/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MIRROR_OBJECT_INL_H_ #define ART_RUNTIME_MIRROR_OBJECT_INL_H_ #include "object.h" #include "art_field.h" #include "art_method.h" #include "atomic.h" #include "array-inl.h" #include "class.h" #include "lock_word-inl.h" #include "monitor.h" #include "object_array-inl.h" #include "read_barrier-inl.h" #include "runtime.h" #include "reference.h" #include "throwable.h" namespace art { namespace mirror { inline uint32_t Object::ClassSize() { uint32_t vtable_entries = kVTableLength; return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline Class* Object::GetClass() { return GetFieldObject<Class, kVerifyFlags, kReadBarrierOption>( OFFSET_OF_OBJECT_MEMBER(Object, klass_)); } template<VerifyObjectFlags kVerifyFlags> inline void Object::SetClass(Class* new_klass) { // new_klass may be NULL prior to class linker initialization. // We don't mark the card as this occurs as part of object allocation. Not all objects have // backing cards, such as large objects. // We use non transactional version since we can't undo this write. We also disable checking as // we may run in transaction mode here. SetFieldObjectWithoutWriteBarrier<false, false, static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>( OFFSET_OF_OBJECT_MEMBER(Object, klass_), new_klass); } inline LockWord Object::GetLockWord(bool as_volatile) { if (as_volatile) { return LockWord(GetField32Volatile(OFFSET_OF_OBJECT_MEMBER(Object, monitor_))); } return LockWord(GetField32(OFFSET_OF_OBJECT_MEMBER(Object, monitor_))); } inline void Object::SetLockWord(LockWord new_val, bool as_volatile) { // Force use of non-transactional mode and do not check. if (as_volatile) { SetField32Volatile<false, false>(OFFSET_OF_OBJECT_MEMBER(Object, monitor_), new_val.GetValue()); } else { SetField32<false, false>(OFFSET_OF_OBJECT_MEMBER(Object, monitor_), new_val.GetValue()); } } inline bool Object::CasLockWordWeakSequentiallyConsistent(LockWord old_val, LockWord new_val) { // Force use of non-transactional mode and do not check. return CasFieldWeakSequentiallyConsistent32<false, false>( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue()); } inline bool Object::CasLockWordWeakRelaxed(LockWord old_val, LockWord new_val) { // Force use of non-transactional mode and do not check. return CasFieldWeakRelaxed32<false, false>( OFFSET_OF_OBJECT_MEMBER(Object, monitor_), old_val.GetValue(), new_val.GetValue()); } inline uint32_t Object::GetLockOwnerThreadId() { return Monitor::GetLockOwnerThreadId(this); } inline mirror::Object* Object::MonitorEnter(Thread* self) { return Monitor::MonitorEnter(self, this); } inline bool Object::MonitorExit(Thread* self) { return Monitor::MonitorExit(self, this); } inline void Object::Notify(Thread* self) { Monitor::Notify(self, this); } inline void Object::NotifyAll(Thread* self) { Monitor::NotifyAll(self, this); } inline void Object::Wait(Thread* self) { Monitor::Wait(self, this, 0, 0, true, kWaiting); } inline void Object::Wait(Thread* self, int64_t ms, int32_t ns) { Monitor::Wait(self, this, ms, ns, true, kTimedWaiting); } inline Object* Object::GetReadBarrierPointer() { #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER DCHECK(kUseBakerOrBrooksReadBarrier); return GetFieldObject<Object, kVerifyNone, kWithoutReadBarrier>( OFFSET_OF_OBJECT_MEMBER(Object, x_rb_ptr_)); #else LOG(FATAL) << "Unreachable"; return nullptr; #endif } inline void Object::SetReadBarrierPointer(Object* rb_ptr) { #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER DCHECK(kUseBakerOrBrooksReadBarrier); // We don't mark the card as this occurs as part of object allocation. Not all objects have // backing cards, such as large objects. SetFieldObjectWithoutWriteBarrier<false, false, kVerifyNone>( OFFSET_OF_OBJECT_MEMBER(Object, x_rb_ptr_), rb_ptr); #else LOG(FATAL) << "Unreachable"; #endif } inline bool Object::AtomicSetReadBarrierPointer(Object* expected_rb_ptr, Object* rb_ptr) { #ifdef USE_BAKER_OR_BROOKS_READ_BARRIER DCHECK(kUseBakerOrBrooksReadBarrier); MemberOffset offset = OFFSET_OF_OBJECT_MEMBER(Object, x_rb_ptr_); byte* raw_addr = reinterpret_cast<byte*>(this) + offset.SizeValue(); Atomic<uint32_t>* atomic_rb_ptr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr); HeapReference<Object> expected_ref(HeapReference<Object>::FromMirrorPtr(expected_rb_ptr)); HeapReference<Object> new_ref(HeapReference<Object>::FromMirrorPtr(rb_ptr)); do { if (UNLIKELY(atomic_rb_ptr->LoadRelaxed() != expected_ref.reference_)) { // Lost the race. return false; } } while (!atomic_rb_ptr->CompareExchangeWeakSequentiallyConsistent(expected_ref.reference_, new_ref.reference_)); DCHECK_EQ(new_ref.reference_, atomic_rb_ptr->LoadRelaxed()); return true; #else LOG(FATAL) << "Unreachable"; return false; #endif } inline void Object::AssertReadBarrierPointer() const { if (kUseBakerReadBarrier) { Object* obj = const_cast<Object*>(this); DCHECK(obj->GetReadBarrierPointer() == nullptr) << "Bad Baker pointer: obj=" << reinterpret_cast<void*>(obj) << " ptr=" << reinterpret_cast<void*>(obj->GetReadBarrierPointer()); } else if (kUseBrooksReadBarrier) { Object* obj = const_cast<Object*>(this); DCHECK_EQ(obj, obj->GetReadBarrierPointer()) << "Bad Brooks pointer: obj=" << reinterpret_cast<void*>(obj) << " ptr=" << reinterpret_cast<void*>(obj->GetReadBarrierPointer()); } else { LOG(FATAL) << "Unreachable"; } } template<VerifyObjectFlags kVerifyFlags> inline bool Object::VerifierInstanceOf(Class* klass) { DCHECK(klass != NULL); DCHECK(GetClass<kVerifyFlags>() != NULL); return klass->IsInterface() || InstanceOf(klass); } template<VerifyObjectFlags kVerifyFlags> inline bool Object::InstanceOf(Class* klass) { DCHECK(klass != NULL); DCHECK(GetClass<kVerifyNone>() != NULL); return klass->IsAssignableFrom(GetClass<kVerifyFlags>()); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline bool Object::IsClass() { Class* java_lang_Class = GetClass<kVerifyFlags, kReadBarrierOption>()-> template GetClass<kVerifyFlags, kReadBarrierOption>(); return GetClass<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis), kReadBarrierOption>() == java_lang_Class; } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline Class* Object::AsClass() { DCHECK((IsClass<kVerifyFlags, kReadBarrierOption>())); return down_cast<Class*>(this); } template<VerifyObjectFlags kVerifyFlags> inline bool Object::IsObjectArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); return IsArrayInstance<kVerifyFlags>() && !GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitive(); } template<class T, VerifyObjectFlags kVerifyFlags> inline ObjectArray<T>* Object::AsObjectArray() { DCHECK(IsObjectArray<kVerifyFlags>()); return down_cast<ObjectArray<T>*>(this); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline bool Object::IsArrayInstance() { return GetClass<kVerifyFlags, kReadBarrierOption>()-> template IsArrayClass<kVerifyFlags, kReadBarrierOption>(); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline bool Object::IsArtField() { return GetClass<kVerifyFlags, kReadBarrierOption>()-> template IsArtFieldClass<kReadBarrierOption>(); } template<VerifyObjectFlags kVerifyFlags> inline ArtField* Object::AsArtField() { DCHECK(IsArtField<kVerifyFlags>()); return down_cast<ArtField*>(this); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline bool Object::IsArtMethod() { return GetClass<kVerifyFlags, kReadBarrierOption>()-> template IsArtMethodClass<kReadBarrierOption>(); } template<VerifyObjectFlags kVerifyFlags> inline ArtMethod* Object::AsArtMethod() { DCHECK(IsArtMethod<kVerifyFlags>()); return down_cast<ArtMethod*>(this); } template<VerifyObjectFlags kVerifyFlags> inline bool Object::IsReferenceInstance() { return GetClass<kVerifyFlags>()->IsTypeOfReferenceClass(); } template<VerifyObjectFlags kVerifyFlags> inline Reference* Object::AsReference() { DCHECK(IsReferenceInstance<kVerifyFlags>()); return down_cast<Reference*>(this); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline Array* Object::AsArray() { DCHECK((IsArrayInstance<kVerifyFlags, kReadBarrierOption>())); return down_cast<Array*>(this); } template<VerifyObjectFlags kVerifyFlags> inline BooleanArray* Object::AsBooleanArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->GetComponentType()->IsPrimitiveBoolean()); return