// Copyright 2012 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Utilities for building and looking up Huffman trees. // // Author: Urvang Joshi (urvang@google.com) #include <assert.h> #include <stdlib.h> #include <string.h> #include "./huffman.h" #include "../utils/utils.h" #include "../webp/format_constants.h" // Uncomment the following to use look-up table for ReverseBits() // (might be faster on some platform) // #define USE_LUT_REVERSE_BITS // Huffman data read via DecodeImageStream is represented in two (red and green) // bytes. #define MAX_HTREE_GROUPS 0x10000 #define NON_EXISTENT_SYMBOL (-1) static void TreeNodeInit(HuffmanTreeNode* const node) { node->children_ = -1; // means: 'unassigned so far' } static int NodeIsEmpty(const HuffmanTreeNode* const node) { return (node->children_ < 0); } static int IsFull(const HuffmanTree* const tree) { return (tree->num_nodes_ == tree->max_nodes_); } static void AssignChildren(HuffmanTree* const tree, HuffmanTreeNode* const node) { HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_; node->children_ = (int)(children - node); assert(children - node == (int)(children - node)); tree->num_nodes_ += 2; TreeNodeInit(children + 0); TreeNodeInit(children + 1); } // A Huffman tree is a full binary tree; and in a full binary tree with L // leaves, the total number of nodes N = 2 * L - 1. static int HuffmanTreeMaxNodes(int num_leaves) { return (2 * num_leaves - 1); } static int HuffmanTreeAllocate(HuffmanTree* const tree, int num_nodes) { assert(tree != NULL); tree->root_ = (HuffmanTreeNode*)WebPSafeMalloc(num_nodes, sizeof(*tree->root_)); return (tree->root_ != NULL); } static int TreeInit(HuffmanTree* const tree, int num_leaves) { assert(tree != NULL); if (num_leaves == 0) return 0; tree->max_nodes_ = HuffmanTreeMaxNodes(num_leaves); assert(tree->max_nodes_ < (1 << 16)); // limit for the lut_jump_ table if (!HuffmanTreeAllocate(tree, tree->max_nodes_)) return 0; TreeNodeInit(tree->root_); // Initialize root. tree->num_nodes_ = 1; memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_)); memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_)); return 1; } void VP8LHuffmanTreeFree(HuffmanTree* const tree) { if (tree != NULL) { WebPSafeFree(tree->root_); tree->root_ = NULL; tree->max_nodes_ = 0; tree->num_nodes_ = 0; } } HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) { HTreeGroup* const htree_groups = (HTreeGroup*)WebPSafeCalloc(num_htree_groups, sizeof(*htree_groups)); assert(num_htree_groups <= MAX_HTREE_GROUPS); if (htree_groups == NULL) { return NULL; } return htree_groups; } void VP8LHtreeGroupsFree(HTreeGroup* htree_groups, int num_htree_groups) { if (htree_groups != NULL) { int i, j; for (i = 0; i < num_htree_groups; ++i) { HuffmanTree* const htrees = htree_groups[i].htrees_; for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { VP8LHuffmanTreeFree(&htrees[j]); } } WebPSafeFree(htree_groups); } } int VP8LHuffmanCodeLengthsToCodes( const int* const code_lengths, int code_lengths_size, int* const huff_codes) { int symbol; int code_len; int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; int curr_code; int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; int max_code_length = 0; assert(code_lengths != NULL); assert(code_lengths_size > 0); assert(huff_codes != NULL); // Calculate max code length. for (symbol = 0; symbol < code_lengths_size; ++symbol) { if (code_lengths[symbol] > max_code_length) { max_code_length = code_lengths[symbol]; } } if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0; // Calculate code length histogram. for (symbol = 0; symbol < code_lengths_size; ++symbol) { ++code_length_hist[code_lengths[symbol]]; } code_length_hist[0] = 0; // Calculate the initial values of 'next_codes' for each code length. // next_codes[code_len] denotes the code to be assigned to the next symbol // of code length 'code_len'. curr_code = 0; next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist. for (code_len = 1; code_len <= max_code_length; ++code_len) { curr_code = (curr_code + code_length_hist[code_len - 1]) << 1; next_codes[code_len] = curr_code; } // Get symbols. for (symbol = 0; symbol < code_lengths_size; ++symbol) { if (code_lengths[symbol] > 0) { huff_codes[symbol] = next_codes[code_lengths[symbol]]++; } else { huff_codes[symbol] = NON_EXISTENT_SYMBOL; } } return 1; } #ifndef USE_LUT_REVERSE_BITS static int ReverseBitsShort(int bits, int num_bits) { int retval = 0; int i; assert(num_bits <= 8); // Not a hard requirement, just for coherency. for (i = 0; i < num_bits; ++i) { retval <<= 1; retval |= bits & 1; bits >>= 1; } return retval; } #else static const uint8_t kReversedBits[16] = { // Pre-reversed 4-bit values. 