C++程序  |  320行  |  9.57 KB

// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Utilities for building and looking up Huffman trees.
//
// Author: Urvang Joshi (urvang@google.com)

#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include "./huffman.h"
#include "../utils/utils.h"
#include "../webp/format_constants.h"

// Uncomment the following to use look-up table for ReverseBits()
// (might be faster on some platform)
// #define USE_LUT_REVERSE_BITS

// Huffman data read via DecodeImageStream is represented in two (red and green)
// bytes.
#define MAX_HTREE_GROUPS    0x10000
#define NON_EXISTENT_SYMBOL (-1)

static void TreeNodeInit(HuffmanTreeNode* const node) {
  node->children_ = -1;   // means: 'unassigned so far'
}

static int NodeIsEmpty(const HuffmanTreeNode* const node) {
  return (node->children_ < 0);
}

static int IsFull(const HuffmanTree* const tree) {
  return (tree->num_nodes_ == tree->max_nodes_);
}

static void AssignChildren(HuffmanTree* const tree,
                           HuffmanTreeNode* const node) {
  HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_;
  node->children_ = (int)(children - node);
  assert(children - node == (int)(children - node));
  tree->num_nodes_ += 2;
  TreeNodeInit(children + 0);
  TreeNodeInit(children + 1);
}

// A Huffman tree is a full binary tree; and in a full binary tree with L
// leaves, the total number of nodes N = 2 * L - 1.
static int HuffmanTreeMaxNodes(int num_leaves) {
  return (2 * num_leaves - 1);
}

static int HuffmanTreeAllocate(HuffmanTree* const tree, int num_nodes) {
  assert(tree != NULL);
  tree->root_ =
      (HuffmanTreeNode*)WebPSafeMalloc(num_nodes, sizeof(*tree->root_));
  return (tree->root_ != NULL);
}

static int TreeInit(HuffmanTree* const tree, int num_leaves) {
  assert(tree != NULL);
  if (num_leaves == 0) return 0;
  tree->max_nodes_ = HuffmanTreeMaxNodes(num_leaves);
  assert(tree->max_nodes_ < (1 << 16));   // limit for the lut_jump_ table
  if (!HuffmanTreeAllocate(tree, tree->max_nodes_)) return 0;
  TreeNodeInit(tree->root_);  // Initialize root.
  tree->num_nodes_ = 1;
  memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_));
  memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_));
  return 1;
}

void VP8LHuffmanTreeFree(HuffmanTree* const tree) {
  if (tree != NULL) {
    WebPSafeFree(tree->root_);
    tree->root_ = NULL;
    tree->max_nodes_ = 0;
    tree->num_nodes_ = 0;
  }
}

HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) {
  HTreeGroup* const htree_groups =
      (HTreeGroup*)WebPSafeCalloc(num_htree_groups, sizeof(*htree_groups));
  assert(num_htree_groups <= MAX_HTREE_GROUPS);
  if (htree_groups == NULL) {
    return NULL;
  }
  return htree_groups;
}

void VP8LHtreeGroupsFree(HTreeGroup* htree_groups, int num_htree_groups) {
  if (htree_groups != NULL) {
    int i, j;
    for (i = 0; i < num_htree_groups; ++i) {
      HuffmanTree* const htrees = htree_groups[i].htrees_;
      for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
        VP8LHuffmanTreeFree(&htrees[j]);
      }
    }
    WebPSafeFree(htree_groups);
  }
}

int VP8LHuffmanCodeLengthsToCodes(
    const int* const code_lengths, int code_lengths_size,
    int* const huff_codes) {
  int symbol;
  int code_len;
  int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
  int curr_code;
  int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
  int max_code_length = 0;

  assert(code_lengths != NULL);
  assert(code_lengths_size > 0);
  assert(huff_codes != NULL);

  // Calculate max code length.
  for (symbol = 0; symbol < code_lengths_size; ++symbol) {
    if (code_lengths[symbol] > max_code_length) {
      max_code_length = code_lengths[symbol];
    }
  }
  if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0;

  // Calculate code length histogram.
  for (symbol = 0; symbol < code_lengths_size; ++symbol) {
    ++code_length_hist[code_lengths[symbol]];
  }
  code_length_hist[0] = 0;

  // Calculate the initial values of 'next_codes' for each code length.
  // next_codes[code_len] denotes the code to be assigned to the next symbol
  // of code length 'code_len'.
  curr_code = 0;
  next_codes[0] = -1;  // Unused, as code length = 0 implies code doesn't exist.
  for (code_len = 1; code_len <= max_code_length; ++code_len) {
    curr_code = (curr_code + code_length_hist[code_len - 1]) << 1;
    next_codes[code_len] = curr_code;
  }

  // Get symbols.
  for (symbol = 0; symbol < code_lengths_size; ++symbol) {
    if (code_lengths[symbol] > 0) {
      huff_codes[symbol] = next_codes[code_lengths[symbol]]++;
    } else {
      huff_codes[symbol] = NON_EXISTENT_SYMBOL;
    }
  }
  return 1;
}

