// // Copyright (c) 2014 The ANGLE Project Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // // DynamicHLSL.cpp: Implementation for link and run-time HLSL generation // #include "precompiled.h" #include "libGLESv2/DynamicHLSL.h" #include "libGLESv2/Shader.h" #include "libGLESv2/Program.h" #include "libGLESv2/renderer/Renderer.h" #include "common/utilities.h" #include "libGLESv2/ProgramBinary.h" #include "libGLESv2/formatutils.h" #include "common/blocklayout.h" static std::string Str(int i) { char buffer[20]; snprintf(buffer, sizeof(buffer), "%d", i); return buffer; } namespace gl_d3d { std::string HLSLComponentTypeString(GLenum componentType) { switch (componentType) { case GL_UNSIGNED_INT: return "uint"; case GL_INT: return "int"; case GL_UNSIGNED_NORMALIZED: case GL_SIGNED_NORMALIZED: case GL_FLOAT: return "float"; default: UNREACHABLE(); return "not-component-type"; } } std::string HLSLComponentTypeString(GLenum componentType, int componentCount) { return HLSLComponentTypeString(componentType) + (componentCount > 1 ? Str(componentCount) : ""); } std::string HLSLMatrixTypeString(GLenum type) { switch (type) { case GL_FLOAT_MAT2: return "float2x2"; case GL_FLOAT_MAT3: return "float3x3"; case GL_FLOAT_MAT4: return "float4x4"; case GL_FLOAT_MAT2x3: return "float2x3"; case GL_FLOAT_MAT3x2: return "float3x2"; case GL_FLOAT_MAT2x4: return "float2x4"; case GL_FLOAT_MAT4x2: return "float4x2"; case GL_FLOAT_MAT3x4: return "float3x4"; case GL_FLOAT_MAT4x3: return "float4x3"; default: UNREACHABLE(); return "not-matrix-type"; } } std::string HLSLTypeString(GLenum type) { if (gl::IsMatrixType(type)) { return HLSLMatrixTypeString(type); } return HLSLComponentTypeString(gl::UniformComponentType(type), gl::UniformComponentCount(type)); } } namespace gl { std::string ArrayString(unsigned int i) { return (i == GL_INVALID_INDEX ? "" : "[" + Str(i) + "]"); } const std::string DynamicHLSL::VERTEX_ATTRIBUTE_STUB_STRING = "@@ VERTEX ATTRIBUTES @@"; DynamicHLSL::DynamicHLSL(rx::Renderer *const renderer) : mRenderer(renderer) { } static bool packVarying(PackedVarying *varying, const int maxVaryingVectors, VaryingPacking packing) { GLenum transposedType = TransposeMatrixType(varying->type); // matrices within varying structs are not transposed int registers = (varying->isStruct() ? HLSLVariableRegisterCount(*varying) : VariableRowCount(transposedType)) * varying->elementCount(); int elements = (varying->isStruct() ? 4 : VariableColumnCount(transposedType)); if (elements >= 2 && elements <= 4) { for (int r = 0; r <= maxVaryingVectors - registers; r++) { bool available = true; for (int y = 0; y < registers && available; y++) { for (int x = 0; x < elements && available; x++) { if (packing[r + y][x]) { available = false; } } } if (available) { varying->registerIndex = r; for (int y = 0; y < registers; y++) { for (int x = 0; x < elements; x++) { packing[r + y][x] = &*varying; } } return true; } } if (elements == 2) { for (int r = maxVaryingVectors - registers; r >= 0; r--) { bool available = true; for (int y = 0; y < registers && available; y++) { for (int x = 2; x < 4 && available; x++) { if (packing[r + y][x]) { available = false; } } } if (available) { varying->registerIndex = r; for (int y = 0; y < registers; y++) { for (int x = 2; x < 4; x++) { packing[r + y][x] = &*varying; } } return true; } } } } else if (elements == 1) { int space[4] = { 0 }; for (int y = 0; y < maxVaryingVectors; y++) { for (int x = 0; x < 4; x++) { space[x] += packing[y][x] ? 