// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_X64 #include "src/arguments.h" #include "src/ic-inl.h" #include "src/codegen.h" #include "src/stub-cache.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) static void ProbeTable(Isolate* isolate, MacroAssembler* masm, Code::Flags flags, StubCache::Table table, Register receiver, Register name, // The offset is scaled by 4, based on // kHeapObjectTagSize, which is two bits Register offset) { // We need to scale up the pointer by 2 when the offset is scaled by less // than the pointer size. ASSERT(kPointerSize == kInt64Size ? kPointerSizeLog2 == kHeapObjectTagSize + 1 : kPointerSizeLog2 == kHeapObjectTagSize); ScaleFactor scale_factor = kPointerSize == kInt64Size ? times_2 : times_1; ASSERT_EQ(3 * kPointerSize, sizeof(StubCache::Entry)); // The offset register holds the entry offset times four (due to masking // and shifting optimizations). ExternalReference key_offset(isolate->stub_cache()->key_reference(table)); ExternalReference value_offset(isolate->stub_cache()->value_reference(table)); Label miss; // Multiply by 3 because there are 3 fields per entry (name, code, map). __ leap(offset, Operand(offset, offset, times_2, 0)); __ LoadAddress(kScratchRegister, key_offset); // Check that the key in the entry matches the name. // Multiply entry offset by 16 to get the entry address. Since the // offset register already holds the entry offset times four, multiply // by a further four. __ cmpl(name, Operand(kScratchRegister, offset, scale_factor, 0)); __ j(not_equal, &miss); // Get the map entry from the cache. // Use key_offset + kPointerSize * 2, rather than loading map_offset. __ movp(kScratchRegister, Operand(kScratchRegister, offset, scale_factor, kPointerSize * 2)); __ cmpp(kScratchRegister, FieldOperand(receiver, HeapObject::kMapOffset)); __ j(not_equal, &miss); // Get the code entry from the cache. __ LoadAddress(kScratchRegister, value_offset); __ movp(kScratchRegister, Operand(kScratchRegister, offset, scale_factor, 0)); // Check that the flags match what we're looking for. __ movl(offset, FieldOperand(kScratchRegister, Code::kFlagsOffset)); __ andp(offset, Immediate(~Code::kFlagsNotUsedInLookup)); __ cmpl(offset, Immediate(flags)); __ j(not_equal, &miss); #ifdef DEBUG if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) { __ jmp(&miss); } else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) { __ jmp(&miss); } #endif // Jump to the first instruction in the code stub. __ addp(kScratchRegister, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(kScratchRegister); __ bind(&miss); } void StubCompiler::GenerateDictionaryNegativeLookup(MacroAssembler* masm, Label* miss_label, Register receiver, Handle<Name> name, Register scratch0, Register scratch1) { ASSERT(name->IsUniqueName()); ASSERT(!receiver.is(scratch0)); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->negative_lookups(), 1); __ IncrementCounter(counters->negative_lookups_miss(), 1); __ movp(scratch0, FieldOperand(receiver, HeapObject::kMapOffset)); const int kInterceptorOrAccessCheckNeededMask = (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded); // Bail out if the receiver has a named interceptor or requires access checks. __ testb(FieldOperand(scratch0, Map::kBitFieldOffset), Immediate(kInterceptorOrAccessCheckNeededMask)); __ j(not_zero, miss_label); // Check that receiver is a JSObject. __ CmpInstanceType(scratch0, FIRST_SPEC_OBJECT_TYPE); __ j(below, miss_label); // Load properties array. Register properties = scratch0; __ movp(properties, FieldOperand(receiver, JSObject::kPropertiesOffset)); // Check that the properties array is a dictionary. __ CompareRoot(FieldOperand(properties, HeapObject::kMapOffset), Heap::kHashTableMapRootIndex); __ j(not_equal, miss_label); Label done; NameDictionaryLookupStub::GenerateNegativeLookup(masm, miss_label, &done, properties, name, scratch1); __ bind(&done); __ DecrementCounter(counters->negative_lookups_miss(), 1); } void StubCache::GenerateProbe(MacroAssembler* masm, Code::Flags flags, Register receiver, Register name, Register scratch, Register extra, Register extra2, Register extra3) { Isolate* isolate = masm->isolate(); Label miss; USE(extra); // The register extra is not used on the X64 platform. USE(extra2); // The register extra2 is not used on the X64 platform. USE(extra3); // The register extra2 is not used on the X64 platform. // Make sure that code is valid. The multiplying code relies on the // entry size being 3 * kPointerSize. ASSERT(sizeof(Entry) == 3 * kPointerSize); // Make sure the flags do not name a specific type. ASSERT(Code::ExtractTypeFromFlags(flags) == 0); // Make sure that there are no register conflicts. ASSERT(!scratch.is(receiver)); ASSERT(!scratch.is(name)); // Check scratch register is valid, extra and extra2 are unused. ASSERT(!scratch.is(no_reg)); ASSERT(extra2.is(no_reg)); ASSERT(extra3.is(no_reg)); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, &miss); // Get the map of the receiver and compute the hash. __ movl(scratch, FieldOperand(name, Name::kHashFieldOffset)); // Use only the low 32 bits of the map pointer. __ addl(scratch, FieldOperand(receiver, HeapObject::kMapOffset)); __ xorp(scratch, Immediate(flags)); // We mask out the last two bits because they are not part of the hash and // they are always 01 for maps. Also in the two 'and' instructions below. __ andp(scratch, Immediate((kPrimaryTableSize - 1) << kHeapObjectTagSize)); // Probe the primary table. ProbeTable(isolate, masm, flags, kPrimary, receiver, name, scratch); // Primary miss: Compute hash for secondary probe. __ movl(scratch, FieldOperand(name, Name::kHashFieldOffset)); __ addl(scratch, FieldOperand(receiver, HeapObject::kMapOffset)); __ xorp(scratch, Immediate(flags)); __ andp(scratch, Immediate((kPrimaryTableSize - 1) << kHeapObjectTagSize)); __ subl(scratch, name); __ addl(scratch, Immediate(flags)); __ andp(scratch, Immediate((kSecondaryTableSize - 1) << kHeapObjectTagSize)); // Probe the secondary table. ProbeTable(isolate, masm, flags, kSecondary, receiver, name, scratch); // Cache miss: Fall-through and let caller handle the miss by // entering the runtime system. __ bind(&miss); __ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1); } void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm, int index, Register prototype) { // Load the global or builtins object from the current context. __ movp(prototype, Operand(rsi, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); // Load the native context from the global or builtins object. __ movp(prototype, FieldOperand(prototype, GlobalObject::kNativeContextOffset)); // Load the function from the native context. __ movp(prototype, Operand(prototype, Context::SlotOffset(index))); // Load the initial map. The global functions all have initial maps. __ movp(prototype, FieldOperand(prototype, JSFunction::kPrototypeOrInitialMapOffset)); // Load the prototype from the initial map. __ movp(prototype, FieldOperand(prototype, Map::kPrototypeOffset)); } void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype( MacroAssembler* masm, int index, Register prototype, Label* miss) { Isolate* isolate = masm->isolate(); // Get the global function with the given index. Handle<JSFunction> function( JSFunction::cast(isolate->native_context()->get(index))); // Check we're still in the same context. Register scratch = prototype; const int offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX); __ movp(scratch, Operand(rsi, offset)); __ movp(scratch, FieldOperand(scratch, GlobalObject::kNativeContextOffset)); __ Cmp(Operand(scratch, Context::SlotOffset(index)), function); __ j(not_equal, miss); // Load its initial map. The global functions all have initial maps. __ Move(prototype, Handle<Map>(function->initial_map())); // Load the prototype from the initial map. __ movp(prototype, FieldOperand(prototype, Map::kPrototypeOffset)); } void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm, Register receiver, Register scratch, Label* miss_label) { // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, miss_label); // Check that the object is a JS array. __ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch); __ j(not_equal, miss_label); // Load length directly from the JS array. __ movp(rax, FieldOperand(receiver, JSArray::kLengthOffset)); __ ret(0); } void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm, Register receiver, Register result, Register scratch, Label* miss_label) { __ TryGetFunctionPrototype(receiver, result, miss_label); if (!result.is(rax)) __ movp(rax, result); __ ret(0); } void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm, Register dst, Register src, bool inobject, int index, Representation representation) { ASSERT(!representation.IsDouble()); int offset = index * kPointerSize; if (!inobject) { // Calculate the offset into the properties array. offset = offset + FixedArray::kHeaderSize; __ movp(dst, FieldOperand(src, JSObject::kPropertiesOffset)); src = dst; } __ movp(dst, FieldOperand(src, offset)); } static void PushInterceptorArguments(MacroAssembler* masm, Register receiver, Register holder, Register name, Handle<JSObject> holder_obj) { STATIC_ASSERT(StubCache::kInterceptorArgsNameIndex == 0); STATIC_ASSERT(StubCache::kInterceptorArgsInfoIndex == 1); STATIC_ASSERT(StubCache::kInterceptorArgsThisIndex == 2); STATIC_ASSERT(StubCache::kInterceptorArgsHolderIndex == 3); STATIC_ASSERT(StubCache::kInterceptorArgsLength == 4); __ Push(name); Handle<InterceptorInfo> interceptor(holder_obj->GetNamedInterceptor()); ASSERT(!masm->isolate()->heap()->InNewSpace(*interceptor)); __ Move(kScratchRegister, interceptor); __ Push(kScratchRegister); __ Push(receiver); __ Push(holder); } static void CompileCallLoadPropertyWithInterceptor( MacroAssembler* masm, Register receiver, Register holder, Register name, Handle<JSObject> holder_obj, IC::UtilityId id) { PushInterceptorArguments(masm, receiver, holder, name, holder_obj); __ CallExternalReference( ExternalReference(IC_Utility(id), masm->isolate()), StubCache::kInterceptorArgsLength); } // Generate call to api function. void StubCompiler::GenerateFastApiCall(MacroAssembler* masm, const CallOptimization& optimization, Handle<Map> receiver_map, Register receiver, Register scratch_in, bool is_store, int