/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* Contains the API functions for the AEC.
*/
#include "echo_cancellation.h"
#include <math.h>
#ifdef WEBRTC_AEC_DEBUG_DUMP
#include <stdio.h>
#endif
#include <stdlib.h>
#include <string.h>
#include "aec_core.h"
#include "aec_resampler.h"
#include "ring_buffer.h"
#include "typedefs.h"
// Maximum length of resampled signal. Must be an integer multiple of frames
// (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN
// The factor of 2 handles wb, and the + 1 is as a safety margin
// TODO(bjornv): Replace with kResamplerBufferSize
#define MAX_RESAMP_LEN (5 * FRAME_LEN)
static const int kMaxBufSizeStart = 62; // In partitions
static const int sampMsNb = 8; // samples per ms in nb
// Target suppression levels for nlp modes
// log{0.001, 0.00001, 0.00000001}
static const float targetSupp[3] = {-6.9f, -11.5f, -18.4f};
static const float minOverDrive[3] = {1.0f, 2.0f, 5.0f};
static const int initCheck = 42;
#ifdef WEBRTC_AEC_DEBUG_DUMP
static int instance_count = 0;
#endif
typedef struct {
int delayCtr;
int sampFreq;
int splitSampFreq;
int scSampFreq;
float sampFactor; // scSampRate / sampFreq
short nlpMode;
short autoOnOff;
short activity;
short skewMode;
int bufSizeStart;
//short bufResetCtr; // counts number of noncausal frames
int knownDelay;
short initFlag; // indicates if AEC has been initialized
// Variables used for averaging far end buffer size
short counter;
int sum;
short firstVal;
short checkBufSizeCtr;
// Variables used for delay shifts
short msInSndCardBuf;
short filtDelay; // Filtered delay estimate.
int timeForDelayChange;
int ECstartup;
int checkBuffSize;
short lastDelayDiff;
#ifdef WEBRTC_AEC_DEBUG_DUMP
void* far_pre_buf_s16; // Time domain far-end pre-buffer in int16_t.
FILE *bufFile;
FILE *delayFile;
FILE *skewFile;
#endif
// Structures
void *resampler;
int skewFrCtr;
int resample; // if the skew is small enough we don't resample
int highSkewCtr;
float skew;
void* far_pre_buf; // Time domain far-end pre-buffer.
int lastError;
aec_t *aec;
} aecpc_t;
// Estimates delay to set the position of the far-end buffer read pointer
// (controlled by knownDelay)
static int EstBufDelay(aecpc_t *aecInst);
WebRtc_Word32 WebRtcAec_Create(void **aecInst)
{
aecpc_t *aecpc;
if (aecInst == NULL) {
return -1;
}
aecpc = malloc(sizeof(aecpc_t));
*aecInst = aecpc;
if (aecpc == NULL) {
return -1;
}
if (WebRtcAec_CreateAec(&aecpc->aec) == -1) {
WebRtcAec_Free(aecpc);
aecpc = NULL;
return -1;
}
if (WebRtcAec_CreateResampler(&aecpc->resampler) == -1) {
WebRtcAec_Free(aecpc);
aecpc = NULL;
return -1;
}
// Create far-end pre-buffer. The buffer size has to be large enough for
// largest possible drift compensation (kResamplerBufferSize) + "almost" an
// FFT buffer (PART_LEN2 - 1).