0 : 1; } } int column = 0; for (int x = 0; x < 4; x++) { if (space[x] >= registers && space[x] < space[column]) { column = x; } } if (space[column] >= registers) { for (int r = 0; r < maxVaryingVectors; r++) { if (!packing[r][column]) { varying->registerIndex = r; for (int y = r; y < r + registers; y++) { packing[y][column] = &*varying; } break; } } return true; } } else UNREACHABLE(); return false; } // Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111 // Returns the number of used varying registers, or -1 if unsuccesful int DynamicHLSL::packVaryings(InfoLog &infoLog, VaryingPacking packing, FragmentShader *fragmentShader, VertexShader *vertexShader, const std::vector<std::string>& transformFeedbackVaryings) { const int maxVaryingVectors = mRenderer->getMaxVaryingVectors(); vertexShader->resetVaryingsRegisterAssignment(); fragmentShader->resetVaryingsRegisterAssignment(); std::set<std::string> packedVaryings; for (unsigned int varyingIndex = 0; varyingIndex < fragmentShader->mVaryings.size(); varyingIndex++) { PackedVarying *varying = &fragmentShader->mVaryings[varyingIndex]; if (packVarying(varying, maxVaryingVectors, packing)) { packedVaryings.insert(varying->name); } else { infoLog.append("Could not pack varying %s", varying->name.c_str()); return -1; } } for (unsigned int feedbackVaryingIndex = 0; feedbackVaryingIndex < transformFeedbackVaryings.size(); feedbackVaryingIndex++) { const std::string &transformFeedbackVarying = transformFeedbackVaryings[feedbackVaryingIndex]; if (packedVaryings.find(transformFeedbackVarying) == packedVaryings.end()) { bool found = false; for (unsigned int varyingIndex = 0; varyingIndex < vertexShader->mVaryings.size(); varyingIndex++) { PackedVarying *varying = &vertexShader->mVaryings[varyingIndex]; if (transformFeedbackVarying == varying->name) { if (!packVarying(varying, maxVaryingVectors, packing)) { infoLog.append("Could not pack varying %s", varying->name.c_str()); return -1; } found = true; break; } } if (!found && transformFeedbackVarying != "gl_Position" && transformFeedbackVarying != "gl_PointSize") { infoLog.append("Transform feedback varying %s does not exist in the vertex shader.", transformFeedbackVarying.c_str()); return -1; } } } // Return the number of used registers int registers = 0; for (int r = 0; r < maxVaryingVectors; r++) { if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3]) { registers++; } } return registers; } std::string DynamicHLSL::generateVaryingHLSL(VertexShader *shader, const std::string &varyingSemantic, std::vector<LinkedVarying> *linkedVaryings) const { std::string varyingHLSL; for (unsigned int varyingIndex = 0; varyingIndex < shader->mVaryings.size(); varyingIndex++) { const PackedVarying &varying = shader->mVaryings[varyingIndex]; if (varying.registerAssigned()) { GLenum transposedType = TransposeMatrixType(varying.type); int variableRows = (varying.isStruct() ? 