argc, Register* values) { ASSERT(optimization.is_simple_api_call()); __ PopReturnAddressTo(scratch_in); // receiver __ Push(receiver); // Write the arguments to stack frame. for (int i = 0; i < argc; i++) { Register arg = values[argc-1-i]; ASSERT(!receiver.is(arg)); ASSERT(!scratch_in.is(arg)); __ Push(arg); } __ PushReturnAddressFrom(scratch_in); // Stack now matches JSFunction abi. // Abi for CallApiFunctionStub. Register callee = rax; Register call_data = rbx; Register holder = rcx; Register api_function_address = rdx; Register scratch = rdi; // scratch_in is no longer valid. // Put holder in place. CallOptimization::HolderLookup holder_lookup; Handle<JSObject> api_holder = optimization.LookupHolderOfExpectedType( receiver_map, &holder_lookup); switch (holder_lookup) { case CallOptimization::kHolderIsReceiver: __ Move(holder, receiver); break; case CallOptimization::kHolderFound: __ Move(holder, api_holder); break; case CallOptimization::kHolderNotFound: UNREACHABLE(); break; } Isolate* isolate = masm->isolate(); Handle<JSFunction> function = optimization.constant_function(); Handle<CallHandlerInfo> api_call_info = optimization.api_call_info(); Handle<Object> call_data_obj(api_call_info->data(), isolate); // Put callee in place. __ Move(callee, function); bool call_data_undefined = false; // Put call_data in place. if (isolate->heap()->InNewSpace(*call_data_obj)) { __ Move(scratch, api_call_info); __ movp(call_data, FieldOperand(scratch, CallHandlerInfo::kDataOffset)); } else if (call_data_obj->IsUndefined()) { call_data_undefined = true; __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex); } else { __ Move(call_data, call_data_obj); } // Put api_function_address in place. Address function_address = v8::ToCData<Address>(api_call_info->callback()); __ Move( api_function_address, function_address, RelocInfo::EXTERNAL_REFERENCE); // Jump to stub. CallApiFunctionStub stub(isolate, is_store, call_data_undefined, argc); __ TailCallStub(&stub); } void StoreStubCompiler::GenerateRestoreName(MacroAssembler* masm, Label* label, Handle<Name> name) { if (!label->is_unused()) { __ bind(label); __ Move(this->name(), name); } } void StubCompiler::GenerateCheckPropertyCell(MacroAssembler* masm, Handle<JSGlobalObject> global, Handle<Name> name, Register scratch, Label* miss) { Handle<PropertyCell> cell = JSGlobalObject::EnsurePropertyCell(global, name); ASSERT(cell->value()->IsTheHole()); __ Move(scratch, cell); __ Cmp(FieldOperand(scratch, Cell::kValueOffset), masm->isolate()->factory()->the_hole_value()); __ j(not_equal, miss); } void StoreStubCompiler::GenerateNegativeHolderLookup( MacroAssembler* masm, Handle<JSObject> holder, Register holder_reg, Handle<Name> name, Label* miss) { if (holder->IsJSGlobalObject()) { GenerateCheckPropertyCell( masm, Handle<JSGlobalObject>::cast(holder), name, scratch1(), miss); } else if (!holder->HasFastProperties() && !holder->IsJSGlobalProxy()) { GenerateDictionaryNegativeLookup( masm, miss, holder_reg, name, scratch1(), scratch2()); } } // Receiver_reg is preserved on jumps to miss_label, but may be destroyed if // store is successful. void StoreStubCompiler::GenerateStoreTransition(MacroAssembler* masm, Handle<JSObject> object, LookupResult* lookup, Handle<Map> transition, Handle<Name> name, Register receiver_reg, Register storage_reg, Register value_reg, Register scratch1, Register scratch2, Register unused, Label* miss_label, Label* slow) { int descriptor = transition->LastAdded(); DescriptorArray* descriptors = transition->instance_descriptors(); PropertyDetails details = descriptors->GetDetails(descriptor); Representation representation = details.representation(); ASSERT(!representation.IsNone()); if (details.type() == CONSTANT) { Handle<Object> constant(descriptors->GetValue(descriptor), masm->isolate()); __ Cmp(value_reg, constant); __ j(not_equal, miss_label); } else if (representation.IsSmi()) { __ JumpIfNotSmi(value_reg, miss_label); } else if (representation.IsHeapObject()) { __ JumpIfSmi(value_reg, miss_label); HeapType* field_type = descriptors->GetFieldType(descriptor); HeapType::Iterator<Map> it = field_type->Classes(); if (!it.Done()) { Label do_store; while (true) { __ CompareMap(value_reg, it.Current()); it.Advance(); if (it.Done()) { __ j(not_equal, miss_label); break; } __ j(equal, &do_store, Label::kNear); } __ bind(&do_store); } } else if (representation.IsDouble()) { Label do_store, heap_number; __ AllocateHeapNumber(storage_reg, scratch1, slow); __ JumpIfNotSmi(value_reg, &heap_number); __ SmiToInteger32(scratch1, value_reg); __ Cvtlsi2sd(xmm0, scratch1); __ jmp(&do_store); __ bind(&heap_number); __ CheckMap(value_reg, masm->isolate()->factory()->heap_number_map(), miss_label, DONT_DO_SMI_CHECK); __ movsd(xmm0, FieldOperand(value_reg, HeapNumber::kValueOffset)); __ bind(&do_store); __ movsd(FieldOperand(storage_reg, HeapNumber::kValueOffset), xmm0); } // Stub never generated for non-global objects that require access // checks. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); // Perform map transition for the receiver if necessary. if (details.type() == FIELD && object->map()->unused_property_fields() == 0) { // The properties must be extended before we can store the value. // We jump to a runtime call that extends the properties array. __ PopReturnAddressTo(scratch1); __ Push(receiver_reg); __ Push(transition); __ Push(value_reg); __ PushReturnAddressFrom(scratch1); __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage), masm->isolate()), 3, 1); return; } // Update the map of the object. __ Move(scratch1, transition); __ movp(FieldOperand(receiver_reg, HeapObject::kMapOffset), scratch1); // Update the write barrier for the map field. __ RecordWriteField(receiver_reg, HeapObject::kMapOffset, scratch1, scratch2, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); if (details.type() == CONSTANT) { ASSERT(value_reg.is(rax)); __ ret(0); return; } int index = transition->instance_descriptors()->GetFieldIndex( transition->LastAdded()); // Adjust for the number of properties stored in the object. Even in the // face of a transition we can use the old map here because the size of the // object and the number of in-object properties is not going to change. index -= object->map()->inobject_properties(); // TODO(verwaest): Share this code as a code stub. SmiCheck smi_check = representation.IsTagged() ? INLINE_SMI_CHECK : OMIT_SMI_CHECK; if (index < 0) { // Set the property straight into the object. int offset = object->map()->instance_size() + (index * kPointerSize); if (representation.IsDouble()) { __ movp(FieldOperand(receiver_reg, offset), storage_reg); } else { __ movp(FieldOperand(receiver_reg, offset), value_reg); } if (!representation.IsSmi()) { // Update the write barrier for the array address. if (!representation.IsDouble()) { __ movp(storage_reg, value_reg); } __ RecordWriteField( receiver_reg, offset, storage_reg, scratch1, kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check); } } else { // Write to the properties array. int offset = index * kPointerSize + FixedArray::kHeaderSize; // Get the properties array (optimistically). __ movp(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset)); if (representation.IsDouble()) { __ movp(FieldOperand(scratch1, offset), storage_reg); } else { __ movp(FieldOperand(scratch1, offset), value_reg); } if (!representation.IsSmi()) { // Update the write barrier for the array address. if (!representation.IsDouble()) { __ movp(storage_reg, value_reg); } __ RecordWriteField( scratch1, offset, storage_reg, receiver_reg, kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check); } } // Return the value (register rax). ASSERT(value_reg.is(rax)); __ ret(0); } // Both name_reg and receiver_reg are preserved on jumps to miss_label, // but may be destroyed if store is successful. void StoreStubCompiler::GenerateStoreField(MacroAssembler* masm, Handle<JSObject> object, LookupResult* lookup, Register receiver_reg, Register name_reg, Register value_reg, Register scratch1, Register scratch2, Label* miss_label) { // Stub never generated for non-global objects that require access // checks. ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded()); FieldIndex index = lookup->GetFieldIndex(); Representation representation = lookup->representation(); ASSERT(!representation.IsNone()); if (representation.IsSmi()) { __ JumpIfNotSmi(value_reg, miss_label); } else if (representation.IsHeapObject()) { __ JumpIfSmi(value_reg, miss_label); HeapType* field_type = lookup->GetFieldType(); HeapType::Iterator<Map> it = field_type->Classes(); if (!it.Done()) { Label do_store; while (true) { __ CompareMap(value_reg, it.Current()); it.Advance(); if (it.Done()) { __ j(not_equal, miss_label); break; } __ j(equal, &do_store, Label::kNear); } __ bind(&do_store); } } else if (representation.IsDouble()) { // Load the double storage. if (index.is_inobject()) { __ movp(scratch1, FieldOperand(receiver_reg, index.offset())); } else { __ movp(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset)); __ movp(scratch1, FieldOperand(scratch1, index.offset())); } // Store the value into the storage. Label do_store, heap_number; __ JumpIfNotSmi(value_reg, &heap_number); __ SmiToInteger32(scratch2, value_reg); __ Cvtlsi2sd(xmm0, scratch2); __ jmp(&do_store); __ bind(&heap_number); __ CheckMap(value_reg, masm->isolate()->factory()->heap_number_map(), miss_label, DONT_DO_SMI_CHECK); __ movsd(xmm0, FieldOperand(value_reg, HeapNumber::kValueOffset)); __ bind(&do_store); __ movsd(FieldOperand(scratch1, HeapNumber::kValueOffset), xmm0); // Return the value (register rax). ASSERT(value_reg.is(rax)); __ ret(0); return; } // TODO(verwaest): Share this code as a code stub. SmiCheck smi_check = representation.IsTagged() ? INLINE_SMI_CHECK : OMIT_SMI_CHECK; if (index.is_inobject()) { // Set the property straight into the object. __ movp(FieldOperand(receiver_reg, index.offset()), value_reg); if (!representation.IsSmi()) { // Update the write barrier for the array address. // Pass the value being stored in the now unused name_reg. __ movp(name_reg, value_reg); __ RecordWriteField( receiver_reg, index.offset(), name_reg, scratch1, kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check); } } else { // Write to the properties array. // Get the