if (WebRtc_CreateBuffer(&aecpc->far_pre_buf,
PART_LEN2 + kResamplerBufferSize,
sizeof(float)) == -1) {
WebRtcAec_Free(aecpc);
aecpc = NULL;
return -1;
}
aecpc->initFlag = 0;
aecpc->lastError = 0;
#ifdef WEBRTC_AEC_DEBUG_DUMP
if (WebRtc_CreateBuffer(&aecpc->far_pre_buf_s16,
PART_LEN2 + kResamplerBufferSize,
sizeof(int16_t)) == -1) {
WebRtcAec_Free(aecpc);
aecpc = NULL;
return -1;
}
{
char filename[64];
sprintf(filename, "aec_far%d.pcm", instance_count);
aecpc->aec->farFile = fopen(filename, "wb");
sprintf(filename, "aec_near%d.pcm", instance_count);
aecpc->aec->nearFile = fopen(filename, "wb");
sprintf(filename, "aec_out%d.pcm", instance_count);
aecpc->aec->outFile = fopen(filename, "wb");
sprintf(filename, "aec_out_linear%d.pcm", instance_count);
aecpc->aec->outLinearFile = fopen(filename, "wb");
sprintf(filename, "aec_buf%d.dat", instance_count);
aecpc->bufFile = fopen(filename, "wb");
sprintf(filename, "aec_skew%d.dat", instance_count);
aecpc->skewFile = fopen(filename, "wb");
sprintf(filename, "aec_delay%d.dat", instance_count);
aecpc->delayFile = fopen(filename, "wb");
instance_count++;
}
#endif
return 0;
}
WebRtc_Word32 WebRtcAec_Free(void *aecInst)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
WebRtc_FreeBuffer(aecpc->far_pre_buf);
#ifdef WEBRTC_AEC_DEBUG_DUMP
WebRtc_FreeBuffer(aecpc->far_pre_buf_s16);
fclose(aecpc->aec->farFile);
fclose(aecpc->aec->nearFile);
fclose(aecpc->aec->outFile);
fclose(aecpc->aec->outLinearFile);
fclose(aecpc->bufFile);
fclose(aecpc->skewFile);
fclose(aecpc->delayFile);
#endif
WebRtcAec_FreeAec(aecpc->aec);
WebRtcAec_FreeResampler(aecpc->resampler);
free(aecpc);
return 0;
}
WebRtc_Word32 WebRtcAec_Init(void *aecInst, WebRtc_Word32 sampFreq, WebRtc_Word32 scSampFreq)
{
aecpc_t *aecpc = aecInst;
AecConfig aecConfig;
if (aecpc == NULL) {
return -1;
}
if (sampFreq != 8000 && sampFreq != 16000 && sampFreq != 32000) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->sampFreq = sampFreq;
if (scSampFreq < 1 || scSampFreq > 96000) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->scSampFreq = scSampFreq;
// Initialize echo canceller core
if (WebRtcAec_InitAec(aecpc->aec, aecpc->sampFreq) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
if (WebRtcAec_InitResampler(aecpc->resampler, aecpc->scSampFreq) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
if (WebRtc_InitBuffer(aecpc->far_pre_buf) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); // Start overlap.
aecpc->initFlag = initCheck; // indicates that initialization has been done
if (aecpc->sampFreq == 32000) {
aecpc->splitSampFreq = 16000;
}
else {
aecpc->splitSampFreq = sampFreq;
}
aecpc->skewFrCtr = 0;
aecpc->activity = 0;
aecpc->delayCtr = 0;
aecpc->sum = 0;
aecpc->counter = 0;
aecpc->checkBuffSize = 1;
aecpc->firstVal = 0;
aecpc->ECstartup = 1;
aecpc->bufSizeStart = 0;
aecpc->checkBufSizeCtr = 0;
aecpc->filtDelay = 0;
aecpc->timeForDelayChange = 0;
aecpc->knownDelay = 0;
aecpc->lastDelayDiff = 0;
aecpc->skew = 0;
aecpc->resample = kAecFalse;
aecpc->highSkewCtr = 0;
aecpc->sampFactor = (aecpc->scSampFreq * 1.0f) / aecpc->splitSampFreq;
// Default settings.
aecConfig.nlpMode = kAecNlpModerate;
aecConfig.skewMode = kAecFalse;
aecConfig.metricsMode = kAecFalse;
aecConfig.delay_logging = kAecFalse;
if (WebRtcAec_set_config(aecpc, aecConfig) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
#ifdef WEBRTC_AEC_DEBUG_DUMP
if (WebRtc_InitBuffer(aecpc->far_pre_buf_s16) == -1) {
aecpc->lastError = AEC_UNSPECIFIED_ERROR;
return -1;
}
WebRtc_MoveReadPtr(aecpc->far_pre_buf_s16, -PART_LEN); // Start overlap.