1 : VariableRowCount(transposedType)); for (unsigned int elementIndex = 0; elementIndex < varying.elementCount(); elementIndex++) { for (int row = 0; row < variableRows; row++) { switch (varying.interpolation) { case INTERPOLATION_SMOOTH: varyingHLSL += " "; break; case INTERPOLATION_FLAT: varyingHLSL += " nointerpolation "; break; case INTERPOLATION_CENTROID: varyingHLSL += " centroid "; break; default: UNREACHABLE(); } unsigned int semanticIndex = elementIndex * variableRows + varying.registerIndex + row; std::string n = Str(semanticIndex); std::string typeString; if (varying.isStruct()) { // matrices within structs are not transposed, so // do not use the special struct prefix "rm" typeString = decorateVariable(varying.structName); } else { GLenum componentType = UniformComponentType(transposedType); int columnCount = VariableColumnCount(transposedType); typeString = gl_d3d::HLSLComponentTypeString(componentType, columnCount); } varyingHLSL += typeString + " v" + n + " : " + varyingSemantic + n + ";\n"; } } if (linkedVaryings) { linkedVaryings->push_back(LinkedVarying(varying.name, varying.type, varying.elementCount(), varyingSemantic, varying.registerIndex, variableRows * varying.elementCount())); } } } return varyingHLSL; } std::string DynamicHLSL::generateInputLayoutHLSL(const VertexFormat inputLayout[], const Attribute shaderAttributes[]) const { std::string structHLSL, initHLSL; int semanticIndex = 0; unsigned int inputIndex = 0; for (unsigned int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++) { ASSERT(inputIndex < MAX_VERTEX_ATTRIBS); const VertexFormat &vertexFormat = inputLayout[inputIndex]; const Attribute &shaderAttribute = shaderAttributes[attributeIndex]; if (!shaderAttribute.name.empty()) { // HLSL code for input structure if (IsMatrixType(shaderAttribute.type)) { // Matrix types are always transposed structHLSL += " " + gl_d3d::HLSLMatrixTypeString(TransposeMatrixType(shaderAttribute.type)); } else { GLenum componentType = mRenderer->getVertexComponentType(vertexFormat); structHLSL += " " + gl_d3d::HLSLComponentTypeString(componentType, UniformComponentCount(shaderAttribute.type)); } structHLSL += " " + decorateVariable(shaderAttribute.name) + " : TEXCOORD" + Str(semanticIndex) + ";\n"; semanticIndex += AttributeRegisterCount(shaderAttribute.type); // HLSL code for initialization initHLSL += " " + decorateVariable(shaderAttribute.name) + " = "; // Mismatched vertex attribute to vertex input may result in an undefined // data reinterpretation (eg for pure integer->float, float->pure integer) // TODO: issue warning with gl debug info extension, when supported if (IsMatrixType(shaderAttribute.type) || (mRenderer->getVertexConversionType(vertexFormat) & rx::VERTEX_CONVERT_GPU) != 0) { initHLSL += generateAttributeConversionHLSL(vertexFormat, shaderAttribute); } else { initHLSL += "input." + decorateVariable(shaderAttribute.name); } initHLSL += ";\n"; inputIndex += VariableRowCount(TransposeMatrixType(shaderAttribute.type)); } } return "struct VS_INPUT\n" "{\n" + structHLSL + "};\n" "\n" "void initAttributes(VS_INPUT input)\n" "{\n" + initHLSL + "}\n"; } bool DynamicHLSL::generateShaderLinkHLSL(InfoLog &infoLog, int registers, const VaryingPacking packing, std::string& pixelHLSL, std::string& vertexHLSL, FragmentShader *fragmentShader, VertexShader *vertexShader, const std::vector<std::string>& transformFeedbackVaryings, std::vector<LinkedVarying> *linkedVaryings, std::map<int, VariableLocation> *programOutputVars) const { if (pixelHLSL.empty() || vertexHLSL.empty()) { return false; } bool usesMRT = fragmentShader->mUsesMultipleRenderTargets; bool usesFragColor = fragmentShader->mUsesFragColor; bool usesFragData = fragmentShader->mUsesFragData; if (usesFragColor && usesFragData) { infoLog.append("Cannot use both gl_FragColor and gl_FragData in the same fragment shader."); return false; } // Write the HLSL input/output declarations const int shaderModel = mRenderer->getMajorShaderModel(); const int maxVaryingVectors = mRenderer->getMaxVaryingVectors(); const int registersNeeded = registers + (fragmentShader->mUsesFragCoord ? 