#ifndef USE_LUT_REVERSE_BITS

static int ReverseBitsShort(int bits, int num_bits) {
  int retval = 0;
  int i;
  assert(num_bits <= 8);   // Not a hard requirement, just for coherency.
  for (i = 0; i < num_bits; ++i) {
    retval <<= 1;
    retval |= bits & 1;
    bits >>= 1;
  }
  return retval;
}

#else

static const uint8_t kReversedBits[16] = {  // Pre-reversed 4-bit values.
  0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
  0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
};

static int ReverseBitsShort(int bits, int num_bits) {
  const uint8_t v = (kReversedBits[bits & 0xf] << 4) | kReversedBits[bits >> 4];
  assert(num_bits <= 8);
  return v >> (8 - num_bits);
}

#endif

static int TreeAddSymbol(HuffmanTree* const tree,
                         int symbol, int code, int code_length) {
  int step = HUFF_LUT_BITS;
  int base_code;
  HuffmanTreeNode* node = tree->root_;
  const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_;
  assert(symbol == (int16_t)symbol);
  if (code_length <= HUFF_LUT_BITS) {
    int i;
    base_code = ReverseBitsShort(code, code_length);
    for (i = 0; i < (1 << (HUFF_LUT_BITS - code_length)); ++i) {
      const int idx = base_code | (i << code_length);
      tree->lut_symbol_[idx] = (int16_t)symbol;
      tree->lut_bits_[idx] = code_length;
    }
  } else {
    base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)),
                                 HUFF_LUT_BITS);
  }
  while (code_length-- > 0) {
    if (node >= max_node) {
      return 0;
    }
    if (NodeIsEmpty(node)) {
      if (IsFull(tree)) return 0;    // error: too many symbols.
      AssignChildren(tree, node);
    } else if (!HuffmanTreeNodeIsNotLeaf(node)) {
      return 0;  // leaf is already occupied.
    }
    node += node->children_ + ((code >> code_length) & 1);
    if (--step == 0) {
      tree->lut_jump_[base_code] = (int16_t)(node - tree->root_);
    }
  }
  if (NodeIsEmpty(node)) {
    node->children_ = 0;      // turn newly created node into a leaf.
  } else if (HuffmanTreeNodeIsNotLeaf(node)) {
    return 0;   // trying to assign a symbol to already used code.
  }
  node->symbol_ = symbol;  // Add symbol in this node.
  return 1;
}

int VP8LHuffmanTreeBuildImplicit(HuffmanTree* const tree,
                                 const int* const code_lengths,
                                 int* const codes,
                                 int code_lengths_size) {
  int symbol;
  int num_symbols = 0;
  int root_symbol = 0;

  assert(tree != NULL);
  assert(code_lengths != NULL);

  // Find out number of symbols and the root symbol.
  for (symbol = 0; symbol < code_lengths_size; ++symbol) {
    if (code_lengths[symbol] > 0) {
      // Note: code length = 0 indicates non-existent symbol.
      ++num_symbols;
      root_symbol = symbol;
    }
  }

  // Initialize the tree. Will fail for num_symbols = 0
  if (!TreeInit(tree, num_symbols)) return 0;

  // Build tree.
  if (num_symbols == 1) {  // Trivial case.
    const int max_symbol = code_lengths_size;
    if (root_symbol < 0 || root_symbol >= max_symbol) {
      VP8LHuffmanTreeFree(tree);
      return 0;
    }
    return TreeAddSymbol(tree, root_symbol, 0, 0);
  } else {  // Normal case.
    int ok = 0;
    memset(codes, 0, code_lengths_size * sizeof(*codes));

    if (!VP8LHuffmanCodeLengthsToCodes(code_lengths, code_lengths_size,
                                       codes)) {
      goto End;
    }

    // Add symbols one-by-one.
    for (symbol = 0; symbol < code_lengths_size; ++symbol) {
      if (code_lengths[symbol] > 0) {
        if (!TreeAddSymbol(tree, symbol, codes[symbol],
                           code_lengths[symbol])) {
          goto End;
        }
      }
    }
    ok = 1;
 End:
    ok = ok && IsFull(tree);
    if (!ok) VP8LHuffmanTreeFree(tree);
    return ok;
  }
}

int VP8LHuffmanTreeBuildExplicit(HuffmanTree* const tree,
                                 const int* const code_lengths,
                                 const int* const codes,
                                 const int* const symbols, int max_symbol,
                                 int num_symbols) {
  int ok = 0;
  int i;
  assert(tree != NULL);
  assert(code_lengths != NULL);
  assert(codes != NULL);
  assert(symbols != NULL);

  // Initialize the tree. Will fail if num_symbols = 0.
  if (!TreeInit(tree, num_symbols)) return 0;

  // Add symbols one-by-one.
  for (i = 0; i < num_symbols; ++i) {
    if (codes[i] != NON_EXISTENT_SYMBOL) {
      if (symbols[i] < 0 || symbols[i] >= max_symbol) {
        goto End;
      }
      if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) {
        goto End;
      }
    }
  }
  ok = 1;
 End:
  ok = ok && IsFull(tree);
  if (!ok) VP8LHuffmanTreeFree(tree);
  return ok;
}