HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Lollipop
|
5.0.1_r1
下载
查看原文件
收藏
根目录
art
runtime
mirror
object-inl.h
/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MIRROR_OBJECT_INL_H_ #define ART_RUNTIME_MIRROR_OBJECT_INL_H_ #include "object.h" #include "art_field.h" #include "art_method.h" #include "atomic.h" #include "array-inl.h" #include "class.h" #include "lock_word-inl.h" #include "monitor.h" #include "object_array-inl.h" #include "read_barrier-inl.h" #include "runtime.h" #include "reference.h" #include "throwable.h" namespace art { namespace mirror { inline uint32_t Object::ClassSize() { uint32_t vtable_entries = kVTableLength; return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0); } template
inline Class* Object::GetClass() { return GetFieldObject
( OFFSET_OF_OBJECT_MEMBER(Object, klass_)); } template
inline void Object::SetClass(Class* new_klass) { // new_klass may be NULL prior to class linker initialization. // We don't mark the card as this occurs as part of object allocation. Not all objects have // backing cards, such as large objects. // We use non transactional version since we can't undo this write. We also disable checking as // we may run in transaction mode here. SetFieldObjectWithoutWriteBarrier
(kVerifyFlags & ~kVerifyThis)>( OFFSET_OF_OBJECT_MEMBER(Object, klass_), new_klass); } inline LockWord Object::GetLockWord(bool as_volatile) { if (as_volatile) { return LockWord(GetField32Volatile(OFFSET_OF_OBJECT_MEMBER(Object, monitor_))); } return LockWord(GetField32(OFFSET_OF_OBJECT_MEMBER(Object, monitor_))); } inline void Object::SetLockWord(LockWord new_val, bool as_volatile) { // Force use of non-transactional mode and do not check. if (as_volatile) { SetField32Volatile
(OFFSET_OF_OBJECT_MEMBER(Object, monitor_), new_val.GetValue()); } else { SetField32
(OFFSET_OF_OBJECT_MEMBER(Object, monitor_), new_val.GetValue()); } } inline bool Object::CasLockWordWeakSequentiallyConsistent(LockWord old_val, LockWord new_val) { // Force use of non-transactional mode and do not check. return CasFieldWeakSequentiallyConsistent32
( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue()); } inline bool Object::CasLockWordWeakRelaxed(LockWord old_val, LockWord new_val) { // Force use of non-transactional mode and do not check. return CasFieldWeakRelaxed32
( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue()); } inline uint32_t Object::GetLockOwnerThreadId() { return Monitor::GetLockOwnerThreadId(this); } inline mirror::Object* Object::MonitorEnter(Thread* self) { return Monitor::MonitorEnter(self, this); } inline bool Object::MonitorExit(Thread* self) { return Monitor::MonitorExit(self, this); } inline void Object::Notify(Thread* self) { Monitor::Notify(self, this); } inline void Object::NotifyAll(Thread* self) { Monitor::NotifyAll(self, this); } inline void Object::Wait(Thread* self) { Monitor::Wait(self, this, 0, 0, true, kWaiting); } inline void Object::Wait(Thread* self, int64_t ms, int32_t ns) { Monitor::Wait(self, this, ms, ns, true, kTimedWaiting); } inline Object* Object::GetReadBarrierPointer() { #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER DCHECK(kUseBakerOrBrooksReadBarrier); return GetFieldObject
( OFFSET_OF_OBJECT_MEMBER(Object, x_rb_ptr_)); #else LOG(FATAL) << "Unreachable"; return nullptr; #endif } inline void Object::SetReadBarrierPointer(Object* rb_ptr) { #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER DCHECK(kUseBakerOrBrooksReadBarrier); // We don't mark the card as this occurs as part of object allocation. Not all objects have // backing cards, such as large objects. SetFieldObjectWithoutWriteBarrier
( OFFSET_OF_OBJECT_MEMBER(Object, x_rb_ptr_), rb_ptr); #else LOG(FATAL) << "Unreachable"; #endif } inline bool Object::AtomicSetReadBarrierPointer(Object* expected_rb_ptr, Object* rb_ptr) { #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER DCHECK(kUseBakerOrBrooksReadBarrier); MemberOffset offset = OFFSET_OF_OBJECT_MEMBER(Object, x_rb_ptr_); byte* raw_addr = reinterpret_cast
(this) + offset.SizeValue(); Atomic
* atomic_rb_ptr = reinterpret_cast
*>(raw_addr); HeapReference
expected_ref(HeapReference
::FromMirrorPtr(expected_rb_ptr)); HeapReference
new_ref(HeapReference
::FromMirrorPtr(rb_ptr)); do { if (UNLIKELY(atomic_rb_ptr->LoadRelaxed() != expected_ref.reference_)) { // Lost the race. return false; } } while (!atomic_rb_ptr->CompareExchangeWeakSequentiallyConsistent(expected_ref.reference_, new_ref.reference_)); DCHECK_EQ(new_ref.reference_, atomic_rb_ptr->LoadRelaxed()); return true; #else LOG(FATAL) << "Unreachable"; return false; #endif } inline void Object::AssertReadBarrierPointer() const { if (kUseBakerReadBarrier) { Object* obj = const_cast