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf }; static int ReverseBitsShort(int bits, int num_bits) { const uint8_t v = (kReversedBits[bits & 0xf] << 4) | kReversedBits[bits >> 4]; assert(num_bits <= 8); return v >> (8 - num_bits); } #endif static int TreeAddSymbol(HuffmanTree* const tree, int symbol, int code, int code_length) { int step = HUFF_LUT_BITS; int base_code; HuffmanTreeNode* node = tree->root_; const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_; assert(symbol == (int16_t)symbol); if (code_length <= HUFF_LUT_BITS) { int i; base_code = ReverseBitsShort(code, code_length); for (i = 0; i < (1 << (HUFF_LUT_BITS - code_length)); ++i) { const int idx = base_code | (i << code_length); tree->lut_symbol_[idx] = (int16_t)symbol; tree->lut_bits_[idx] = code_length; } } else { base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)), HUFF_LUT_BITS); } while (code_length-- > 0) { if (node >= max_node) { return 0; } if (NodeIsEmpty(node)) { if (IsFull(tree)) return 0; // error: too many symbols. AssignChildren(tree, node); } else if (!HuffmanTreeNodeIsNotLeaf(node)) { return 0; // leaf is already occupied. } node += node->children_ + ((code >> code_length) & 1); if (--step == 0) { tree->lut_jump_[base_code] = (int16_t)(node - tree->root_); } } if (NodeIsEmpty(node)) { node->children_ = 0; // turn newly created node into a leaf. } else if (HuffmanTreeNodeIsNotLeaf(node)) { return 0; // trying to assign a symbol to already used code. } node->symbol_ = symbol; // Add symbol in this node. return 1; } int VP8LHuffmanTreeBuildImplicit(HuffmanTree* const tree, const int* const code_lengths, int* const codes, int code_lengths_size) { int symbol; int num_symbols = 0; int root_symbol = 0; assert(tree != NULL); assert(code_lengths != NULL); // Find out number of symbols and the root symbol. for (symbol = 0; symbol < code_lengths_size; ++symbol) { if (code_lengths[symbol] > 0) { // Note: code length = 0 indicates non-existent symbol. ++num_symbols; root_symbol = symbol; } } // Initialize the tree. Will fail for num_symbols = 0 if (!TreeInit(tree, num_symbols)) return 0; // Build tree. if (num_symbols == 1) { // Trivial case. const int max_symbol = code_lengths_size; if (root_symbol < 0 || root_symbol >= max_symbol) { VP8LHuffmanTreeFree(tree); return 0; } return TreeAddSymbol(tree, root_symbol, 0, 0); } else { // Normal case. int ok = 0; memset(codes, 0, code_lengths_size * sizeof(*codes)); if (!VP8LHuffmanCodeLengthsToCodes(code_lengths, code_lengths_size, codes)) { goto End; } // Add symbols one-by-one. for (symbol = 0; symbol < code_lengths_size; ++symbol) { if (code_lengths[symbol] > 0) { if (!TreeAddSymbol(tree, symbol, codes[symbol], code_lengths[symbol])) { goto End; } } } ok = 1; End: ok = ok && IsFull(tree); if (!ok) VP8LHuffmanTreeFree(tree); return ok; } } int VP8LHuffmanTreeBuildExplicit(HuffmanTree* const tree, const int* const code_lengths, const int* const codes, const int* const symbols, int max_symbol, int num_symbols) { int ok = 0; int i; assert(tree != NULL); assert(code_lengths != NULL); assert(codes != NULL); assert(symbols != NULL); // Initialize the tree. Will fail if num_symbols = 0. if (!TreeInit(tree, num_symbols)) return 0; // Add symbols one-by-one. for (i = 0; i < num_symbols; ++i) { if (codes[i] != NON_EXISTENT_SYMBOL) { if (symbols[i] < 0 || symbols[i] >= max_symbol) { goto End; } if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) { goto End; } } } ok = 1; End: ok = ok && IsFull(tree); if (!ok) VP8LHuffmanTreeFree(tree); return ok; }