properties array (optimistically). __ movp(scratch1, FieldOperand(receiver_reg, JSObject::kPropertiesOffset)); __ movp(FieldOperand(scratch1, index.offset()), value_reg); if (!representation.IsSmi()) { // Update the write barrier for the array address. // Pass the value being stored in the now unused name_reg. __ movp(name_reg, value_reg); __ RecordWriteField( scratch1, index.offset(), name_reg, receiver_reg, kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check); } } // Return the value (register rax). ASSERT(value_reg.is(rax)); __ ret(0); } void StubCompiler::GenerateTailCall(MacroAssembler* masm, Handle<Code> code) { __ jmp(code, RelocInfo::CODE_TARGET); } #undef __ #define __ ACCESS_MASM((masm())) Register StubCompiler::CheckPrototypes(Handle<HeapType> type, Register object_reg, Handle<JSObject> holder, Register holder_reg, Register scratch1, Register scratch2, Handle<Name> name, Label* miss, PrototypeCheckType check) { Handle<Map> receiver_map(IC::TypeToMap(*type, isolate())); // Make sure there's no overlap between holder and object registers. ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg)); ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg) && !scratch2.is(scratch1)); // Keep track of the current object in register reg. On the first // iteration, reg is an alias for object_reg, on later iterations, // it is an alias for holder_reg. Register reg = object_reg; int depth = 0; Handle<JSObject> current = Handle<JSObject>::null(); if (type->IsConstant()) { current = Handle<JSObject>::cast(type->AsConstant()->Value()); } Handle<JSObject> prototype = Handle<JSObject>::null(); Handle<Map> current_map = receiver_map; Handle<Map> holder_map(holder->map()); // Traverse the prototype chain and check the maps in the prototype chain for // fast and global objects or do negative lookup for normal objects. while (!current_map.is_identical_to(holder_map)) { ++depth; // Only global objects and objects that do not require access // checks are allowed in stubs. ASSERT(current_map->IsJSGlobalProxyMap() || !current_map->is_access_check_needed()); prototype = handle(JSObject::cast(current_map->prototype())); if (current_map->is_dictionary_map() && !current_map->IsJSGlobalObjectMap() && !current_map->IsJSGlobalProxyMap()) { if (!name->IsUniqueName()) { ASSERT(name->IsString()); name = factory()->InternalizeString(Handle<String>::cast(name)); } ASSERT(current.is_null() || current->property_dictionary()->FindEntry(name) == NameDictionary::kNotFound); GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1, scratch2); __ movp(scratch1, FieldOperand(reg, HeapObject::kMapOffset)); reg = holder_reg; // From now on the object will be in holder_reg. __ movp(reg, FieldOperand(scratch1, Map::kPrototypeOffset)); } else { bool in_new_space = heap()->InNewSpace(*prototype); if (in_new_space) { // Save the map in scratch1 for later. __ movp(scratch1, FieldOperand(reg, HeapObject::kMapOffset)); } if (depth != 1 || check == CHECK_ALL_MAPS) { __ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK); } // Check access rights to the global object. This has to happen after // the map check so that we know that the object is actually a global // object. if (current_map->IsJSGlobalProxyMap()) { __ CheckAccessGlobalProxy(reg, scratch2, miss); } else if (current_map->IsJSGlobalObjectMap()) { GenerateCheckPropertyCell( masm(), Handle<JSGlobalObject>::cast(current), name, scratch2, miss); } reg = holder_reg; // From now on the object will be in holder_reg. if (in_new_space) { // The prototype is in new space; we cannot store a reference to it // in the code. Load it from the map. __ movp(reg, FieldOperand(scratch1, Map::kPrototypeOffset)); } else { // The prototype is in old space; load it directly. __ Move(reg, prototype); } } // Go to the next object in the prototype chain. current = prototype; current_map = handle(current->map()); } // Log the check depth. LOG(isolate(), IntEvent("check-maps-depth", depth + 1)); if (depth != 0 || check == CHECK_ALL_MAPS) { // Check the holder map. __ CheckMap(reg, current_map, miss, DONT_DO_SMI_CHECK); } // Perform security check for access to the global object. ASSERT(current_map->IsJSGlobalProxyMap() || !current_map->is_access_check_needed()); if (current_map->IsJSGlobalProxyMap()) { __ CheckAccessGlobalProxy(reg, scratch1, miss); } // Return the register containing the holder. return reg; } void LoadStubCompiler::HandlerFrontendFooter(Handle<Name> name, Label* miss) { if (!miss->is_unused()) { Label success; __ jmp(&success); __ bind(miss); TailCallBuiltin(masm(), MissBuiltin(kind())); __ bind(&success); } } void StoreStubCompiler::HandlerFrontendFooter(Handle<Name> name, Label* miss) { if (!miss->is_unused()) { Label success; __ jmp(&success); GenerateRestoreName(masm(), miss, name); TailCallBuiltin(masm(), MissBuiltin(kind())); __ bind(&success); } } Register LoadStubCompiler::CallbackHandlerFrontend( Handle<HeapType> type, Register object_reg, Handle<JSObject> holder, Handle<Name> name, Handle<Object> callback) { Label miss; Register reg = HandlerFrontendHeader(type, object_reg, holder, name, &miss); if (!holder->HasFastProperties() && !holder->IsJSGlobalObject()) { ASSERT(!reg.is(scratch2())); ASSERT(!reg.is(scratch3())); ASSERT(!reg.is(scratch4())); // Load the properties dictionary. Register dictionary = scratch4(); __ movp(dictionary, FieldOperand(reg, JSObject::kPropertiesOffset)); // Probe the dictionary. Label probe_done; NameDictionaryLookupStub::GeneratePositiveLookup(masm(), &miss, &probe_done, dictionary, this->name(), scratch2(), scratch3()); __ bind(&probe_done); // If probing finds an entry in the dictionary, scratch3 contains the // index into the dictionary. Check that the value is the callback. Register index = scratch3(); const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kValueOffset = kElementsStartOffset + kPointerSize; __ movp(scratch2(), Operand(dictionary, index, times_pointer_size, kValueOffset - kHeapObjectTag)); __ Move(scratch3(), callback, RelocInfo::EMBEDDED_OBJECT); __ cmpp(scratch2(), scratch3()); __ j(not_equal, &miss); } HandlerFrontendFooter(name, &miss); return reg; } void LoadStubCompiler::GenerateLoadField(Register reg, Handle<JSObject> holder, FieldIndex field, Representation representation) { if (!reg.is(receiver())) __ movp(receiver(), reg); if (kind() == Code::LOAD_IC) { LoadFieldStub stub(isolate(), field); GenerateTailCall(masm(), stub.GetCode()); } else { KeyedLoadFieldStub stub(isolate(), field); GenerateTailCall(masm(), stub.GetCode()); } } void LoadStubCompiler::GenerateLoadCallback( Register reg, Handle<ExecutableAccessorInfo> callback) { // Insert additional parameters into the stack frame above return address. ASSERT(!scratch4().is(reg)); __ PopReturnAddressTo(scratch4()); STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 3); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 4); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 5); STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 6); __ Push(receiver()); // receiver if (heap()->InNewSpace(callback->data())) { ASSERT(!scratch2().is(reg)); __ Move(scratch2(), callback); __ Push(FieldOperand(scratch2(), ExecutableAccessorInfo::kDataOffset)); // data } else { __ Push(Handle<Object>(callback->data(), isolate())); } ASSERT(!kScratchRegister.is(reg)); __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); __ Push(kScratchRegister); // return value __ Push(kScratchRegister); // return value default __ PushAddress(ExternalReference::isolate_address(isolate())); __ Push(reg); // holder __ Push(name()); // name // Save a pointer to where we pushed the arguments pointer. This will be // passed as the const PropertyAccessorInfo& to the C++ callback. __ PushReturnAddressFrom(scratch4()); // Abi for CallApiGetter Register api_function_address = r8; Address getter_address = v8::ToCData<Address>(callback->getter()); __ Move(api_function_address, getter_address, RelocInfo::EXTERNAL_REFERENCE); CallApiGetterStub stub(isolate()); __ TailCallStub(&stub); } void LoadStubCompiler::GenerateLoadConstant(Handle<Object> value) { // Return the constant value. __ Move(rax, value); __ ret(0); } void LoadStubCompiler::GenerateLoadInterceptor( Register holder_reg, Handle<Object> object, Handle<JSObject> interceptor_holder, LookupResult* lookup, Handle<Name> name) { ASSERT(interceptor_holder->HasNamedInterceptor()); ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined()); // So far the most popular follow ups for interceptor loads are FIELD // and CALLBACKS, so inline only them, other cases may be added // later. bool compile_followup_inline = false; if (lookup->IsFound() && lookup->IsCacheable()) { if (lookup->IsField()) { compile_followup_inline = true; } else if (lookup->type() == CALLBACKS && lookup->GetCallbackObject()->IsExecutableAccessorInfo()) { ExecutableAccessorInfo* callback = ExecutableAccessorInfo::cast(lookup->GetCallbackObject()); compile_followup_inline = callback->getter() != NULL && callback->IsCompatibleReceiver(*object); } } if (compile_followup_inline) { // Compile the interceptor call, followed by inline code to load the // property from further up the prototype chain if the call fails. // Check that the maps haven't changed. ASSERT(holder_reg.is(receiver()) || holder_reg.is(scratch1())); // Preserve the receiver register explicitly whenever it is different from // the holder and it is needed should the interceptor return without any // result. The CALLBACKS case needs the receiver to be passed into C++ code, // the FIELD case might cause a miss during the prototype check. bool must_perfrom_prototype_check = *interceptor_holder != lookup->holder(); bool must_preserve_receiver_reg = !receiver().is(holder_reg) && (lookup->type() == CALLBACKS || must_perfrom_prototype_check); // Save necessary data before invoking an interceptor. // Requires a frame to make GC aware of pushed pointers. { FrameScope frame_scope(masm(), StackFrame::INTERNAL); if (must_preserve_receiver_reg) { __ Push(receiver()); } __ Push(holder_reg); __ Push(this->name()); // Invoke an interceptor. Note: map checks from receiver to // interceptor's holder has been compiled before (see a caller // of this method.) CompileCallLoadPropertyWithInterceptor( masm(), receiver(), holder_reg, this->name(), interceptor_holder, IC::kLoadPropertyWithInterceptorOnly); // Check