(this); DCHECK(obj->GetReadBarrierPointer() == nullptr) << "Bad Baker pointer: obj=" << reinterpret_cast
(obj) << " ptr=" << reinterpret_cast
(obj->GetReadBarrierPointer()); } else if (kUseBrooksReadBarrier) { Object* obj = const_cast
(this); DCHECK_EQ(obj, obj->GetReadBarrierPointer()) << "Bad Brooks pointer: obj=" << reinterpret_cast
(obj) << " ptr=" << reinterpret_cast
(obj->GetReadBarrierPointer()); } else { LOG(FATAL) << "Unreachable"; } } template
inline bool Object::VerifierInstanceOf(Class* klass) { DCHECK(klass != NULL); DCHECK(GetClass
() != NULL); return klass->IsInterface() || InstanceOf(klass); } template
inline bool Object::InstanceOf(Class* klass) { DCHECK(klass != NULL); DCHECK(GetClass
() != NULL); return klass->IsAssignableFrom(GetClass
()); } template
inline bool Object::IsClass() { Class* java_lang_Class = GetClass
()-> template GetClass
(); return GetClass
(kVerifyFlags & ~kVerifyThis), kReadBarrierOption>() == java_lang_Class; } template
inline Class* Object::AsClass() { DCHECK((IsClass
())); return down_cast
(this); } template
inline bool Object::IsObjectArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); return IsArrayInstance
() && !GetClass
()->template GetComponentType
()->IsPrimitive(); } template
inline ObjectArray
* Object::AsObjectArray() { DCHECK(IsObjectArray
()); return down_cast
*>(this); } template
inline bool Object::IsArrayInstance() { return GetClass
()-> template IsArrayClass
(); } template
inline bool Object::IsArtField() { return GetClass
()-> template IsArtFieldClass
(); } template
inline ArtField* Object::AsArtField() { DCHECK(IsArtField
()); return down_cast
(this); } template
inline bool Object::IsArtMethod() { return GetClass
()-> template IsArtMethodClass
(); } template
inline ArtMethod* Object::AsArtMethod() { DCHECK(IsArtMethod
()); return down_cast
(this); } template
inline bool Object::IsReferenceInstance() { return GetClass
()->IsTypeOfReferenceClass(); } template
inline Reference* Object::AsReference() { DCHECK(IsReferenceInstance
()); return down_cast
(this); } template
inline Array* Object::AsArray() { DCHECK((IsArrayInstance
())); return down_cast
(this); } template
inline BooleanArray* Object::AsBooleanArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->GetComponentType()->IsPrimitiveBoolean()); return down_cast
(this); } template
inline ByteArray* Object::AsByteArray() { static const VerifyObjectFlags kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveByte()); return down_cast
(this); } template
inline ByteArray* Object::AsByteSizedArray() { constexpr VerifyObjectFlags kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveByte() || GetClass
()->template GetComponentType
()->IsPrimitiveBoolean()); return down_cast
(this); } template
inline CharArray* Object::AsCharArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveChar()); return down_cast
(this); } template
inline ShortArray* Object::AsShortArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveShort()); return down_cast
(this); } template
inline ShortArray* Object::AsShortSizedArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveShort() || GetClass
()->template GetComponentType
()->IsPrimitiveChar()); return down_cast
(this); } template
inline IntArray* Object::AsIntArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveInt() || GetClass
()->template GetComponentType
()->IsPrimitiveFloat()); return down_cast
(this); } template
inline LongArray* Object::AsLongArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveLong() || GetClass
()->template GetComponentType
()->IsPrimitiveDouble()); return down_cast
(this); } template
inline FloatArray* Object::AsFloatArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveFloat()); return down_cast
(this); } template
inline DoubleArray* Object::AsDoubleArray() { constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass
()->IsArrayClass()); DCHECK(GetClass
()->template GetComponentType
()->IsPrimitiveDouble()); return down_cast
(this); } template
inline String* Object::AsString() { DCHECK(GetClass
()->IsStringClass()); return down_cast
(this); } template
inline Throwable* Object::AsThrowable() { DCHECK(GetClass
()->IsThrowableClass()); return down_cast
(this); } template
inline bool Object::IsWeakReferenceInstance() { return GetClass
()->IsWeakReferenceClass(); } template
inline bool Object::IsSoftReferenceInstance() { return GetClass
()->IsSoftReferenceClass(); } template
inline bool Object::IsFinalizerReferenceInstance() { return GetClass
()->IsFinalizerReferenceClass(); } template
inline FinalizerReference* Object::AsFinalizerReference() { DCHECK(IsFinalizerReferenceInstance
()); return down_cast
(this); } template
inline bool Object::IsPhantomReferenceInstance() { return GetClass