#endif
return 0;
}
// only buffer L band for farend
WebRtc_Word32 WebRtcAec_BufferFarend(void *aecInst, const WebRtc_Word16 *farend,
WebRtc_Word16 nrOfSamples)
{
aecpc_t *aecpc = aecInst;
WebRtc_Word32 retVal = 0;
int newNrOfSamples = (int) nrOfSamples;
short newFarend[MAX_RESAMP_LEN];
const int16_t* farend_ptr = farend;
float tmp_farend[MAX_RESAMP_LEN];
const float* farend_float = tmp_farend;
float skew;
int i = 0;
if (aecpc == NULL) {
return -1;
}
if (farend == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
// number of samples == 160 for SWB input
if (nrOfSamples != 80 && nrOfSamples != 160) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
skew = aecpc->skew;
if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
// Resample and get a new number of samples
newNrOfSamples = WebRtcAec_ResampleLinear(aecpc->resampler,
farend,
nrOfSamples,
skew,
newFarend);
farend_ptr = (const int16_t*) newFarend;
}
aecpc->aec->system_delay += newNrOfSamples;
#ifdef WEBRTC_AEC_DEBUG_DUMP
WebRtc_WriteBuffer(aecpc->far_pre_buf_s16, farend_ptr,
(size_t) newNrOfSamples);
#endif
// Cast to float and write the time-domain data to |far_pre_buf|.
for (i = 0; i < newNrOfSamples; i++) {
tmp_farend[i] = (float) farend_ptr[i];
}
WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_float,
(size_t) newNrOfSamples);
// Transform to frequency domain if we have enough data.
while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) {
// We have enough data to pass to the FFT, hence read PART_LEN2 samples.
WebRtc_ReadBuffer(aecpc->far_pre_buf, (void**) &farend_float, tmp_farend,
PART_LEN2);
WebRtcAec_BufferFarendPartition(aecpc->aec, farend_float);
// Rewind |far_pre_buf| PART_LEN samples for overlap before continuing.
WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN);
#ifdef WEBRTC_AEC_DEBUG_DUMP
WebRtc_ReadBuffer(aecpc->far_pre_buf_s16, (void**) &farend_ptr, newFarend,
PART_LEN2);
WebRtc_WriteBuffer(aecpc->aec->far_time_buf, &farend_ptr[PART_LEN], 1);
WebRtc_MoveReadPtr(aecpc->far_pre_buf_s16, -PART_LEN);
#endif
}
return retVal;
}
WebRtc_Word32 WebRtcAec_Process(void *aecInst, const WebRtc_Word16 *nearend,
const WebRtc_Word16 *nearendH, WebRtc_Word16 *out, WebRtc_Word16 *outH,
WebRtc_Word16 nrOfSamples, WebRtc_Word16 msInSndCardBuf, WebRtc_Word32 skew)
{
aecpc_t *aecpc = aecInst;
WebRtc_Word32 retVal = 0;
short i;
short nBlocks10ms;
short nFrames;
// Limit resampling to doubling/halving of signal
const float minSkewEst = -0.5f;
const float maxSkewEst = 1.0f;
if (aecpc == NULL) {
return -1;
}
if (nearend == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (out == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
// number of samples == 160 for SWB input
if (nrOfSamples != 80 && nrOfSamples != 160) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
// Check for valid pointers based on sampling rate
if (aecpc->sampFreq == 32000 && nearendH == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (msInSndCardBuf < 0) {
msInSndCardBuf = 0;
aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
retVal = -1;
}
else if (msInSndCardBuf > 500) {
msInSndCardBuf = 500;
aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
retVal = -1;
}
// TODO(andrew): we need to investigate if this +10 is really wanted.
msInSndCardBuf += 10;
aecpc->msInSndCardBuf = msInSndCardBuf;
if (aecpc->skewMode == kAecTrue) {
if (aecpc->skewFrCtr < 25) {
aecpc->skewFrCtr++;
}
else {
retVal = WebRtcAec_GetSkew(aecpc->resampler, skew, &aecpc->skew);
if (retVal == -1) {
aecpc->skew = 0;
aecpc->lastError = AEC_BAD_PARAMETER_WARNING;
}
aecpc->skew /= aecpc->sampFactor*nrOfSamples;
if (aecpc->skew < 1.0e-3 && aecpc->skew > -1.0e-3) {
aecpc->resample = kAecFalse;
}
else {
aecpc->resample = kAecTrue;
}
if (aecpc->skew < minSkewEst) {
aecpc->skew = minSkewEst;
}
else if (aecpc->skew > maxSkewEst) {
aecpc->skew = maxSkewEst;
}
#ifdef WEBRTC_AEC_DEBUG_DUMP
fwrite(&aecpc->skew, sizeof(aecpc->skew), 1, aecpc->skewFile);
#endif
}
}
nFrames = nrOfSamples / FRAME_LEN;
nBlocks10ms = nFrames / aecpc->aec->mult;
if (aecpc->ECstartup) {
if (nearend != out) {
// Only needed if they don't already point to the same place.