1 : 0) + (fragmentShader->mUsesPointCoord ? 1 : 0); // Two cases when writing to gl_FragColor and using ESSL 1.0: // - with a 3.0 context, the output color is copied to channel 0 // - with a 2.0 context, the output color is broadcast to all channels const bool broadcast = (fragmentShader->mUsesFragColor && mRenderer->getCurrentClientVersion() < 3); const unsigned int numRenderTargets = (broadcast || usesMRT ? mRenderer->getMaxRenderTargets() : 1); int shaderVersion = vertexShader->getShaderVersion(); if (registersNeeded > maxVaryingVectors) { infoLog.append("No varying registers left to support gl_FragCoord/gl_PointCoord"); return false; } std::string varyingSemantic = (vertexShader->mUsesPointSize && shaderModel == 3) ? "COLOR" : "TEXCOORD"; std::string targetSemantic = (shaderModel >= 4) ? "SV_Target" : "COLOR"; std::string dxPositionSemantic = (shaderModel >= 4) ? "SV_Position" : "POSITION"; std::string depthSemantic = (shaderModel >= 4) ? "SV_Depth" : "DEPTH"; std::string varyingHLSL = generateVaryingHLSL(vertexShader, varyingSemantic, linkedVaryings); // special varyings that use reserved registers int reservedRegisterIndex = registers; unsigned int glPositionSemanticIndex = reservedRegisterIndex++; std::string glPositionSemantic = varyingSemantic; std::string fragCoordSemantic; unsigned int fragCoordSemanticIndex = 0; if (fragmentShader->mUsesFragCoord) { fragCoordSemanticIndex = reservedRegisterIndex++; fragCoordSemantic = varyingSemantic; } std::string pointCoordSemantic; unsigned int pointCoordSemanticIndex = 0; if (fragmentShader->mUsesPointCoord) { // Shader model 3 uses a special TEXCOORD semantic for point sprite texcoords. // In DX11 we compute this in the GS. if (shaderModel == 3) { pointCoordSemanticIndex = 0; pointCoordSemantic = "TEXCOORD0"; } else if (shaderModel >= 4) { pointCoordSemanticIndex = reservedRegisterIndex++; pointCoordSemantic = varyingSemantic; } } // Add stub string to be replaced when shader is dynamically defined by its layout vertexHLSL += "\n" + VERTEX_ATTRIBUTE_STUB_STRING + "\n"; vertexHLSL += "struct VS_OUTPUT\n" "{\n"; if (shaderModel < 4) { vertexHLSL += " float4 _dx_Position : " + dxPositionSemantic + ";\n"; vertexHLSL += " float4 gl_Position : " + glPositionSemantic + Str(glPositionSemanticIndex) + ";\n"; linkedVaryings->push_back(LinkedVarying("gl_Position", GL_FLOAT_VEC4, 1, glPositionSemantic, glPositionSemanticIndex, 1)); } vertexHLSL += varyingHLSL; if (fragmentShader->mUsesFragCoord) { vertexHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + Str(fragCoordSemanticIndex) + ";\n"; linkedVaryings->push_back(LinkedVarying("gl_FragCoord", GL_FLOAT_VEC4, 1, fragCoordSemantic, fragCoordSemanticIndex, 1)); } if (vertexShader->mUsesPointSize && shaderModel >= 3) { vertexHLSL += " float gl_PointSize : PSIZE;\n"; linkedVaryings->push_back(LinkedVarying("gl_PointSize", GL_FLOAT, 1, "PSIZE", 0, 1)); } if (shaderModel >= 4) { vertexHLSL += " float4 _dx_Position : " + dxPositionSemantic + ";\n"; vertexHLSL += " float4 gl_Position : " + glPositionSemantic + Str(glPositionSemanticIndex) + ";\n"; linkedVaryings->push_back(LinkedVarying("gl_Position", GL_FLOAT_VEC4, 1, glPositionSemantic, glPositionSemanticIndex, 1)); } vertexHLSL += "};\n" "\n" "VS_OUTPUT main(VS_INPUT input)\n" "{\n" " initAttributes(input);\n"; if (shaderModel >= 4) { vertexHLSL += "\n" " gl_main();\n" "\n" " VS_OUTPUT output;\n" " output.gl_Position = gl_Position;\n" " output._dx_Position.x = gl_Position.x;\n" " output._dx_Position.y = -gl_Position.y;\n" " output._dx_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n" " output._dx_Position.w = gl_Position.w;\n"; } else { vertexHLSL += "\n" " gl_main();\n" "\n" " VS_OUTPUT output;\n" " output.gl_Position = gl_Position;\n" " output._dx_Position.x = gl_Position.x * dx_ViewAdjust.z + dx_ViewAdjust.x * gl_Position.w;\n" " output._dx_Position.y = -(gl_Position.y * dx_ViewAdjust.w + dx_ViewAdjust.y * gl_Position.w);\n" " output._dx_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n" " output._dx_Position.w = gl_Position.w;\n"; } if (vertexShader->mUsesPointSize && shaderModel >= 3) { vertexHLSL += " output.gl_PointSize = gl_PointSize;\n"; } if (fragmentShader->mUsesFragCoord) { vertexHLSL += " output.gl_FragCoord = gl_Position;\n"; } for (unsigned int vertVaryingIndex = 0; vertVaryingIndex < vertexShader->mVaryings.size(); vertVaryingIndex++) { const PackedVarying &varying = vertexShader->mVaryings[vertVaryingIndex]; if (varying.registerAssigned()) { for (unsigned int elementIndex = 0; elementIndex < varying.elementCount(); elementIndex++) { int variableRows = (varying.isStruct() ? 1 : VariableRowCount(TransposeMatrixType(varying.type))); for (int row = 0; row < variableRows; row++) { int r = varying.registerIndex + elementIndex * variableRows + row; vertexHLSL += " output.v" + Str(r); bool sharedRegister = false; // Register used by multiple varyings for (int x = 0; x < 4; x++) { if (packing[r][x] && packing[r][x] != packing[r][0]) { sharedRegister = true; break; } } if(sharedRegister) { vertexHLSL += "."; for (int x = 0; x < 4; x++) { if (packing[r][x] == &varying) { switch(x) { case 0: vertexHLSL += "x"; break; case 1: vertexHLSL += "y"; break; case 2: vertexHLSL += "z"; break; case 3: vertexHLSL += "w"; break; } } } } vertexHLSL += " = _" + varying.name; if (varying.isArray()) { vertexHLSL += ArrayString(elementIndex); } if (variableRows > 1) { vertexHLSL += ArrayString(row); } vertexHLSL += ";\n"; } } } } vertexHLSL += "\n" " return output;\n" "}\n"; pixelHLSL += "struct PS_INPUT\n" "{\n"; pixelHLSL += varyingHLSL; if (fragmentShader->mUsesFragCoord) { pixelHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + Str(fragCoordSemanticIndex) + ";\n"; } if (fragmentShader->mUsesPointCoord && shaderModel >= 3) { pixelHLSL += " float2 gl_PointCoord : " + pointCoordSemantic + Str(pointCoordSemanticIndex) + ";\n"; } // Must consume the PSIZE element if the geometry shader is not active // We won't know if we use a GS until we draw if (vertexShader->mUsesPointSize && shaderModel >= 4) { pixelHLSL += " float gl_PointSize : PSIZE;\n"; } if (fragmentShader->mUsesFragCoord) { if (shaderModel >= 4) { pixelHLSL += " float4 dx_VPos : SV_Position;\n"; } else if (shaderModel >= 3) { pixelHLSL += " float2 dx_VPos : VPOS;\n"; } } pixelHLSL += "};\n" "\n" "struct PS_OUTPUT\n" "{\n"; if (shaderVersion < 300) { for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++) { pixelHLSL += " float4 gl_Color" + Str(renderTargetIndex) + " : " + targetSemantic + Str(renderTargetIndex) + ";\n"; } if (fragmentShader->mUsesFragDepth) { pixelHLSL += " float gl_Depth : " + depthSemantic + ";\n"; } } else { defineOutputVariables(fragmentShader, programOutputVars); const std::vector<Attribute> &shaderOutputVars = fragmentShader->getOutputVariables(); for (auto locationIt = programOutputVars->begin(); locationIt != programOutputVars->end(); locationIt++) { const VariableLocation &outputLocation = locationIt->second; const ShaderVariable &outputVariable = shaderOutputVars[outputLocation.index]; const std::string &elementString = (outputLocation.element == GL_INVALID_INDEX ? "" : Str(outputLocation.element)); pixelHLSL += " " + gl_d3d::HLSLTypeString(outputVariable.type) + " out_" + outputLocation.name + elementString + " : " + targetSemantic + Str(locationIt->first) + ";\n"; } } pixelHLSL += "};\n" "\n"; if (fragmentShader->mUsesFrontFacing) { if (shaderModel >= 4) { pixelHLSL += "PS_OUTPUT main(PS_INPUT input, bool isFrontFace : SV_IsFrontFace)\n" "{\n"; } else { pixelHLSL += "PS_OUTPUT main(PS_INPUT input, float vFace : VFACE)\n" "{\n"; } } else { pixelHLSL += "PS_OUTPUT main(PS_INPUT input)\n" "{\n"; } if (fragmentShader->mUsesFragCoord) { pixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n"; if (shaderModel >= 4) { pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x;\n" " gl_FragCoord.y = input.dx_VPos.y;\n"; } else if (shaderModel >= 3) { pixelHLSL += " gl_FragCoord.x = input.dx_VPos.x + 0.5;\n" " gl_FragCoord.y = input.dx_VPos.y + 0.5;\n"; } else { // dx_ViewCoords contains the viewport width/2, height/2, center.x and center.y. See Renderer::setViewport() pixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_ViewCoords.x + dx_ViewCoords.z;\n" " gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_ViewCoords.y + dx_ViewCoords.w;\n"; } pixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_DepthFront.x + dx_DepthFront.y;\n" " gl_FragCoord.w = rhw;\n"; } if (fragmentShader->mUsesPointCoord && shaderModel >= 3) { pixelHLSL += " gl_PointCoord.x = input.gl_PointCoord.x;\n"; pixelHLSL += " gl_PointCoord.y = 1.0 - input.gl_PointCoord.y;\n"; } if (fragmentShader->mUsesFrontFacing) { if (shaderModel <= 3) { pixelHLSL += " gl_FrontFacing = (vFace * dx_DepthFront.z >= 0.0);\n"; } else { pixelHLSL += " gl_FrontFacing = isFrontFace;\n"; } } for (unsigned int varyingIndex = 0; varyingIndex < fragmentShader->mVaryings.size(); varyingIndex++) { const PackedVarying &varying = fragmentShader->mVaryings[varyingIndex]; if (varying.registerAssigned()) { for (unsigned int elementIndex = 0; elementIndex < varying.elementCount(); elementIndex++) { GLenum transposedType = TransposeMatrixType(varying.type); int variableRows = (varying.isStruct() ? 1 : VariableRowCount(transposedType)); for (int row = 0; row < variableRows; row++) { std::string n = Str(varying.registerIndex + elementIndex * variableRows + row); pixelHLSL += " _" + varying.name; if (varying.isArray()) { pixelHLSL += ArrayString(elementIndex); } if (variableRows > 1) { pixelHLSL += ArrayString(row); } if (varying.isStruct()) { pixelHLSL += " = input.v" + n + ";\n"; break; } else { switch (VariableColumnCount(transposedType)) { case 1: pixelHLSL += " = input.v" + n + ".x;\n"; break; case 2: pixelHLSL += " = input.v" + n + ".xy;\n"; break; case 3: pixelHLSL += " = input.v" + n + ".xyz;\n"; break; case 4: pixelHLSL += " = input.v" + n + ";\n"; break; default: UNREACHABLE(); } } } } } else UNREACHABLE(); } pixelHLSL += "\n" " gl_main();\n" "\n" " PS_OUTPUT output;\n"; if (shaderVersion < 300) { for (unsigned int renderTargetIndex = 0; renderTargetIndex < numRenderTargets; renderTargetIndex++) { unsigned int sourceColorIndex = broadcast ? 