()->IsPhantomReferenceClass(); } template
inline size_t Object::SizeOf() { size_t result; constexpr auto kNewFlags = static_cast
(kVerifyFlags & ~kVerifyThis); if (IsArrayInstance
()) { result = AsArray
()-> template SizeOf
(); } else if (IsClass
()) { result = AsClass
()-> template SizeOf
(); } else { result = GetClass
()-> template GetObjectSize
(); } DCHECK_GE(result, sizeof(Object)) << " class=" << PrettyTypeOf(GetClass
()); DCHECK(!(IsArtField
()) || result == sizeof(ArtField)); DCHECK(!(IsArtMethod
()) || result == sizeof(ArtMethod)); return result; } template
inline int32_t Object::GetField32(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } const byte* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); const int32_t* word_addr = reinterpret_cast
(raw_addr); if (UNLIKELY(kIsVolatile)) { return reinterpret_cast
*>(word_addr)->LoadSequentiallyConsistent(); } else { return reinterpret_cast
*>(word_addr)->LoadJavaData(); } } template
inline int32_t Object::GetField32Volatile(MemberOffset field_offset) { return GetField32
(field_offset); } template
inline void Object::SetField32(MemberOffset field_offset, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, GetField32
(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); int32_t* word_addr = reinterpret_cast
(raw_addr); if (kIsVolatile) { reinterpret_cast
*>(word_addr)->StoreSequentiallyConsistent(new_value); } else { reinterpret_cast
*>(word_addr)->StoreJavaData(new_value); } } template
inline void Object::SetField32Volatile(MemberOffset field_offset, int32_t new_value) { SetField32
(field_offset, new_value); } // TODO: Pass memory_order_ and strong/weak as arguments to avoid code duplication? template
inline bool Object::CasFieldWeakSequentiallyConsistent32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast
(raw_addr); return atomic_addr->CompareExchangeWeakSequentiallyConsistent(old_value, new_value); } template
inline bool Object::CasFieldWeakRelaxed32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast
(raw_addr); return atomic_addr->CompareExchangeWeakRelaxed(old_value, new_value); } template
inline bool Object::CasFieldStrongSequentiallyConsistent32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast
(raw_addr); return atomic_addr->CompareExchangeStrongSequentiallyConsistent(old_value, new_value); } template
inline int64_t Object::GetField64(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } const byte* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); const int64_t* addr = reinterpret_cast
(raw_addr); if (kIsVolatile) { return reinterpret_cast
*>(addr)->LoadSequentiallyConsistent(); } else { return reinterpret_cast
*>(addr)->LoadJavaData(); } } template
inline int64_t Object::GetField64Volatile(MemberOffset field_offset) { return GetField64
(field_offset); } template
inline void Object::SetField64(MemberOffset field_offset, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, GetField64
(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); int64_t* addr = reinterpret_cast
(raw_addr); if (kIsVolatile) { reinterpret_cast
*>(addr)->StoreSequentiallyConsistent(new_value); } else { reinterpret_cast
*>(addr)->StoreJavaData(new_value); } } template
inline void Object::SetField64Volatile(MemberOffset field_offset, int64_t new_value) { return SetField64
(field_offset, new_value); } template
inline bool Object::CasFieldWeakSequentiallyConsistent64(MemberOffset field_offset, int64_t old_value, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); Atomic
* atomic_addr = reinterpret_cast
*>(raw_addr); return atomic_addr->CompareExchangeWeakSequentiallyConsistent(old_value, new_value); } template
inline bool Object::CasFieldStrongSequentiallyConsistent64(MemberOffset field_offset, int64_t old_value, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); Atomic
* atomic_addr = reinterpret_cast
*>(raw_addr); return atomic_addr->CompareExchangeStrongSequentiallyConsistent(old_value, new_value); } template
inline T* Object::GetFieldObject(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); HeapReference
* objref_addr = reinterpret_cast
*>(raw_addr); T* result = ReadBarrier::Barrier
(this, field_offset, objref_addr); if (kIsVolatile) { // TODO: Refactor to use a SequentiallyConsistent load instead. QuasiAtomic::ThreadFenceAcquire(); // Ensure visibility of operations preceding store. } if (kVerifyFlags & kVerifyReads) { VerifyObject(result); } return result; } template
inline T* Object::GetFieldObjectVolatile(MemberOffset field_offset) { return GetFieldObject
(field_offset); } template
inline void Object::SetFieldObjectWithoutWriteBarrier(MemberOffset field_offset, Object* new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { mirror::Object* obj; if (kIsVolatile) { obj = GetFieldObjectVolatile
