//
// Copyright (c) 2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// DynamicHLSL.cpp: Implementation for link and run-time HLSL generation
//
#include "precompiled.h"
#include "libGLESv2/DynamicHLSL.h"
#include "libGLESv2/Shader.h"
#include "libGLESv2/Program.h"
#include "libGLESv2/renderer/Renderer.h"
#include "common/utilities.h"
#include "libGLESv2/ProgramBinary.h"
#include "libGLESv2/formatutils.h"
#include "common/blocklayout.h"
static std::string Str(int i)
{
char buffer[20];
snprintf(buffer, sizeof(buffer), "%d", i);
return buffer;
}
namespace gl_d3d
{
std::string HLSLComponentTypeString(GLenum componentType)
{
switch (componentType)
{
case GL_UNSIGNED_INT: return "uint";
case GL_INT: return "int";
case GL_UNSIGNED_NORMALIZED:
case GL_SIGNED_NORMALIZED:
case GL_FLOAT: return "float";
default: UNREACHABLE(); return "not-component-type";
}
}
std::string HLSLComponentTypeString(GLenum componentType, int componentCount)
{
return HLSLComponentTypeString(componentType) + (componentCount > 1 ? Str(componentCount) : "");
}
std::string HLSLMatrixTypeString(GLenum type)
{
switch (type)
{
case GL_FLOAT_MAT2: return "float2x2";
case GL_FLOAT_MAT3: return "float3x3";
case GL_FLOAT_MAT4: return "float4x4";
case GL_FLOAT_MAT2x3: return "float2x3";
case GL_FLOAT_MAT3x2: return "float3x2";
case GL_FLOAT_MAT2x4: return "float2x4";
case GL_FLOAT_MAT4x2: return "float4x2";
case GL_FLOAT_MAT3x4: return "float3x4";
case GL_FLOAT_MAT4x3: return "float4x3";
default: UNREACHABLE(); return "not-matrix-type";
}
}
std::string HLSLTypeString(GLenum type)
{
if (gl::IsMatrixType(type))
{
return HLSLMatrixTypeString(type);
}
return HLSLComponentTypeString(gl::UniformComponentType(type), gl::UniformComponentCount(type));
}
}
namespace gl
{
std::string ArrayString(unsigned int i)
{
return (i == GL_INVALID_INDEX ? "" : "[" + Str(i) + "]");
}
const std::string DynamicHLSL::VERTEX_ATTRIBUTE_STUB_STRING = "@@ VERTEX ATTRIBUTES @@";
DynamicHLSL::DynamicHLSL(rx::Renderer *const renderer)
: mRenderer(renderer)
{
}
static bool packVarying(PackedVarying *varying, const int maxVaryingVectors, VaryingPacking packing)
{
GLenum transposedType = TransposeMatrixType(varying->type);
// matrices within varying structs are not transposed
int registers = (varying->isStruct() ? HLSLVariableRegisterCount(*varying) : VariableRowCount(transposedType)) * varying->elementCount();
int elements = (varying->isStruct() ? 4 : VariableColumnCount(transposedType));
if (elements >= 2 && elements <= 4)
{
for (int r = 0; r <= maxVaryingVectors - registers; r++)
{
bool available = true;
for (int y = 0; y < registers && available; y++)
{
for (int x = 0; x < elements && available; x++)
{
if (packing[r + y][x])
{
available = false;
}
}
}
if (available)
{
varying->registerIndex = r;
for (int y = 0; y < registers; y++)
{
for (int x = 0; x < elements; x++)
{
packing[r + y][x] = &*varying;
}
}
return true;
}
}
if (elements == 2)
{
for (int r = maxVaryingVectors - registers; r >= 0; r--)
{
bool available = true;
for (int y = 0; y < registers && available; y++)
{
for (int x = 2; x < 4 && available; x++)
{
if (packing[r + y][x])
{
available = false;
}
}
}
if (available)
{
varying->registerIndex = r;
for (int y = 0; y < registers; y++)
{
for (int x = 2; x < 4; x++)
{
packing[r + y][x] = &*varying;
}
}
return true;
}
}
}
}
else if (elements == 1)
{
int space[4] = { 0 };
for (int y = 0; y < maxVaryingVectors; y++)
{
