);
__ Push(FieldOperand(scratch2(),
ExecutableAccessorInfo::kDataOffset)); // data
} else {
__ Push(Handle<Object>(callback->data(), isolate()));
}
ASSERT(!kScratchRegister.is(reg));
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ Push(kScratchRegister); // return value
__ Push(kScratchRegister); // return value default
__ PushAddress(ExternalReference::isolate_address(isolate()));
__ Push(reg); // holder
__ Push(name()); // name
// Save a pointer to where we pushed the arguments pointer. This will be
// passed as the const PropertyAccessorInfo& to the C++ callback.
__ PushReturnAddressFrom(scratch4());
// Abi for CallApiGetter
Register api_function_address = r8;
Address getter_address = v8::ToCData<Address>(callback->getter());
__ Move(api_function_address, getter_address, RelocInfo::EXTERNAL_REFERENCE);
CallApiGetterStub stub(isolate());
__ TailCallStub(&stub);
}
void LoadStubCompiler::GenerateLoadConstant(Handle<Object> value) {
// Return the constant value.
__ Move(rax, value);
__ ret(0);
}
void LoadStubCompiler::GenerateLoadInterceptor(
Register holder_reg,
Handle<Object> object,
Handle<JSObject> interceptor_holder,
LookupResult* lookup,
Handle<Name> name) {
ASSERT(interceptor_holder->HasNamedInterceptor());
ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined());
// So far the most popular follow ups for interceptor loads are FIELD
// and CALLBACKS, so inline only them, other cases may be added
// later.
bool compile_followup_inline = false;
if (lookup->IsFound() && lookup->IsCacheable()) {
if (lookup->IsField()) {
compile_followup_inline = true;
} else if (lookup->type() == CALLBACKS &&
lookup->GetCallbackObject()->IsExecutableAccessorInfo()) {
ExecutableAccessorInfo* callback =
ExecutableAccessorInfo::cast(lookup->GetCallbackObject());
compile_followup_inline = callback->getter() != NULL &&
callback->IsCompatibleReceiver(*object);
}
}
if (compile_followup_inline) {
// Compile the interceptor call, followed by inline code to load the
// property from further up the prototype chain if the call fails.
// Check that the maps haven't changed.
ASSERT(holder_reg.is(receiver()) || holder_reg.is(scratch1()));
// Preserve the receiver register explicitly whenever it is different from
// the holder and it is needed should the interceptor return without any
// result. The CALLBACKS case needs the receiver to be passed into C++ code,
// the FIELD case might cause a miss during the prototype check.
bool must_perfrom_prototype_check = *interceptor_holder != lookup->holder();
bool must_preserve_receiver_reg = !receiver().is(holder_reg) &&
(lookup->type() == CALLBACKS || must_perfrom_prototype_check);
// Save necessary data before invoking an interceptor.
// Requires a frame to make GC aware of pushed pointers.
{
FrameScope frame_scope(masm(), StackFrame::INTERNAL);
if (must_preserve_receiver_reg) {
__ Push(receiver());
}
__ Push(holder_reg);
__ Push(this->name());
// Invoke an interceptor. Note: map checks from receiver to
// interceptor's holder has been compiled before (see a caller
// of this method.)
CompileCallLoadPropertyWithInterceptor(
masm(), receiver(), holder_reg, this->name(), interceptor_holder,
IC::kLoadPropertyWithInterceptorOnly);
// Check if interceptor provided a value for property. If it's
// the case, return immediately.
Label interceptor_failed;
__ CompareRoot(rax, Heap::kNoInterceptorResultSentinelRootIndex);
__ j(equal, &interceptor_failed);
frame_scope.GenerateLeaveFrame();
__ ret(0);
__ bind(&interceptor_failed);
__ Pop(this->name());
__ Pop(holder_reg);
if (must_preserve_receiver_reg) {
__ Pop(receiver());
}
// Leave the internal frame.
}
GenerateLoadPostInterceptor(holder_reg, interceptor_holder, name, lookup);
} else { // !compile_followup_inline
// Call the runtime system to load the interceptor.
// Check that the maps haven't changed.
__ PopReturnAddressTo(scratch2());
PushInterceptorArguments(masm(), receiver(), holder_reg,
this->name(), interceptor_holder);
__ PushReturnAddressFrom(scratch2());
ExternalReference ref = ExternalReference(
IC_Utility(IC::kLoadPropertyWithInterceptor), isolate());
__ TailCallExternalReference(ref, StubCache::kInterceptorArgsLength, 1);
}
}
Handle<Code> StoreStubCompiler::CompileStoreCallback(
Handle<JSObject> object,
Handle<JSObject> holder,
Handle<Name> name,
Handle<ExecutableAccessorInfo> callback) {
Register holder_reg = HandlerFrontend(
IC::CurrentTypeOf(object, isolate()), receiver(), holder, name);
__ PopReturnAddressTo(scratch1());
__ Push(receiver());
__ Push(holder_reg);
__ Push(callback); // callback info
__ Push(name);
__ Push(value());
__ PushReturnAddressFrom(scratch1());
// Do tail-call to the runtime system.