down_cast<BooleanArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline ByteArray* Object::AsByteArray() { static const VerifyObjectFlags kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveByte()); return down_cast<ByteArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline ByteArray* Object::AsByteSizedArray() { constexpr VerifyObjectFlags kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveByte() || GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveBoolean()); return down_cast<ByteArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline CharArray* Object::AsCharArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveChar()); return down_cast<CharArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline ShortArray* Object::AsShortArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveShort()); return down_cast<ShortArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline ShortArray* Object::AsShortSizedArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveShort() || GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveChar()); return down_cast<ShortArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline IntArray* Object::AsIntArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveInt() || GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveFloat()); return down_cast<IntArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline LongArray* Object::AsLongArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveLong() || GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveDouble()); return down_cast<LongArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline FloatArray* Object::AsFloatArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveFloat()); return down_cast<FloatArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline DoubleArray* Object::AsDoubleArray() { constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); DCHECK(GetClass<kVerifyFlags>()->IsArrayClass()); DCHECK(GetClass<kNewFlags>()->template GetComponentType<kNewFlags>()->IsPrimitiveDouble()); return down_cast<DoubleArray*>(this); } template<VerifyObjectFlags kVerifyFlags> inline String* Object::AsString() { DCHECK(GetClass<kVerifyFlags>()->IsStringClass()); return down_cast<String*>(this); } template<VerifyObjectFlags kVerifyFlags> inline Throwable* Object::AsThrowable() { DCHECK(GetClass<kVerifyFlags>()->IsThrowableClass()); return down_cast<Throwable*>(this); } template<VerifyObjectFlags kVerifyFlags> inline bool Object::IsWeakReferenceInstance() { return GetClass<kVerifyFlags>()->IsWeakReferenceClass(); } template<VerifyObjectFlags kVerifyFlags> inline bool Object::IsSoftReferenceInstance() { return GetClass<kVerifyFlags>()->IsSoftReferenceClass(); } template<VerifyObjectFlags kVerifyFlags> inline bool Object::IsFinalizerReferenceInstance() { return GetClass<kVerifyFlags>()->IsFinalizerReferenceClass(); } template<VerifyObjectFlags kVerifyFlags> inline FinalizerReference* Object::AsFinalizerReference() { DCHECK(IsFinalizerReferenceInstance<kVerifyFlags>()); return down_cast<FinalizerReference*>(this); } template<VerifyObjectFlags kVerifyFlags> inline bool Object::IsPhantomReferenceInstance() { return GetClass<kVerifyFlags>()->IsPhantomReferenceClass(); } template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline size_t Object::SizeOf() { size_t result; constexpr auto kNewFlags = static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis); if (IsArrayInstance<kVerifyFlags, kReadBarrierOption>()) { result = AsArray<kNewFlags, kReadBarrierOption>()-> template SizeOf<kNewFlags, kReadBarrierOption>(); } else if (IsClass<kNewFlags, kReadBarrierOption>()) { result = AsClass<kNewFlags, kReadBarrierOption>()-> template SizeOf<kNewFlags, kReadBarrierOption>(); } else { result = GetClass<kNewFlags, kReadBarrierOption>()-> template GetObjectSize<kNewFlags, kReadBarrierOption>(); } DCHECK_GE(result, sizeof(Object)) << " class=" << PrettyTypeOf(GetClass<kNewFlags, kReadBarrierOption>()); DCHECK(!(IsArtField<kNewFlags, kReadBarrierOption>()) || result == sizeof(ArtField)); DCHECK(!