(field_offset); } else { obj = GetFieldObject
(field_offset); } Runtime::Current()->RecordWriteFieldReference(this, field_offset, obj, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } byte* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); HeapReference
* objref_addr = reinterpret_cast
*>(raw_addr); if (kIsVolatile) { // TODO: Refactor to use a SequentiallyConsistent store instead. QuasiAtomic::ThreadFenceRelease(); // Ensure that prior accesses are visible before store. objref_addr->Assign(new_value); QuasiAtomic::ThreadFenceSequentiallyConsistent(); // Ensure this store occurs before any volatile loads. } else { objref_addr->Assign(new_value); } } template
inline void Object::SetFieldObject(MemberOffset field_offset, Object* new_value) { SetFieldObjectWithoutWriteBarrier
(field_offset, new_value); if (new_value != nullptr) { Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value); // TODO: Check field assignment could theoretically cause thread suspension, TODO: fix this. CheckFieldAssignment(field_offset, new_value); } } template
inline void Object::SetFieldObjectVolatile(MemberOffset field_offset, Object* new_value) { SetFieldObject
(field_offset, new_value); } template
inline HeapReference
* Object::GetFieldObjectReferenceAddr(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return reinterpret_cast
*>(reinterpret_cast
(this) + field_offset.Int32Value()); } template
inline bool Object::CasFieldWeakSequentiallyConsistentObject(MemberOffset field_offset, Object* old_value, Object* new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } if (kVerifyFlags & kVerifyReads) { VerifyObject(old_value); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true); } HeapReference
old_ref(HeapReference
::FromMirrorPtr(old_value)); HeapReference
new_ref(HeapReference
::FromMirrorPtr(new_value)); byte* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); Atomic
* atomic_addr = reinterpret_cast
*>(raw_addr); bool success = atomic_addr->CompareExchangeWeakSequentiallyConsistent(old_ref.reference_, new_ref.reference_); if (success) { Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value); } return success; } template
inline bool Object::CasFieldStrongSequentiallyConsistentObject(MemberOffset field_offset, Object* old_value, Object* new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } if (kVerifyFlags & kVerifyReads) { VerifyObject(old_value); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true); } HeapReference
old_ref(HeapReference
::FromMirrorPtr(old_value)); HeapReference
new_ref(HeapReference
::FromMirrorPtr(new_value)); byte* raw_addr = reinterpret_cast
(this) + field_offset.Int32Value(); Atomic
* atomic_addr = reinterpret_cast
*>(raw_addr); bool success = atomic_addr->CompareExchangeStrongSequentiallyConsistent(old_ref.reference_, new_ref.reference_); if (success) { Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value); } return success; } template
inline void Object::VisitFieldsReferences(uint32_t ref_offsets, const Visitor& visitor) { if (LIKELY(ref_offsets != CLASS_WALK_SUPER)) { if (!kVisitClass) { // Mask out the class from the reference offsets. ref_offsets ^= kWordHighBitMask; } DCHECK_EQ(ClassOffset().Uint32Value(), 0U); // Found a reference offset bitmap. Visit the specified offsets. while (ref_offsets != 0) { size_t right_shift = CLZ(ref_offsets); MemberOffset field_offset = CLASS_OFFSET_FROM_CLZ(right_shift); visitor(this, field_offset, kIsStatic); ref_offsets &= ~(CLASS_HIGH_BIT >> right_shift); } } else { // There is no reference offset bitmap. In the non-static case, walk up the class // inheritance hierarchy and find reference offsets the hard way. In the static case, just // consider this class. for (mirror::Class* klass = kIsStatic ? AsClass() : GetClass(); klass != nullptr; klass = kIsStatic ? nullptr : klass->GetSuperClass()) { size_t num_reference_fields = kIsStatic ? klass->NumReferenceStaticFields() : klass->NumReferenceInstanceFields(); for (size_t i = 0; i < num_reference_fields; ++i) { mirror::ArtField* field = kIsStatic ? klass->GetStaticField(i) : klass->GetInstanceField(i); MemberOffset field_offset = field->GetOffset(); // TODO: Do a simpler check? if (kVisitClass || field_offset.Uint32Value() != ClassOffset().Uint32Value()) { visitor(this, field_offset, kIsStatic); } } } } } template
inline void Object::VisitInstanceFieldsReferences(mirror::Class* klass, const Visitor& visitor) { VisitFieldsReferences
( klass->GetReferenceInstanceOffsets
(), visitor); } template
inline void Object::VisitStaticFieldsReferences(mirror::Class* klass, const Visitor& visitor) { DCHECK(!klass->IsTemp()); klass->VisitFieldsReferences