ExternalReference store_callback_property =
ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate());
__ TailCallExternalReference(store_callback_property, 5, 1);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
#undef __
#define __ ACCESS_MASM(masm)
void StoreStubCompiler::GenerateStoreViaSetter(
MacroAssembler* masm,
Handle<HeapType> type,
Register receiver,
Handle<JSFunction> setter) {
// ----------- S t a t e -------------
// -- rsp[0] : return address
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Save value register, so we can restore it later.
__ Push(value());
if (!setter.is_null()) {
// Call the JavaScript setter with receiver and value on the stack.
if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) {
// Swap in the global receiver.
__ movp(receiver,
FieldOperand(receiver, JSGlobalObject::kGlobalReceiverOffset));
}
__ Push(receiver);
__ Push(value());
ParameterCount actual(1);
ParameterCount expected(setter);
__ InvokeFunction(setter, expected, actual,
CALL_FUNCTION, NullCallWrapper());
} else {
// If we generate a global code snippet for deoptimization only, remember
// the place to continue after deoptimization.
masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset());
}
// We have to return the passed value, not the return value of the setter.
__ Pop(rax);
// Restore context register.
__ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
}
__ ret(0);
}
#undef __
#define __ ACCESS_MASM(masm())
Handle<Code> StoreStubCompiler::CompileStoreInterceptor(
Handle<JSObject> object,
Handle<Name> name) {
__ PopReturnAddressTo(scratch1());
__ Push(receiver());
__ Push(this->name());
__ Push(value());
__ PushReturnAddressFrom(scratch1());
// Do tail-call to the runtime system.
ExternalReference store_ic_property =
ExternalReference(IC_Utility(IC::kStoreInterceptorProperty), isolate());
__ TailCallExternalReference(store_ic_property, 3, 1);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
void StoreStubCompiler::GenerateStoreArrayLength() {
// Prepare tail call to StoreIC_ArrayLength.
__ PopReturnAddressTo(scratch1());
__ Push(receiver());
__ Push(value());
__ PushReturnAddressFrom(scratch1());
ExternalReference ref =
ExternalReference(IC_Utility(IC::kStoreIC_ArrayLength),
masm()->isolate());
__ TailCallExternalReference(ref, 2, 1);
}
Handle<Code> KeyedStoreStubCompiler::CompileStorePolymorphic(
MapHandleList* receiver_maps,
CodeHandleList* handler_stubs,
MapHandleList* transitioned_maps) {
Label miss;
__ JumpIfSmi(receiver(), &miss, Label::kNear);
__ movp(scratch1(), FieldOperand(receiver(), HeapObject::kMapOffset));
int receiver_count = receiver_maps->length();
for (int i = 0; i < receiver_count; ++i) {
// Check map and tail call if there's a match
__ Cmp(scratch1(), receiver_maps->at(i));
if (transitioned_maps->at(i).is_null()) {
__ j(equal, handler_stubs->at(i), RelocInfo::CODE_TARGET);
} else {
Label next_map;
__ j(not_equal, &next_map, Label::kNear);
__ Move(transition_map(),
transitioned_maps->at(i),
RelocInfo::EMBEDDED_OBJECT);
__ jmp(handler_stubs->at(i), RelocInfo::CODE_TARGET);
__ bind(&next_map);
}
}
__ bind(&miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
// Return the generated code.
return GetICCode(
kind(), Code::NORMAL, factory()->empty_string(), POLYMORPHIC);
}
Handle<Code> LoadStubCompiler::CompileLoadNonexistent(Handle<HeapType> type,
Handle<JSObject> last,
Handle<Name> name) {
NonexistentHandlerFrontend(type, last, name);
// Return undefined if maps of the full prototype chain are still the
// same and no global property with this name contains a value.
__ LoadRoot(rax, Heap::kUndefinedValueRootIndex);
__ ret(0);
// Return the generated code.
return GetCode(kind(), Code::FAST, name);
}
Register* LoadStubCompiler::registers() {
// receiver, name, scratch1, scratch2, scratch3, scratch4.
static Register registers[] = { rax, rcx, rdx, rbx, rdi, r8 };
return registers;
}
Register* KeyedLoadStubCompiler::registers() {
// receiver, name, scratch1, scratch2, scratch3, scratch4.
static Register registers[] = { rdx, rax, rbx, rcx, rdi, r8 };
return registers;
}
Register StoreStubCompiler::value() {
return rax;
}
Register* StoreStubCompiler::registers() {
// receiver, name, scratch1, scratch2, scratch3.
static Register registers[] = { rdx, rcx, rbx, rdi, r8 };
return registers;
}
Register* KeyedStoreStubCompiler::registers() {
// receiver, name, scratch1, scratch2, scratch3.
static Register registers[] = { rdx, rcx, rbx, rdi, r8 };
return registers;
}
#undef __
#define __ ACCESS_MASM(masm)
void LoadStubCompiler::GenerateLoadViaGetter(MacroAssembler* masm,
Handle<HeapType> type,
Register receiver,
Handle<JSFunction> getter) {
// ----------- S t a t e -------------
// -- rax : receiver
// -- rcx : name
// -- rsp[0] : return address
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
if (!getter.is_null()) {
// Call the JavaScript getter with the receiver on the stack.
if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) {
// Swap in the global receiver.