(IsArtMethod<kNewFlags, kReadBarrierOption>()) || result == sizeof(ArtMethod)); return result; } template<VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline int32_t Object::GetField32(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } const byte* raw_addr = reinterpret_cast<const byte*>(this) + field_offset.Int32Value(); const int32_t* word_addr = reinterpret_cast<const int32_t*>(raw_addr); if (UNLIKELY(kIsVolatile)) { return reinterpret_cast<const Atomic<int32_t>*>(word_addr)->LoadSequentiallyConsistent(); } else { return reinterpret_cast<const Atomic<int32_t>*>(word_addr)->LoadJavaData(); } } template<VerifyObjectFlags kVerifyFlags> inline int32_t Object::GetField32Volatile(MemberOffset field_offset) { return GetField32<kVerifyFlags, true>(field_offset); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline void Object::SetField32(MemberOffset field_offset, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, GetField32<kVerifyFlags, kIsVolatile>(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value(); int32_t* word_addr = reinterpret_cast<int32_t*>(raw_addr); if (kIsVolatile) { reinterpret_cast<Atomic<int32_t>*>(word_addr)->StoreSequentiallyConsistent(new_value); } else { reinterpret_cast<Atomic<int32_t>*>(word_addr)->StoreJavaData(new_value); } } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::SetField32Volatile(MemberOffset field_offset, int32_t new_value) { SetField32<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(field_offset, new_value); } // TODO: Pass memory_order_ and strong/weak as arguments to avoid code duplication? template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldWeakSequentiallyConsistent32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast<AtomicInteger*>(raw_addr); return atomic_addr->CompareExchangeWeakSequentiallyConsistent(old_value, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldWeakRelaxed32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast<AtomicInteger*>(raw_addr); return atomic_addr->CompareExchangeWeakRelaxed(old_value, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldStrongSequentiallyConsistent32(MemberOffset field_offset, int32_t old_value, int32_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField32(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value(); AtomicInteger* atomic_addr = reinterpret_cast<AtomicInteger*>(raw_addr); return atomic_addr->CompareExchangeStrongSequentiallyConsistent(old_value, new_value); } template<VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline int64_t Object::GetField64(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } const byte* raw_addr = reinterpret_cast<const byte*>(this) + field_offset.Int32Value(); const int64_t* addr = reinterpret_cast<const int64_t*>(raw_addr); if (kIsVolatile) { return reinterpret_cast<const Atomic<int64_t>*>(addr)->LoadSequentiallyConsistent(); } else { return reinterpret_cast<const Atomic<int64_t>*>(addr)->LoadJavaData(); } } template<VerifyObjectFlags kVerifyFlags> inline int64_t Object::GetField64Volatile(MemberOffset field_offset) { return GetField64<kVerifyFlags, true>(field_offset); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline void Object::SetField64(MemberOffset field_offset, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, GetField64<kVerifyFlags, kIsVolatile>(field_offset), kIsVolatile); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value(); int64_t* addr = reinterpret_cast<int64_t*>(raw_addr); if (kIsVolatile) { reinterpret_cast<Atomic<int64_t>*>(addr)->StoreSequentiallyConsistent(new_value); } else { reinterpret_cast<Atomic<int64_t>*>(addr)->StoreJavaData(new_value); } } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::SetField64Volatile(MemberOffset field_offset, int64_t new_value) { return SetField64<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(field_offset, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldWeakSequentiallyConsistent64(MemberOffset field_offset, int64_t old_value, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value(); Atomic<int64_t>* atomic_addr = reinterpret_cast<Atomic<int64_t>*>(raw_addr); return