for (int x = 0; x < 4; x++)
{
space[x] += packing[y][x] ? 0 : 1;
}
}
int column = 0;
for (int x = 0; x < 4; x++)
{
if (space[x] >= registers && space[x] < space[column])
{
column = x;
}
}
if (space[column] >= registers)
{
for (int r = 0; r < maxVaryingVectors; r++)
{
if (!packing[r][column])
{
varying->registerIndex = r;
for (int y = r; y < r + registers; y++)
{
packing[y][column] = &*varying;
}
break;
}
}
return true;
}
}
else UNREACHABLE();
return false;
}
// Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111
// Returns the number of used varying registers, or -1 if unsuccesful
int DynamicHLSL::packVaryings(InfoLog &infoLog, VaryingPacking packing, FragmentShader *fragmentShader,
VertexShader *vertexShader, const std::vector<std::string>& transformFeedbackVaryings)
{
const int maxVaryingVectors = mRenderer->getMaxVaryingVectors();
vertexShader->resetVaryingsRegisterAssignment();
fragmentShader->resetVaryingsRegisterAssignment();
std::set<std::string> packedVaryings;
for (unsigned int varyingIndex = 0; varyingIndex < fragmentShader->mVaryings.size(); varyingIndex++)
{
PackedVarying *varying = &fragmentShader->mVaryings[varyingIndex];
if (packVarying(varying, maxVaryingVectors, packing))
{
packedVaryings.insert(varying->name);
}
else
{
infoLog.append("Could not pack varying %s", varying->name.c_str());
return -1;
}
}
for (unsigned int feedbackVaryingIndex = 0; feedbackVaryingIndex < transformFeedbackVaryings.size(); feedbackVaryingIndex++)
{
const std::string &transformFeedbackVarying = transformFeedbackVaryings[feedbackVaryingIndex];
if (packedVaryings.find(transformFeedbackVarying) == packedVaryings.end())
{
bool found = false;
for (unsigned int varyingIndex = 0; varyingIndex < vertexShader->mVaryings.size(); varyingIndex++)
{
PackedVarying *varying = &vertexShader->mVaryings[varyingIndex];
if (transformFeedbackVarying == varying->name)
{
if (!packVarying(varying, maxVaryingVectors, packing))
{
infoLog.append("Could not pack varying %s", varying->name.c_str());
return -1;
}
found = true;
break;
}
}
if (!found && transformFeedbackVarying != "gl_Position" && transformFeedbackVarying != "gl_PointSize")
{
infoLog.append("Transform feedback varying %s does not exist in the vertex shader.", transformFeedbackVarying.c_str());
return -1;
}
}
}
// Return the number of used registers
int registers = 0;
for (int r = 0; r < maxVaryingVectors; r++)
{
if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3])
{
registers++;
}
}
return registers;
}
std::string DynamicHLSL::generateVaryingHLSL(VertexShader *shader, const std::string &varyingSemantic,
std::vector<LinkedVarying> *linkedVaryings) const
{
std::string varyingHLSL;
for (unsigned int varyingIndex = 0; varyingIndex < shader->mVaryings.size(); varyingIndex++)
{
const PackedVarying &varying = shader->mVaryings[varyingIndex];
if (varying.registerAssigned())
{
GLenum transposedType = TransposeMatrixType(varying.type);
int variableRows = (varying.isStruct() ? 1 : VariableRowCount(transposedType));
for (unsigned int elementIndex = 0; elementIndex < varying.elementCount(); elementIndex++)
{
for (int row = 0; row < variableRows; row++)
{
switch (varying.interpolation)
{
case INTERPOLATION_SMOOTH: varyingHLSL += " "; break;
case INTERPOLATION_FLAT: varyingHLSL += " nointerpolation "; break;
case INTERPOLATION_CENTROID: varyingHLSL += " centroid "; break;
default: UNREACHABLE();
}
unsigned int semanticIndex = elementIndex * variableRows + varying.registerIndex + row;