memcpy(out, nearend, sizeof(short) * nrOfSamples);
}
// The AEC is in the start up mode
// AEC is disabled until the system delay is OK
// Mechanism to ensure that the system delay is reasonably stable.
if (aecpc->checkBuffSize) {
aecpc->checkBufSizeCtr++;
// Before we fill up the far-end buffer we require the system delay
// to be stable (+/-8 ms) compared to the first value. This
// comparison is made during the following 6 consecutive 10 ms
// blocks. If it seems to be stable then we start to fill up the
// far-end buffer.
if (aecpc->counter == 0) {
aecpc->firstVal = aecpc->msInSndCardBuf;
aecpc->sum = 0;
}
if (abs(aecpc->firstVal - aecpc->msInSndCardBuf) <
WEBRTC_SPL_MAX(0.2 * aecpc->msInSndCardBuf, sampMsNb)) {
aecpc->sum += aecpc->msInSndCardBuf;
aecpc->counter++;
}
else {
aecpc->counter = 0;
}
if (aecpc->counter * nBlocks10ms >= 6) {
// The far-end buffer size is determined in partitions of
// PART_LEN samples. Use 75% of the average value of the system
// delay as buffer size to start with.
aecpc->bufSizeStart = WEBRTC_SPL_MIN((3 * aecpc->sum *
aecpc->aec->mult * 8) / (4 * aecpc->counter * PART_LEN),
kMaxBufSizeStart);
// Buffer size has now been determined.
aecpc->checkBuffSize = 0;
}
if (aecpc->checkBufSizeCtr * nBlocks10ms > 50) {
// For really bad systems, don't disable the echo canceller for
// more than 0.5 sec.
aecpc->bufSizeStart = WEBRTC_SPL_MIN((aecpc->msInSndCardBuf *
aecpc->aec->mult * 3) / 40, kMaxBufSizeStart);
aecpc->checkBuffSize = 0;
}
}
// If |checkBuffSize| changed in the if-statement above.
if (!aecpc->checkBuffSize) {
// The system delay is now reasonably stable (or has been unstable
// for too long). When the far-end buffer is filled with
// approximately the same amount of data as reported by the system
// we end the startup phase.
int overhead_elements = aecpc->aec->system_delay / PART_LEN -
aecpc->bufSizeStart;
if (overhead_elements == 0) {
// Enable the AEC
aecpc->ECstartup = 0;
} else if (overhead_elements > 0) {
WebRtc_MoveReadPtr(aecpc->aec->far_buf_windowed,
overhead_elements);
WebRtc_MoveReadPtr(aecpc->aec->far_buf, overhead_elements);
#ifdef WEBRTC_AEC_DEBUG_DUMP
WebRtc_MoveReadPtr(aecpc->aec->far_time_buf, overhead_elements);
#endif
// TODO(bjornv): Do we need a check on how much we actually
// moved the read pointer? It should always be possible to move
// the pointer |overhead_elements| since we have only added data
// to the buffer and no delay compensation nor AEC processing
// has been done.
aecpc->aec->system_delay -= overhead_elements * PART_LEN;
// Enable the AEC
aecpc->ECstartup = 0;
}
}
} else {
// AEC is enabled.
int out_elements = 0;
EstBufDelay(aecpc);
// Note that 1 frame is supported for NB and 2 frames for WB.
for (i = 0; i < nFrames; i++) {
int16_t* out_ptr = NULL;
int16_t out_tmp[FRAME_LEN];
// Call the AEC.
WebRtcAec_ProcessFrame(aecpc->aec,
&nearend[FRAME_LEN * i],
&nearendH[FRAME_LEN * i],
aecpc->knownDelay);
// TODO(bjornv): Re-structure such that we don't have to pass
// |aecpc->knownDelay| as input. Change name to something like
// |system_buffer_diff|.
// Stuff the out buffer if we have less than a frame to output.
// This should only happen for the first frame.
out_elements = (int) WebRtc_available_read(aecpc->aec->outFrBuf);
if (out_elements < FRAME_LEN) {
WebRtc_MoveReadPtr(aecpc->aec->outFrBuf,
out_elements - FRAME_LEN);
if (aecpc->sampFreq == 32000) {
WebRtc_MoveReadPtr(aecpc->aec->outFrBufH,
out_elements - FRAME_LEN);
}
}
// Obtain an output frame.