if interceptor provided a value for property. If it's // the case, return immediately. Label interceptor_failed; __ CompareRoot(rax, Heap::kNoInterceptorResultSentinelRootIndex); __ j(equal, &interceptor_failed); frame_scope.GenerateLeaveFrame(); __ ret(0); __ bind(&interceptor_failed); __ Pop(this->name()); __ Pop(holder_reg); if (must_preserve_receiver_reg) { __ Pop(receiver()); } // Leave the internal frame. } GenerateLoadPostInterceptor(holder_reg, interceptor_holder, name, lookup); } else { // !compile_followup_inline // Call the runtime system to load the interceptor. // Check that the maps haven't changed. __ PopReturnAddressTo(scratch2()); PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(), interceptor_holder); __ PushReturnAddressFrom(scratch2()); ExternalReference ref = ExternalReference( IC_Utility(IC::kLoadPropertyWithInterceptor), isolate()); __ TailCallExternalReference(ref, StubCache::kInterceptorArgsLength, 1); } } Handle<Code> StoreStubCompiler::CompileStoreCallback( Handle<JSObject> object, Handle<JSObject> holder, Handle<Name> name, Handle<ExecutableAccessorInfo> callback) { Register holder_reg = HandlerFrontend( IC::CurrentTypeOf(object, isolate()), receiver(), holder, name); __ PopReturnAddressTo(scratch1()); __ Push(receiver()); __ Push(holder_reg); __ Push(callback); // callback info __ Push(name); __ Push(value()); __ PushReturnAddressFrom(scratch1()); // Do tail-call to the runtime system. ExternalReference store_callback_property = ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate()); __ TailCallExternalReference(store_callback_property, 5, 1); // Return the generated code. return GetCode(kind(), Code::FAST, name); } #undef __ #define __ ACCESS_MASM(masm) void StoreStubCompiler::GenerateStoreViaSetter( MacroAssembler* masm, Handle<HeapType> type, Register receiver, Handle<JSFunction> setter) { // ----------- S t a t e ------------- // -- rsp[0] : return address // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); // Save value register, so we can restore it later. __ Push(value()); if (!setter.is_null()) { // Call the JavaScript setter with receiver and value on the stack. if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) { // Swap in the global receiver. __ movp(receiver, FieldOperand(receiver, JSGlobalObject::kGlobalReceiverOffset)); } __ Push(receiver); __ Push(value()); ParameterCount actual(1); ParameterCount expected(setter); __ InvokeFunction(setter, expected, actual, CALL_FUNCTION, NullCallWrapper()); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset()); } // We have to return the passed value, not the return value of the setter. __ Pop(rax); // Restore context register. __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } __ ret(0); } #undef __ #define __ ACCESS_MASM(masm()) Handle<Code> StoreStubCompiler::CompileStoreInterceptor( Handle<JSObject> object, Handle<Name> name) { __ PopReturnAddressTo(scratch1()); __ Push(receiver()); __ Push(this->name()); __ Push(value()); __ PushReturnAddressFrom(scratch1()); // Do tail-call to the runtime system. ExternalReference store_ic_property = ExternalReference(IC_Utility(IC::kStoreInterceptorProperty), isolate()); __ TailCallExternalReference(store_ic_property, 3, 1); // Return the generated code. return GetCode(kind(), Code::FAST, name); } void StoreStubCompiler::GenerateStoreArrayLength() { // Prepare tail call to StoreIC_ArrayLength. __ PopReturnAddressTo(scratch1()); __ Push(receiver()); __ Push(value()); __ PushReturnAddressFrom(scratch1()); ExternalReference ref = ExternalReference(IC_Utility(IC::kStoreIC_ArrayLength), masm()->isolate()); __ TailCallExternalReference(ref, 2, 1); } Handle<Code> KeyedStoreStubCompiler::CompileStorePolymorphic( MapHandleList* receiver_maps, CodeHandleList* handler_stubs, MapHandleList* transitioned_maps) { Label miss; __ JumpIfSmi(receiver(), &miss, Label::kNear); __ movp(scratch1(), FieldOperand(receiver(), HeapObject::kMapOffset)); int receiver_count = receiver_maps->length(); for (int i = 0; i < receiver_count; ++i) { // Check map and tail call if there's a match __ Cmp(scratch1(), receiver_maps->at(i)); if (transitioned_maps->at(i).is_null()) { __ j(equal, handler_stubs->at(i), RelocInfo::CODE_TARGET); } else { Label next_map; __ j(not_equal, &next_map, Label::kNear); __ Move(transition_map(), transitioned_maps->at(i), RelocInfo::EMBEDDED_OBJECT); __ jmp(handler_stubs->at(i), RelocInfo::CODE_TARGET); __ bind(&next_map); } } __ bind(&miss); TailCallBuiltin(masm(), MissBuiltin(kind())); // Return the generated code. return GetICCode( kind(), Code::NORMAL, factory()->empty_string(), POLYMORPHIC); } Handle<Code> LoadStubCompiler::CompileLoadNonexistent(Handle<HeapType> type, Handle<JSObject> last, Handle<Name> name) { NonexistentHandlerFrontend(type, last, name); // Return undefined if maps of the full prototype chain are still the // same and no global property with this name contains a value. __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); __ ret(0); // Return the generated code. return