std::string n = Str(semanticIndex);
std::string typeString;
if (varying.isStruct())
{
// matrices within structs are not transposed, so
// do not use the special struct prefix "rm"
typeString = decorateVariable(varying.structName);
}
else
{
GLenum componentType = UniformComponentType(transposedType);
int columnCount = VariableColumnCount(transposedType);
typeString = gl_d3d::HLSLComponentTypeString(componentType, columnCount);
}
varyingHLSL += typeString + " v" + n + " : " + varyingSemantic + n + ";\n";
}
}
if (linkedVaryings)
{
linkedVaryings->push_back(LinkedVarying(varying.name, varying.type, varying.elementCount(),
varyingSemantic, varying.registerIndex,
variableRows * varying.elementCount()));
}
}
}
return varyingHLSL;
}
std::string DynamicHLSL::generateInputLayoutHLSL(const VertexFormat inputLayout[], const Attribute shaderAttributes[]) const
{
std::string structHLSL, initHLSL;
int semanticIndex = 0;
unsigned int inputIndex = 0;
for (unsigned int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
ASSERT(inputIndex < MAX_VERTEX_ATTRIBS);
const VertexFormat &vertexFormat = inputLayout[inputIndex];
const Attribute &shaderAttribute = shaderAttributes[attributeIndex];
if (!shaderAttribute.name.empty())
{
// HLSL code for input structure
if (IsMatrixType(shaderAttribute.type))
{
// Matrix types are always transposed
structHLSL += " " + gl_d3d::HLSLMatrixTypeString(TransposeMatrixType(shaderAttribute.type));
}
else
{
GLenum componentType = mRenderer->getVertexComponentType(vertexFormat);
structHLSL += " " + gl_d3d::HLSLComponentTypeString(componentType, UniformComponentCount(shaderAttribute.type));
}
structHLSL += " " + decorateVariable(shaderAttribute.name) + " : TEXCOORD" + Str(semanticIndex) + ";\n";
semanticIndex += AttributeRegisterCount(shaderAttribute.type);
// HLSL code for initialization
initHLSL += " " + decorateVariable(shaderAttribute.name) + " = ";
// Mismatched vertex attribute to vertex input may result in an undefined
// data reinterpretation (eg for pure integer->float, float->pure integer)
// TODO: issue warning with gl debug info extension, when supported
if (IsMatrixType(shaderAttribute.type) ||
(mRenderer->getVertexConversionType(vertexFormat) & rx::VERTEX_CONVERT_GPU) != 0)
{
initHLSL += generateAttributeConversionHLSL(vertexFormat, shaderAttribute);
}
else
{
initHLSL += "input." + decorateVariable(shaderAttribute.name);
}
initHLSL += ";\n";
inputIndex += VariableRowCount(TransposeMatrixType(shaderAttribute.type));
}
}
return "struct VS_INPUT\n"
"{\n" +
structHLSL +
"};\n"
"\n"
"void initAttributes(VS_INPUT input)\n"
"{\n" +
initHLSL +
"}\n";
}
bool DynamicHLSL::generateShaderLinkHLSL(InfoLog &infoLog, int registers, const VaryingPacking packing,
std::string& pixelHLSL, std::string& vertexHLSL,
FragmentShader *fragmentShader, VertexShader *vertexShader,
const std::vector<std::string>& transformFeedbackVaryings,
std::vector<LinkedVarying> *linkedVaryings,
std::map<int, VariableLocation> *programOutputVars) const
{
if (pixelHLSL.empty() || vertexHLSL.empty())
{
return false;
}
bool usesMRT = fragmentShader->mUsesMultipleRenderTargets;
bool usesFragColor = fragmentShader->mUsesFragColor;
bool usesFragData = fragmentShader->mUsesFragData;
if (usesFragColor && usesFragData)
{
infoLog.append("Cannot use both gl_FragColor and gl_FragData in the same fragment shader.");
return false;
}
// Write the HLSL input/output declarations