0 : renderTargetIndex; pixelHLSL += " output.gl_Color" + Str(renderTargetIndex) + " = gl_Color[" + Str(sourceColorIndex) + "];\n"; } if (fragmentShader->mUsesFragDepth) { pixelHLSL += " output.gl_Depth = gl_Depth;\n"; } } else { for (auto locationIt = programOutputVars->begin(); locationIt != programOutputVars->end(); locationIt++) { const VariableLocation &outputLocation = locationIt->second; const std::string &variableName = "out_" + outputLocation.name; const std::string &outVariableName = variableName + (outputLocation.element == GL_INVALID_INDEX ? "" : Str(outputLocation.element)); const std::string &staticVariableName = variableName + ArrayString(outputLocation.element); pixelHLSL += " output." + outVariableName + " = " + staticVariableName + ";\n"; } } pixelHLSL += "\n" " return output;\n" "}\n"; return true; } void DynamicHLSL::defineOutputVariables(FragmentShader *fragmentShader, std::map<int, VariableLocation> *programOutputVars) const { const std::vector<Attribute> &shaderOutputVars = fragmentShader->getOutputVariables(); for (unsigned int outputVariableIndex = 0; outputVariableIndex < shaderOutputVars.size(); outputVariableIndex++) { const Attribute &outputVariable = shaderOutputVars[outputVariableIndex]; const int baseLocation = outputVariable.location == -1 ? 0 : outputVariable.location; if (outputVariable.arraySize > 0) { for (unsigned int elementIndex = 0; elementIndex < outputVariable.arraySize; elementIndex++) { const int location = baseLocation + elementIndex; ASSERT(programOutputVars->count(location) == 0); (*programOutputVars)[location] = VariableLocation(outputVariable.name, elementIndex, outputVariableIndex); } } else { ASSERT(programOutputVars->count(baseLocation) == 0); (*programOutputVars)[baseLocation] = VariableLocation(outputVariable.name, GL_INVALID_INDEX, outputVariableIndex); } } } std::string DynamicHLSL::generateGeometryShaderHLSL(int registers, FragmentShader *fragmentShader, VertexShader *vertexShader) const { // for now we only handle point sprite emulation ASSERT(vertexShader->mUsesPointSize && mRenderer->getMajorShaderModel() >= 4); return generatePointSpriteHLSL(registers, fragmentShader, vertexShader); } std::string DynamicHLSL::generatePointSpriteHLSL(int registers, FragmentShader *fragmentShader, VertexShader *vertexShader) const { ASSERT(registers >= 0); ASSERT(vertexShader->mUsesPointSize); ASSERT(mRenderer->getMajorShaderModel() >= 4); std::string geomHLSL; std::string varyingSemantic = "TEXCOORD"; std::string fragCoordSemantic; std::string pointCoordSemantic; int reservedRegisterIndex = registers; if (fragmentShader->mUsesFragCoord) { fragCoordSemantic = varyingSemantic + Str(reservedRegisterIndex++); } if (fragmentShader->mUsesPointCoord) { pointCoordSemantic = varyingSemantic + Str(reservedRegisterIndex++); } geomHLSL += "uniform float4 dx_ViewCoords : register(c1);\n" "\n" "struct GS_INPUT\n" "{\n"; std::string varyingHLSL = generateVaryingHLSL(vertexShader, varyingSemantic, NULL); geomHLSL += varyingHLSL; if (fragmentShader->mUsesFragCoord) { geomHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n"; } geomHLSL += " float gl_PointSize : PSIZE;\n" " float4 gl_Position : SV_Position;\n" "};\n" "\n" "struct GS_OUTPUT\n" "{\n"; geomHLSL += varyingHLSL; if (fragmentShader->mUsesFragCoord) { geomHLSL += " float4 