WebRtc_ReadBuffer(aecpc->aec->outFrBuf, (void**) &out_ptr,
out_tmp, FRAME_LEN);
memcpy(&out[FRAME_LEN * i], out_ptr, sizeof(int16_t) * FRAME_LEN);
// For H band
if (aecpc->sampFreq == 32000) {
WebRtc_ReadBuffer(aecpc->aec->outFrBufH, (void**) &out_ptr,
out_tmp, FRAME_LEN);
memcpy(&outH[FRAME_LEN * i], out_ptr,
sizeof(int16_t) * FRAME_LEN);
}
}
}
#ifdef WEBRTC_AEC_DEBUG_DUMP
{
int16_t far_buf_size_ms = (int16_t) (aecpc->aec->system_delay /
(sampMsNb * aecpc->aec->mult));
fwrite(&far_buf_size_ms, 2, 1, aecpc->bufFile);
fwrite(&(aecpc->knownDelay), sizeof(aecpc->knownDelay), 1, aecpc->delayFile);
}
#endif
return retVal;
}
WebRtc_Word32 WebRtcAec_set_config(void *aecInst, AecConfig config)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
if (config.skewMode != kAecFalse && config.skewMode != kAecTrue) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->skewMode = config.skewMode;
if (config.nlpMode != kAecNlpConservative && config.nlpMode !=
kAecNlpModerate && config.nlpMode != kAecNlpAggressive) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->nlpMode = config.nlpMode;
aecpc->aec->targetSupp = targetSupp[aecpc->nlpMode];
aecpc->aec->minOverDrive = minOverDrive[aecpc->nlpMode];
if (config.metricsMode != kAecFalse && config.metricsMode != kAecTrue) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->aec->metricsMode = config.metricsMode;
if (aecpc->aec->metricsMode == kAecTrue) {
WebRtcAec_InitMetrics(aecpc->aec);
}
if (config.delay_logging != kAecFalse && config.delay_logging != kAecTrue) {
aecpc->lastError = AEC_BAD_PARAMETER_ERROR;
return -1;
}
aecpc->aec->delay_logging_enabled = config.delay_logging;
if (aecpc->aec->delay_logging_enabled == kAecTrue) {
memset(aecpc->aec->delay_histogram, 0, sizeof(aecpc->aec->delay_histogram));
}
return 0;
}
WebRtc_Word32 WebRtcAec_get_config(void *aecInst, AecConfig *config)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
if (config == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
config->nlpMode = aecpc->nlpMode;
config->skewMode = aecpc->skewMode;
config->metricsMode = aecpc->aec->metricsMode;
config->delay_logging = aecpc->aec->delay_logging_enabled;
return 0;
}
WebRtc_Word32 WebRtcAec_get_echo_status(void *aecInst, WebRtc_Word16 *status)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
if (status == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
*status = aecpc->aec->echoState;
return 0;
}
WebRtc_Word32 WebRtcAec_GetMetrics(void *aecInst, AecMetrics *metrics)
{
const float upweight = 0.7f;
float dtmp;
short stmp;
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
if (metrics == NULL) {
aecpc->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (aecpc->initFlag != initCheck) {
aecpc->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
// ERL
metrics->erl.instant = (short) aecpc->aec->erl.instant;
if ((aecpc->aec->erl.himean > offsetLevel) && (aecpc->aec->erl.average > offsetLevel)) {
// Use a mix between regular average and upper part average
dtmp = upweight * aecpc->aec->erl.himean + (1 - upweight) * aecpc->aec->erl.average;
metrics->erl.average = (short) dtmp;
}
else {
metrics->erl.average = offsetLevel;
}
metrics->erl.max = (short) aecpc->aec->erl.max;
if (aecpc->aec->erl.min < (offsetLevel * (-1))) {
metrics->erl.min = (short) aecpc->aec->erl.min;
}
else {
metrics->erl.min = offsetLevel;
}
// ERLE
metrics->erle.instant = (short) aecpc->aec->erle.instant;
if ((aecpc->aec->erle.himean > offsetLevel) && (aecpc->aec->erle.average > offsetLevel)) {
// Use a mix between regular average and upper part average