const int shaderModel = mRenderer->getMajorShaderModel();
const int maxVaryingVectors = mRenderer->getMaxVaryingVectors();
const int registersNeeded = registers + (fragmentShader->mUsesFragCoord ? 1 : 0) + (fragmentShader->mUsesPointCoord ? 1 : 0);
// Two cases when writing to gl_FragColor and using ESSL 1.0:
// - with a 3.0 context, the output color is copied to channel 0
// - with a 2.0 context, the output color is broadcast to all channels
const bool broadcast = (fragmentShader->mUsesFragColor && mRenderer->getCurrentClientVersion() < 3);
const unsigned int numRenderTargets = (broadcast || usesMRT ? mRenderer->getMaxRenderTargets() : 1);
int shaderVersion = vertexShader->getShaderVersion();
if (registersNeeded > maxVaryingVectors)
{
infoLog.append("No varying registers left to support gl_FragCoord/gl_PointCoord");
return false;
}
std::string varyingSemantic = (vertexShader->mUsesPointSize && shaderModel == 3) ? "COLOR" : "TEXCOORD";
std::string targetSemantic = (shaderModel >= 4) ? "SV_Target" : "COLOR";
std::string dxPositionSemantic = (shaderModel >= 4) ? "SV_Position" : "POSITION";
std::string depthSemantic = (shaderModel >= 4) ? "SV_Depth" : "DEPTH";
std::string varyingHLSL = generateVaryingHLSL(vertexShader, varyingSemantic, linkedVaryings);
// special varyings that use reserved registers
int reservedRegisterIndex = registers;
unsigned int glPositionSemanticIndex = reservedRegisterIndex++;
std::string glPositionSemantic = varyingSemantic;
std::string fragCoordSemantic;
unsigned int fragCoordSemanticIndex = 0;
if (fragmentShader->mUsesFragCoord)
{
fragCoordSemanticIndex = reservedRegisterIndex++;
fragCoordSemantic = varyingSemantic;
}
std::string pointCoordSemantic;
unsigned int pointCoordSemanticIndex = 0;
if (fragmentShader->mUsesPointCoord)
{
// Shader model 3 uses a special TEXCOORD semantic for point sprite texcoords.
// In DX11 we compute this in the GS.
if (shaderModel == 3)
{
pointCoordSemanticIndex = 0;
pointCoordSemantic = "TEXCOORD0";
}
else if (shaderModel >= 4)
{
pointCoordSemanticIndex = reservedRegisterIndex++;
pointCoordSemantic = varyingSemantic;
}
}
// Add stub string to be replaced when shader is dynamically defined by its layout
vertexHLSL += "\n" + VERTEX_ATTRIBUTE_STUB_STRING + "\n";
vertexHLSL += "struct VS_OUTPUT\n"
"{\n";
if (shaderModel < 4)
{
vertexHLSL += " float4 _dx_Position : " + dxPositionSemantic + ";\n";
vertexHLSL += " float4 gl_Position : " + glPositionSemantic + Str(glPositionSemanticIndex) + ";\n";
linkedVaryings->push_back(LinkedVarying("gl_Position", GL_FLOAT_VEC4, 1, glPositionSemantic, glPositionSemanticIndex, 1));
}
vertexHLSL += varyingHLSL;
if (fragmentShader->mUsesFragCoord)
{
vertexHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + Str(fragCoordSemanticIndex) + ";\n";
linkedVaryings->push_back(LinkedVarying("gl_FragCoord", GL_FLOAT_VEC4, 1, fragCoordSemantic, fragCoordSemanticIndex, 1));
}
if (vertexShader->mUsesPointSize && shaderModel >= 3)
{
vertexHLSL += " float gl_PointSize : PSIZE;\n";
linkedVaryings->push_back(LinkedVarying("gl_PointSize", GL_FLOAT, 1, "PSIZE", 0, 1));
}
if (shaderModel >= 4)
{
vertexHLSL += " float4 _dx_Position : " + dxPositionSemantic + ";\n";
vertexHLSL += " float4 gl_Position : " + glPositionSemantic + Str(glPositionSemanticIndex) + ";\n";
linkedVaryings->push_back(LinkedVarying("gl_Position", GL_FLOAT_VEC4, 1, glPositionSemantic, glPositionSemanticIndex, 1));
}