GetCode(kind(), Code::FAST, name); } Register* LoadStubCompiler::registers() { // receiver, name, scratch1, scratch2, scratch3, scratch4. static Register registers[] = { rax, rcx, rdx, rbx, rdi, r8 }; return registers; } Register* KeyedLoadStubCompiler::registers() { // receiver, name, scratch1, scratch2, scratch3, scratch4. static Register registers[] = { rdx, rax, rbx, rcx, rdi, r8 }; return registers; } Register StoreStubCompiler::value() { return rax; } Register* StoreStubCompiler::registers() { // receiver, name, scratch1, scratch2, scratch3. static Register registers[] = { rdx, rcx, rbx, rdi, r8 }; return registers; } Register* KeyedStoreStubCompiler::registers() { // receiver, name, scratch1, scratch2, scratch3. static Register registers[] = { rdx, rcx, rbx, rdi, r8 }; return registers; } #undef __ #define __ ACCESS_MASM(masm) void LoadStubCompiler::GenerateLoadViaGetter(MacroAssembler* masm, Handle<HeapType> type, Register receiver, Handle<JSFunction> getter) { // ----------- S t a t e ------------- // -- rax : receiver // -- rcx : name // -- rsp[0] : return address // ----------------------------------- { FrameScope scope(masm, StackFrame::INTERNAL); if (!getter.is_null()) { // Call the JavaScript getter with the receiver on the stack. if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) { // Swap in the global receiver. __ movp(receiver, FieldOperand(receiver, JSGlobalObject::kGlobalReceiverOffset)); } __ Push(receiver); ParameterCount actual(0); ParameterCount expected(getter); __ InvokeFunction(getter, expected, actual, CALL_FUNCTION, NullCallWrapper()); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset()); } // Restore context register. __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } __ ret(0); } #undef __ #define __ ACCESS_MASM(masm()) Handle<Code> LoadStubCompiler::CompileLoadGlobal( Handle<HeapType> type, Handle<GlobalObject> global, Handle<PropertyCell> cell, Handle<Name> name, bool is_dont_delete) { Label miss; // TODO(verwaest): Directly store to rax. Currently we cannot do this, since // rax is used as receiver(), which we would otherwise clobber before a // potential miss. HandlerFrontendHeader(type, receiver(), global, name, &miss); // Get the value from the cell. __ Move(rbx, cell); __ movp(rbx, FieldOperand(rbx, PropertyCell::kValueOffset)); // Check for deleted property if property can actually be deleted. if (!is_dont_delete) { __ CompareRoot(rbx, Heap::kTheHoleValueRootIndex); __ j(equal, &miss); } else if (FLAG_debug_code) { __ CompareRoot(rbx, Heap::kTheHoleValueRootIndex); __ Check(not_equal, kDontDeleteCellsCannotContainTheHole); } Counters* counters = isolate()->counters(); __ IncrementCounter(counters->named_load_global_stub(), 1); __ movp(rax, rbx); __ ret(0); HandlerFrontendFooter(name, &miss); // Return the generated code. return GetCode(kind(), Code::NORMAL, name); } Handle<Code> BaseLoadStoreStubCompiler::CompilePolymorphicIC( TypeHandleList* types, CodeHandleList* handlers, Handle<Name> name, Code::StubType type, IcCheckType check) { Label miss; if (check == PROPERTY && (kind() == Code::KEYED_LOAD_IC || kind() == Code::KEYED_STORE_IC)) { __ Cmp(this->name(), name); __ j(not_equal, &miss); } Label number_case; Label* smi_target = IncludesNumberType(types) ? &number_case : &miss; __ JumpIfSmi(receiver(), smi_target); Register map_reg = scratch1(); __ movp(map_reg, FieldOperand(receiver(), HeapObject::kMapOffset)); int receiver_count = types->length(); int number_of_handled_maps = 0; for (int current = 0; current < receiver_count; ++current) { Handle<HeapType> type = types->at(current); Handle<Map> map = IC::TypeToMap(*type, isolate()); if (!map->is_deprecated()) { number_of_handled_maps++; // Check map and tail call if there's a match __ Cmp(map_reg, map); if (type->Is(HeapType::Number())) { ASSERT(!number_case.is_unused()); __ bind(&number_case); } __ j(equal, handlers->at(current), RelocInfo::CODE_TARGET); } } ASSERT(number_of_handled_maps > 0); __ bind(&miss); TailCallBuiltin(masm(), MissBuiltin(kind())); // Return the generated code. InlineCacheState state = number_of_handled_maps > 1 ? POLYMORPHIC : MONOMORPHIC; return GetICCode(kind(), type, name, state); } #undef __ #define __ ACCESS_MASM(masm) void KeyedLoadStubCompiler::GenerateLoadDictionaryElement( MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- Label slow, miss; // This stub is meant to be tail-jumped to, the receiver must already // have been verified by the caller to not be a smi. __ JumpIfNotSmi(rax, &miss); __ SmiToInteger32(rbx, rax); __ movp(rcx, FieldOperand(rdx, JSObject::kElementsOffset)); // Check whether the elements is a number dictionary. // rdx: receiver // rax: key // rbx: key as untagged int32 // rcx: elements __ LoadFromNumberDictionary(&slow, rcx, rax, rbx, r9, rdi, rax); __ ret(0); __ bind(&slow); // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- TailCallBuiltin(masm, Builtins::kKeyedLoadIC_Slow); __ bind(&miss); // ----------- S t a t e ------------- // -- rax : key // -- rdx : receiver // -- rsp[0] : return address // ----------------------------------- TailCallBuiltin(masm, Builtins::kKeyedLoadIC_Miss); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64