gl_FragCoord : " + fragCoordSemantic + ";\n"; } if (fragmentShader->mUsesPointCoord) { geomHLSL += " float2 gl_PointCoord : " + pointCoordSemantic + ";\n"; } geomHLSL += " float gl_PointSize : PSIZE;\n" " float4 gl_Position : SV_Position;\n" "};\n" "\n" "static float2 pointSpriteCorners[] = \n" "{\n" " float2( 0.5f, -0.5f),\n" " float2( 0.5f, 0.5f),\n" " float2(-0.5f, -0.5f),\n" " float2(-0.5f, 0.5f)\n" "};\n" "\n" "static float2 pointSpriteTexcoords[] = \n" "{\n" " float2(1.0f, 1.0f),\n" " float2(1.0f, 0.0f),\n" " float2(0.0f, 1.0f),\n" " float2(0.0f, 0.0f)\n" "};\n" "\n" "static float minPointSize = " + Str(ALIASED_POINT_SIZE_RANGE_MIN) + ".0f;\n" "static float maxPointSize = " + Str(mRenderer->getMaxPointSize()) + ".0f;\n" "\n" "[maxvertexcount(4)]\n" "void main(point GS_INPUT input[1], inout TriangleStream<GS_OUTPUT> outStream)\n" "{\n" " GS_OUTPUT output = (GS_OUTPUT)0;\n" " output.gl_PointSize = input[0].gl_PointSize;\n"; for (int r = 0; r < registers; r++) { geomHLSL += " output.v" + Str(r) + " = input[0].v" + Str(r) + ";\n"; } if (fragmentShader->mUsesFragCoord) { geomHLSL += " output.gl_FragCoord = input[0].gl_FragCoord;\n"; } geomHLSL += " \n" " float gl_PointSize = clamp(input[0].gl_PointSize, minPointSize, maxPointSize);\n" " float4 gl_Position = input[0].gl_Position;\n" " float2 viewportScale = float2(1.0f / dx_ViewCoords.x, 1.0f / dx_ViewCoords.y) * gl_Position.w;\n"; for (int corner = 0; corner < 4; corner++) { geomHLSL += " \n" " output.gl_Position = gl_Position + float4(pointSpriteCorners[" + Str(corner) + "] * viewportScale * gl_PointSize, 0.0f, 0.0f);\n"; if (fragmentShader->mUsesPointCoord) { geomHLSL += " output.gl_PointCoord = pointSpriteTexcoords[" + Str(corner) + "];\n"; } geomHLSL += " outStream.Append(output);\n"; } geomHLSL += " \n" " outStream.RestartStrip();\n" "}\n"; return geomHLSL; } // This method needs to match OutputHLSL::decorate std::string DynamicHLSL::decorateVariable(const std::string &name) { if (name.compare(0, 3, "gl_") != 0 && name.compare(0, 3, "dx_") != 0) { return "_" + name; } return name; } std::string DynamicHLSL::generateAttributeConversionHLSL(const VertexFormat &vertexFormat, const ShaderVariable &shaderAttrib) const { std::string attribString = "input." + decorateVariable(shaderAttrib.name); // Matrix if (IsMatrixType(shaderAttrib.type)) { return "transpose(" + attribString + ")"; } GLenum shaderComponentType = UniformComponentType(shaderAttrib.type); int shaderComponentCount = UniformComponentCount(shaderAttrib.type); // Perform integer to float conversion (if necessary) bool requiresTypeConversion = (shaderComponentType == GL_FLOAT && vertexFormat.mType != GL_FLOAT); if (requiresTypeConversion) { // TODO: normalization for 32-bit integer formats ASSERT(!vertexFormat.mNormalized && !vertexFormat.mPureInteger); return "float" + Str(shaderComponentCount) + "(" + attribString + ")"; } // No conversion necessary return attribString; } void DynamicHLSL::getInputLayoutSignature(const VertexFormat inputLayout[], GLenum signature[]) const { for (size_t inputIndex = 0; inputIndex < MAX_VERTEX_ATTRIBS; inputIndex++) { const VertexFormat &vertexFormat = inputLayout[inputIndex]; if (vertexFormat.mType == GL_NONE) { signature[inputIndex] = GL_NONE; } else { bool gpuConverted = ((mRenderer->getVertexConversionType(vertexFormat) & rx::VERTEX_CONVERT_GPU) != 0); signature[inputIndex] = (gpuConverted ? GL_TRUE : GL_FALSE); } } } }