vertexHLSL += "};\n"
"\n"
"VS_OUTPUT main(VS_INPUT input)\n"
"{\n"
" initAttributes(input);\n";
if (shaderModel >= 4)
{
vertexHLSL += "\n"
" gl_main();\n"
"\n"
" VS_OUTPUT output;\n"
" output.gl_Position = gl_Position;\n"
" output._dx_Position.x = gl_Position.x;\n"
" output._dx_Position.y = -gl_Position.y;\n"
" output._dx_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
" output._dx_Position.w = gl_Position.w;\n";
}
else
{
vertexHLSL += "\n"
" gl_main();\n"
"\n"
" VS_OUTPUT output;\n"
" output.gl_Position = gl_Position;\n"
" output._dx_Position.x = gl_Position.x * dx_ViewAdjust.z + dx_ViewAdjust.x * gl_Position.w;\n"
" output._dx_Position.y = -(gl_Position.y * dx_ViewAdjust.w + dx_ViewAdjust.y * gl_Position.w);\n"
" output._dx_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
" output._dx_Position.w = gl_Position.w;\n";
}
if (vertexShader->mUsesPointSize && shaderModel >= 3)
{
vertexHLSL += " output.gl_PointSize = gl_PointSize;\n";
}
if (fragmentShader->mUsesFragCoord)
{
vertexHLSL += " output.gl_FragCoord = gl_Position;\n";
}
for (unsigned int vertVaryingIndex = 0; vertVaryingIndex < vertexShader->mVaryings.size(); vertVaryingIndex++)
{
const PackedVarying &varying = vertexShader->mVaryings[vertVaryingIndex];
if (varying.registerAssigned())
{
for (unsigned int elementIndex = 0; elementIndex < varying.elementCount(); elementIndex++)
{
int variableRows = (varying.isStruct() ? 1 : VariableRowCount(TransposeMatrixType(varying.type)));
for (int row = 0; row < variableRows; row++)
{
int r = varying.registerIndex + elementIndex * variableRows + row;
vertexHLSL += " output.v" + Str(r);
bool sharedRegister = false; // Register used by multiple varyings
for (int x = 0; x < 4; x++)
{
if (packing[r][x] && packing[r][x] != packing[r][0])
{
sharedRegister = true;
break;
}
}
if(sharedRegister)
{
vertexHLSL += ".";
for (int x = 0; x < 4; x++)
{
if (packing[r][x] == &varying)
{
switch(x)
{
case 0: vertexHLSL += "x"; break;
case 1: vertexHLSL += "y"; break;
case 2: vertexHLSL += "z"; break;
case 3: vertexHLSL += "w"; break;
}
}
}
}
vertexHLSL += " = _" + varying.name;
if (varying.isArray())
{
vertexHLSL += ArrayString(elementIndex);
}
if (variableRows > 1)
{
vertexHLSL += ArrayString(row);
}
vertexHLSL += ";\n";
}
}
}
}
vertexHLSL += "\n"
" return output;\n"
"}\n";
pixelHLSL += "struct PS_INPUT\n"
"{\n";
pixelHLSL += varyingHLSL;
if (fragmentShader->mUsesFragCoord)
{
pixelHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + Str(fragCoordSemanticIndex) + ";\n";
}
if (fragmentShader->mUsesPointCoord && shaderModel >= 3)
{
pixelHLSL += " float2 gl_PointCoord : " + pointCoordSemantic + Str(pointCoordSemanticIndex) + ";\n";
}
// Must consume the PSIZE element if the geometry shader is not active
// We won't know if we use a GS until we draw
if (vertexShader->mUsesPointSize && shaderModel >= 4)
{
pixelHLSL += " float gl_PointSize : PSIZE;\n";
}
if (fragmentShader->mUsesFragCoord)
{
if (shaderModel >= 4)
{
pixelHLSL += " float4 dx_VPos : SV_Position;\n";
}
else if (shaderModel >= 3)
{
pixelHLSL += " float2 dx_VPos : VPOS;\n";
}
}
pixelHLSL += "};\n"
"\n"
"struct PS_OUTPUT\n"
"{\n";
if (shaderVersion < 300)
{
for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++)
{
pixelHLSL += " float4 gl_Color" + Str(renderTargetIndex) + " : " + targetSemantic + Str(renderTargetIndex) + ";\n";
}
if (fragmentShader->mUsesFragDepth)
{
pixelHLSL += " float gl_Depth : " + depthSemantic + ";\n";