__ movp(receiver,
FieldOperand(receiver, JSGlobalObject::kGlobalReceiverOffset));
}
__ Push(receiver);
ParameterCount actual(0);
ParameterCount expected(getter);
__ InvokeFunction(getter, expected, actual,
CALL_FUNCTION, NullCallWrapper());
} else {
// If we generate a global code snippet for deoptimization only, remember
// the place to continue after deoptimization.
masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset());
}
// Restore context register.
__ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
}
__ ret(0);
}
#undef __
#define __ ACCESS_MASM(masm())
Handle<Code> LoadStubCompiler::CompileLoadGlobal(
Handle<HeapType> type,
Handle<GlobalObject> global,
Handle<PropertyCell> cell,
Handle<Name> name,
bool is_dont_delete) {
Label miss;
// TODO(verwaest): Directly store to rax. Currently we cannot do this, since
// rax is used as receiver(), which we would otherwise clobber before a
// potential miss.
HandlerFrontendHeader(type, receiver(), global, name, &miss);
// Get the value from the cell.
__ Move(rbx, cell);
__ movp(rbx, FieldOperand(rbx, PropertyCell::kValueOffset));
// Check for deleted property if property can actually be deleted.
if (!is_dont_delete) {
__ CompareRoot(rbx, Heap::kTheHoleValueRootIndex);
__ j(equal, &miss);
} else if (FLAG_debug_code) {
__ CompareRoot(rbx, Heap::kTheHoleValueRootIndex);
__ Check(not_equal, kDontDeleteCellsCannotContainTheHole);
}
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->named_load_global_stub(), 1);
__ movp(rax, rbx);
__ ret(0);
HandlerFrontendFooter(name, &miss);
// Return the generated code.
return GetCode(kind(), Code::NORMAL, name);
}
Handle<Code> BaseLoadStoreStubCompiler::CompilePolymorphicIC(
TypeHandleList* types,
CodeHandleList* handlers,
Handle<Name> name,
Code::StubType type,
IcCheckType check) {
Label miss;
if (check == PROPERTY &&
(kind() == Code::KEYED_LOAD_IC || kind() == Code::KEYED_STORE_IC)) {
__ Cmp(this->name(), name);
__ j(not_equal, &miss);
}
Label number_case;
Label* smi_target = IncludesNumberType(types) ? &number_case : &miss;
__ JumpIfSmi(receiver(), smi_target);
Register map_reg = scratch1();
__ movp(map_reg, FieldOperand(receiver(), HeapObject::kMapOffset));
int receiver_count = types->length();
int number_of_handled_maps = 0;
for (int current = 0; current < receiver_count; ++current) {
Handle<HeapType> type = types->at(current);
Handle<Map> map = IC::TypeToMap(*type, isolate());
if (!map->is_deprecated()) {
number_of_handled_maps++;
// Check map and tail call if there's a match
__ Cmp(map_reg, map);
if (type->Is(HeapType::Number())) {
ASSERT(!number_case.is_unused());
__ bind(&number_case);
}
__ j(equal, handlers->at(current), RelocInfo::CODE_TARGET);
}
}
ASSERT(number_of_handled_maps > 0);
__ bind(&miss);
TailCallBuiltin(masm(), MissBuiltin(kind()));
// Return the generated code.
InlineCacheState state =
number_of_handled_maps > 1 ? POLYMORPHIC : MONOMORPHIC;
return GetICCode(kind(), type, name, state);
}
#undef __
#define __ ACCESS_MASM(masm)
void KeyedLoadStubCompiler::GenerateLoadDictionaryElement(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
Label slow, miss;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
__ JumpIfNotSmi(rax, &miss);
__ SmiToInteger32(rbx, rax);
__ movp(rcx, FieldOperand(rdx, JSObject::kElementsOffset));
// Check whether the elements is a number dictionary.
// rdx: receiver
// rax: key
// rbx: key as untagged int32
// rcx: elements
__ LoadFromNumberDictionary(&slow, rcx, rax, rbx, r9, rdi, rax);
__ ret(0);
__ bind(&slow);
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
TailCallBuiltin(masm, Builtins::kKeyedLoadIC_Slow);
__ bind(&miss);
// ----------- S t a t e -------------
// -- rax : key
// -- rdx : receiver
// -- rsp[0] : return address
// -----------------------------------
TailCallBuiltin(masm, Builtins::kKeyedLoadIC_Miss);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64