atomic_addr->CompareExchangeWeakSequentiallyConsistent(old_value, new_value); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldStrongSequentiallyConsistent64(MemberOffset field_offset, int64_t old_value, int64_t new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { Runtime::Current()->RecordWriteField64(this, field_offset, old_value, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value(); Atomic<int64_t>* atomic_addr = reinterpret_cast<Atomic<int64_t>*>(raw_addr); return atomic_addr->CompareExchangeStrongSequentiallyConsistent(old_value, new_value); } template<class T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, bool kIsVolatile> inline T* Object::GetFieldObject(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value(); HeapReference<T>* objref_addr = reinterpret_cast<HeapReference<T>*>(raw_addr); T* result = ReadBarrier::Barrier<T, kReadBarrierOption>(this, field_offset, objref_addr); if (kIsVolatile) { // TODO: Refactor to use a SequentiallyConsistent load instead. QuasiAtomic::ThreadFenceAcquire(); // Ensure visibility of operations preceding store. } if (kVerifyFlags & kVerifyReads) { VerifyObject(result); } return result; } template<class T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> inline T* Object::GetFieldObjectVolatile(MemberOffset field_offset) { return GetFieldObject<T, kVerifyFlags, kReadBarrierOption, true>(field_offset); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline void Object::SetFieldObjectWithoutWriteBarrier(MemberOffset field_offset, Object* new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kTransactionActive) { mirror::Object* obj; if (kIsVolatile) { obj = GetFieldObjectVolatile<Object>(field_offset); } else { obj = GetFieldObject<Object>(field_offset); } Runtime::Current()->RecordWriteFieldReference(this, field_offset, obj, true); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value(); HeapReference<Object>* objref_addr = reinterpret_cast<HeapReference<Object>*>(raw_addr); if (kIsVolatile) { // TODO: Refactor to use a SequentiallyConsistent store instead. QuasiAtomic::ThreadFenceRelease(); // Ensure that prior accesses are visible before store. objref_addr->Assign(new_value); QuasiAtomic::ThreadFenceSequentiallyConsistent(); // Ensure this store occurs before any volatile loads. } else { objref_addr->Assign(new_value); } } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags, bool kIsVolatile> inline void Object::SetFieldObject(MemberOffset field_offset, Object* new_value) { SetFieldObjectWithoutWriteBarrier<kTransactionActive, kCheckTransaction, kVerifyFlags, kIsVolatile>(field_offset, new_value); if (new_value != nullptr) { Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value); // TODO: Check field assignment could theoretically cause thread suspension, TODO: fix this. CheckFieldAssignment(field_offset, new_value); } } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline void Object::SetFieldObjectVolatile(MemberOffset field_offset, Object* new_value) { SetFieldObject<kTransactionActive, kCheckTransaction, kVerifyFlags, true>(field_offset, new_value); } template <VerifyObjectFlags kVerifyFlags> inline HeapReference<Object>* Object::GetFieldObjectReferenceAddr(MemberOffset field_offset) { if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } return reinterpret_cast<HeapReference<Object>*>(reinterpret_cast<byte*>(this) + field_offset.Int32Value()); } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldWeakSequentiallyConsistentObject(MemberOffset field_offset, Object* old_value, Object* new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } if (kVerifyFlags & kVerifyReads) { VerifyObject(old_value); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true); } HeapReference<Object> old_ref(HeapReference<Object>::FromMirrorPtr(old_value)); HeapReference<Object> new_ref(HeapReference<Object>::FromMirrorPtr(new_value)); byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value(); Atomic<uint32_t>* atomic_addr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr); bool success = atomic_addr->CompareExchangeWeakSequentiallyConsistent(old_ref.reference_, new_ref.reference_); if (success) { Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value); } return success; } template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> inline bool Object::CasFieldStrongSequentiallyConsistentObject(MemberOffset field_offset, Object* old_value, Object* new_value) { if (kCheckTransaction) { DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); } if (kVerifyFlags & kVerifyThis) { VerifyObject(this); } if (kVerifyFlags & kVerifyWrites) { VerifyObject(new_value); } if (kVerifyFlags & kVerifyReads) { VerifyObject(old_value); } if (kTransactionActive) { Runtime::Current()->RecordWriteFieldReference(this, field_offset, old_value, true); } HeapReference<Object> old_ref(HeapReference<Object>::FromMirrorPtr(old_value)); HeapReference<Object> new_ref(HeapReference<Object>::FromMirrorPtr(new_value)); byte* raw_addr = reinterpret_cast<byte*>(this) + field_offset.Int32Value(); Atomic<uint32_t>* atomic_addr = reinterpret_cast<Atomic<uint32_t>*>(raw_addr); bool success = atomic_addr->CompareExchangeStrongSequentiallyConsistent(old_ref.reference_, new_ref.reference_); if (success) { Runtime::Current()->GetHeap()->WriteBarrierField(this, field_offset, new_value); } return success; } template<bool kVisitClass, bool kIsStatic, typename Visitor> inline void Object::VisitFieldsReferences(uint32_t ref_offsets, const Visitor& visitor) { if (LIKELY(ref_offsets != CLASS_WALK_SUPER)) { if (!kVisitClass) { // Mask out the class from the reference offsets. ref_offsets ^= kWordHighBitMask; } DCHECK_EQ(ClassOffset().Uint32Value(), 0U); // Found a reference offset bitmap. Visit the specified offsets. while (ref_offsets != 0) { size_t right_shift = CLZ(ref_offsets); MemberOffset field_offset = CLASS_OFFSET_FROM_CLZ(right_shift); visitor(this, field_offset, kIsStatic); ref_offsets &= ~(CLASS_HIGH_BIT >> right_shift); } } else { // There is no reference offset bitmap. In the non-static case, walk up the class // inheritance hierarchy and find reference offsets the hard way. In the static case, just // consider this class. for (mirror::Class* klass = kIsStatic ? AsClass() : GetClass(); klass != nullptr; klass = kIsStatic ? nullptr : klass->GetSuperClass()) { size_t num_reference_fields = kIsStatic ? klass->NumReferenceStaticFields() : klass->NumReferenceInstanceFields(); for (size_t i = 0; i < num_reference_fields; ++i) { mirror::ArtField* field = kIsStatic ? klass->GetStaticField(i) : klass->GetInstanceField(i); MemberOffset field_offset = field->GetOffset(); // TODO: Do a simpler check? if (kVisitClass || field_offset.Uint32Value() != ClassOffset().Uint32Value()) { visitor(this, field_offset, kIsStatic); } } } } } template<bool kVisitClass, typename Visitor> inline void Object::VisitInstanceFieldsReferences(mirror::Class* klass, const Visitor& visitor) { VisitFieldsReferences<kVisitClass, false>( klass->GetReferenceInstanceOffsets<kVerifyNone>(), visitor); } template<bool kVisitClass, typename Visitor> inline void Object::VisitStaticFieldsReferences(mirror::Class* klass, const Visitor& visitor) { DCHECK(!klass->IsTemp()); klass->VisitFieldsReferences<kVisitClass, true>( klass->GetReferenceStaticOffsets<kVerifyNone>(), visitor); } template <const bool kVisitClass, VerifyObjectFlags kVerifyFlags, typename Visitor, typename JavaLangRefVisitor> inline void Object::VisitReferences(const Visitor& visitor, const JavaLangRefVisitor& ref_visitor) { mirror::Class* klass = GetClass<kVerifyFlags>(); if (klass == Class::GetJavaLangClass()) { AsClass<kVerifyNone>()->VisitReferences<kVisitClass>(klass, visitor); } else if (klass->IsArrayClass()) { if (klass->IsObjectArrayClass<kVerifyNone>()) { AsObjectArray<mirror::Object, kVerifyNone>()->VisitReferences<kVisitClass>(visitor); } else if (kVisitClass) { visitor(this, ClassOffset(), false); } } else { DCHECK(!klass->IsVariableSize()); VisitInstanceFieldsReferences<kVisitClass>(klass, visitor); if (UNLIKELY(klass->IsTypeOfReferenceClass<kVerifyNone>())) { ref_visitor(klass, AsReference()); } } } } // namespace mirror } // namespace art #endif // ART_RUNTIME_MIRROR_OBJECT_INL_H_