}
}
else
{
defineOutputVariables(fragmentShader, programOutputVars);
const std::vector<Attribute> &shaderOutputVars = fragmentShader->getOutputVariables();
for (auto locationIt = programOutputVars->begin(); locationIt != programOutputVars->end(); locationIt++)
{
const VariableLocation &outputLocation = locationIt->second;
const ShaderVariable &outputVariable = shaderOutputVars[outputLocation.index];
const std::string &elementString = (outputLocation.element == GL_INVALID_INDEX ? "" : Str(outputLocation.element));
pixelHLSL += " " + gl_d3d::HLSLTypeString(outputVariable.type) +
" out_" + outputLocation.name + elementString +
" : " + targetSemantic + Str(locationIt->first) + ";\n";
}
}
pixelHLSL += "};\n"
"\n";
if (fragmentShader->mUsesFrontFacing)
{
if (shaderModel >= 4)
{
pixelHLSL += "PS_OUTPUT main(PS_INPUT input, bool isFrontFace : SV_IsFrontFace)\n"
"{\n";
}
else
{
pixelHLSL += "PS_OUTPUT main(PS_INPUT input, float vFace : VFACE)\n"
"{\n";
}
}
else
{
pixelHLSL += "PS_OUTPUT main(PS_INPUT input)\n"
"{\n";
}
if (fragmentShader->mUsesFragCoord)
{
pixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n";
if (shaderModel >= 4)
{
pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x;\n"
" gl_FragCoord.y = input.dx_VPos.y;\n";
}
else if (shaderModel >= 3)
{
pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x + 0.5;\n"
" gl_FragCoord.y = input.dx_VPos.y + 0.5;\n";
}
else
{
// dx_ViewCoords contains the viewport width/2, height/2, center.x and center.y. See Renderer::setViewport()
pixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_ViewCoords.x + dx_ViewCoords.z;\n"
" gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_ViewCoords.y + dx_ViewCoords.w;\n";
}
pixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_DepthFront.x + dx_DepthFront.y;\n"
" gl_FragCoord.w = rhw;\n";
}
if (fragmentShader->mUsesPointCoord && shaderModel >= 3)
{
pixelHLSL += " gl_PointCoord.x = input.gl_PointCoord.x;\n";
pixelHLSL += " gl_PointCoord.y = 1.0 - input.gl_PointCoord.y;\n";
}
if (fragmentShader->mUsesFrontFacing)
{
if (shaderModel <= 3)
{
pixelHLSL += " gl_FrontFacing = (vFace * dx_DepthFront.z >= 0.0);\n";
}
else
{
pixelHLSL += " gl_FrontFacing = isFrontFace;\n";
}
}
for (unsigned int varyingIndex = 0; varyingIndex < fragmentShader->mVaryings.size(); varyingIndex++)
{
const PackedVarying &varying = fragmentShader->mVaryings[varyingIndex];
if (varying.registerAssigned())
{
for (unsigned int elementIndex = 0; elementIndex < varying.elementCount(); elementIndex++)
{
GLenum transposedType = TransposeMatrixType(varying.type);
int variableRows = (varying.isStruct() ? 1 : VariableRowCount(transposedType));
for (int row = 0; row < variableRows; row++)
{
std::string n = Str(varying.registerIndex + elementIndex * variableRows + row);
pixelHLSL += " _" + varying.name;
if (varying.isArray())
{
pixelHLSL += ArrayString(elementIndex);
}
if (variableRows > 1)
{
pixelHLSL += ArrayString(row);
}
if (varying.isStruct())
{
pixelHLSL += " = input.v" + n + ";\n"; break;
}
else
{
switch (VariableColumnCount(transposedType))
{
case 1: pixelHLSL += " = input.v" + n + ".x;\n"; break;
case 2: pixelHLSL += " = input.v" + n + ".xy;\n"; break;
case 3: pixelHLSL += " = input.v" + n + ".xyz;\n"; break;
case 4: pixelHLSL += " = input.v" + n + ";\n"; break;
default: UNREACHABLE();
}
}
}
}
}
else UNREACHABLE();
}
pixelHLSL += "\n"
" gl_main();\n"
"\n"
" PS_OUTPUT output;\n";
if (shaderVersion < 300)
{
for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++)
{
unsigned int sourceColorIndex = broadcast ? 0 : renderTargetIndex;
pixelHLSL += " output.gl_Color" + Str(renderTargetIndex) + " = gl_Color[" + Str(sourceColorIndex) + "];\n";
}
if (fragmentShader->mUsesFragDepth)
{
pixelHLSL += " output.gl_Depth = gl_Depth;\n";
}
}
else
{
for (auto locationIt = programOutputVars->begin(); locationIt != programOutputVars->end(); locationIt++)
{
const VariableLocation &outputLocation = locationIt->second;
const std::string &variableName = "out_" + outputLocation.name;
const std::string &outVariableName = variableName + (outputLocation.element == GL_INVALID_INDEX ? "" : Str(outputLocation.element));
const std::string &staticVariableName = variableName + ArrayString(outputLocation.element);
pixelHLSL += " output." + outVariableName + " = " + staticVariableName + ";\n";
}
}
pixelHLSL += "\n"
" return output;\n"
"}\n";
return true;
}
void DynamicHLSL::defineOutputVariables(FragmentShader *fragmentShader, std::map<int, VariableLocation> *programOutputVars) const
{
const std::vector<Attribute> &shaderOutputVars = fragmentShader->getOutputVariables();
for (unsigned int outputVariableIndex = 0; outputVariableIndex < shaderOutputVars.size(); outputVariableIndex++)
{
const Attribute &outputVariable = shaderOutputVars[outputVariableIndex];
const int baseLocation = outputVariable.location == -1 ? 0 : outputVariable.location;
if (outputVariable.arraySize > 0)
{
for (unsigned int elementIndex = 0; elementIndex < outputVariable.arraySize; elementIndex++)
{
const int location = baseLocation + elementIndex;
ASSERT(programOutputVars->count(location) == 0);
(*programOutputVars)[location] = VariableLocation(outputVariable.name, elementIndex, outputVariableIndex);
}
}
else
{
ASSERT(programOutputVars->count(baseLocation) == 0);
(*programOutputVars)[baseLocation] = VariableLocation(outputVariable.name, GL_INVALID_INDEX, outputVariableIndex);
}
}
}
std::string DynamicHLSL::generateGeometryShaderHLSL(int registers, FragmentShader *fragmentShader, VertexShader *vertexShader) const
{
// for now we only handle point sprite emulation
ASSERT(vertexShader->mUsesPointSize && mRenderer->getMajorShaderModel() >= 4);
return generatePointSpriteHLSL(registers, fragmentShader, vertexShader);
}
std::string DynamicHLSL::generatePointSpriteHLSL(int registers, FragmentShader *fragmentShader, VertexShader *vertexShader) const
{
ASSERT(registers >= 0);
ASSERT(vertexShader->mUsesPointSize);
ASSERT(mRenderer->getMajorShaderModel() >= 4);
std::string geomHLSL;
std::string varyingSemantic = "TEXCOORD";
std::string fragCoordSemantic;
std::string pointCoordSemantic;
int reservedRegisterIndex = registers;
if (fragmentShader->mUsesFragCoord)
{
fragCoordSemantic = varyingSemantic + Str(reservedRegisterIndex++);
}
if (fragmentShader->mUsesPointCoord)
{
pointCoordSemantic = varyingSemantic + Str(reservedRegisterIndex++);
}
geomHLSL += "uniform float4 dx_ViewCoords : register(c1);\n"
"\n"
"struct GS_INPUT\n"
"{\n";
std::string varyingHLSL = generateVaryingHLSL(vertexShader, varyingSemantic, NULL);
geomHLSL += varyingHLSL;
if (fragmentShader->mUsesFragCoord)
{
geomHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n";
}
geomHLSL += " float gl_PointSize : PSIZE;\n"
" float4 gl_Position : SV_Position;\n"
"};\n"
"\n"
"struct GS_OUTPUT\n"
"{\n";
geomHLSL += varyingHLSL;
if (fragmentShader->mUsesFragCoord)
{
geomHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n";
}
if (fragmentShader->mUsesPointCoord)
{
geomHLSL += " float2 gl_PointCoord : " + pointCoordSemantic + ";\n";
}
geomHLSL += " float gl_PointSize : PSIZE;\n"
" float4 gl_Position : SV_Position;\n"
"};\n"
"\n"
"static float2 pointSpriteCorners[] = \n"
"{\n"
" float2( 0.5f, -0.5f),\n"
" float2( 0.5f, 0.5f),\n"
" float2(-0.5f, -0.5f),\n"
" float2(-0.5f, 0.5f)\n"
"};\n"
"\n"
"static float2 pointSpriteTexcoords[] = \n"
"{\n"
" float2(1.0f, 1.0f),\n"
" float2(1.0f, 0.0f),\n"
" float2(0.0f, 1.0f),\n"
" float2(0.0f, 0.0f)\n"
"};\n"
"\n"
"static float minPointSize = " + Str(ALIASED_POINT_SIZE_RANGE_MIN) + ".0f;\n"
"static float maxPointSize = " + Str(mRenderer->getMaxPointSize()) + ".0f;\n"
"\n"
"[maxvertexcount(4)]\n"
"void main(point GS_INPUT input[1], inout TriangleStream<GS_OUTPUT> outStream)\n"
"{\n"
" GS_OUTPUT output = (GS_OUTPUT)0;\n"
" output.gl_PointSize = input[0].gl_PointSize;\n";
for (int r = 0; r < registers; r++)
{
geomHLSL += " output.v" + Str(r) + " = input[0].v" + Str(r) + ";\n";
}
if (fragmentShader->mUsesFragCoord)
{
geomHLSL += " output.gl_FragCoord = input[0].gl_FragCoord;\n";
}
geomHLSL += " \n"
" float gl_PointSize = clamp(input[0].gl_PointSize, minPointSize, maxPointSize);\n"
" float4 gl_Position = input[0].gl_Position;\n"
" float2 viewportScale = float2(1.0f / dx_ViewCoords.x, 1.0f / dx_ViewCoords.y) * gl_Position.w;\n";
for (int corner = 0; corner < 4; corner++)
{
geomHLSL += " \n"
" output.gl_Position = gl_Position + float4(pointSpriteCorners[" + Str(corner) + "] * viewportScale * gl_PointSize, 0.0f, 0.0f);\n";
if (fragmentShader->mUsesPointCoord)
{
geomHLSL += " output.gl_PointCoord = pointSpriteTexcoords[" + Str(corner) + "];\n";
}
geomHLSL += " outStream.Append(output);\n";
}
geomHLSL += " \n"
" outStream.RestartStrip();\n"
"}\n";
return geomHLSL;
}
// This method needs to match OutputHLSL::decorate
std::string DynamicHLSL::decorateVariable(const std::string &name)
{
if (name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0)
{
return "_" + name;
}
return name;
}
std::string DynamicHLSL::generateAttributeConversionHLSL(const VertexFormat &vertexFormat, const ShaderVariable &shaderAttrib) const
{
std::string attribString = "input." + decorateVariable(shaderAttrib.name);
// Matrix
if (IsMatrixType(shaderAttrib.type))
{
return "transpose(" + attribString + ")";
}
GLenum shaderComponentType = UniformComponentType(shaderAttrib.type);
int shaderComponentCount = UniformComponentCount(shaderAttrib.type);
// Perform integer to float conversion (if necessary)
bool requiresTypeConversion = (shaderComponentType == GL_FLOAT && vertexFormat.mType != GL_FLOAT);
if (requiresTypeConversion)
{
// TODO: normalization for 32-bit integer formats
ASSERT(!vertexFormat.mNormalized && !vertexFormat.mPureInteger);
return "float" + Str(shaderComponentCount) + "(" + attribString + ")";
}
// No conversion necessary
return attribString;
}
void DynamicHLSL::getInputLayoutSignature(const VertexFormat inputLayout[], GLenum signature[]) const
{
for (size_t inputIndex = 0; inputIndex < MAX_VERTEX_ATTRIBS; inputIndex++)
{
const VertexFormat &vertexFormat = inputLayout[inputIndex];
if (vertexFormat.mType == GL_NONE)
{
signature[inputIndex] = GL_NONE;
}
else
{
bool gpuConverted = ((mRenderer->getVertexConversionType(vertexFormat) & rx::VERTEX_CONVERT_GPU) != 0);
signature[inputIndex] = (gpuConverted ? GL_TRUE : GL_FALSE);
}
}
}
}