dtmp = upweight * aecpc->aec->erle.himean + (1 - upweight) * aecpc->aec->erle.average;
metrics->erle.average = (short) dtmp;
}
else {
metrics->erle.average = offsetLevel;
}
metrics->erle.max = (short) aecpc->aec->erle.max;
if (aecpc->aec->erle.min < (offsetLevel * (-1))) {
metrics->erle.min = (short) aecpc->aec->erle.min;
} else {
metrics->erle.min = offsetLevel;
}
// RERL
if ((metrics->erl.average > offsetLevel) && (metrics->erle.average > offsetLevel)) {
stmp = metrics->erl.average + metrics->erle.average;
}
else {
stmp = offsetLevel;
}
metrics->rerl.average = stmp;
// No other statistics needed, but returned for completeness
metrics->rerl.instant = stmp;
metrics->rerl.max = stmp;
metrics->rerl.min = stmp;
// A_NLP
metrics->aNlp.instant = (short) aecpc->aec->aNlp.instant;
if ((aecpc->aec->aNlp.himean > offsetLevel) && (aecpc->aec->aNlp.average > offsetLevel)) {
// Use a mix between regular average and upper part average
dtmp = upweight * aecpc->aec->aNlp.himean + (1 - upweight) * aecpc->aec->aNlp.average;
metrics->aNlp.average = (short) dtmp;
}
else {
metrics->aNlp.average = offsetLevel;
}
metrics->aNlp.max = (short) aecpc->aec->aNlp.max;
if (aecpc->aec->aNlp.min < (offsetLevel * (-1))) {
metrics->aNlp.min = (short) aecpc->aec->aNlp.min;
}
else {
metrics->aNlp.min = offsetLevel;
}
return 0;
}
int WebRtcAec_GetDelayMetrics(void* handle, int* median, int* std) {
aecpc_t* self = handle;
int i = 0;
int delay_values = 0;
int num_delay_values = 0;
int my_median = 0;
const int kMsPerBlock = (PART_LEN * 1000) / self->splitSampFreq;
float l1_norm = 0;
if (self == NULL) {
return -1;
}
if (median == NULL) {
self->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (std == NULL) {
self->lastError = AEC_NULL_POINTER_ERROR;
return -1;
}
if (self->initFlag != initCheck) {
self->lastError = AEC_UNINITIALIZED_ERROR;
return -1;
}
if (self->aec->delay_logging_enabled == 0) {
// Logging disabled
self->lastError = AEC_UNSUPPORTED_FUNCTION_ERROR;
return -1;
}
// Get number of delay values since last update
for (i = 0; i < kHistorySizeBlocks; i++) {
num_delay_values += self->aec->delay_histogram[i];
}
if (num_delay_values == 0) {
// We have no new delay value data. Even though -1 is a valid estimate, it
// will practically never be used since multiples of |kMsPerBlock| will
// always be returned.
*median = -1;
*std = -1;
return 0;
}
delay_values = num_delay_values >> 1; // Start value for median count down
// Get median of delay values since last update
for (i = 0; i < kHistorySizeBlocks; i++) {
delay_values -= self->aec->delay_histogram[i];
if (delay_values < 0) {
my_median = i;
break;
}
}
// Account for lookahead.
*median = (my_median - kLookaheadBlocks) * kMsPerBlock;
// Calculate the L1 norm, with median value as central moment
for (i = 0; i < kHistorySizeBlocks; i++) {
l1_norm += (float) (fabs(i - my_median) * self->aec->delay_histogram[i]);
}
*std = (int) (l1_norm / (float) num_delay_values + 0.5f) * kMsPerBlock;
// Reset histogram
memset(self->aec->delay_histogram, 0, sizeof(self->aec->delay_histogram));
return 0;
}
WebRtc_Word32 WebRtcAec_get_version(WebRtc_Word8 *versionStr, WebRtc_Word16 len)
{
const char version[] = "AEC 2.5.0";
const short versionLen = (short)strlen(version) + 1; // +1 for null-termination
if (versionStr == NULL) {
return -1;
}
if (versionLen > len) {
return -1;
}
strncpy(versionStr, version, versionLen);
return 0;
}
WebRtc_Word32 WebRtcAec_get_error_code(void *aecInst)
{
aecpc_t *aecpc = aecInst;
if (aecpc == NULL) {
return -1;
}
return aecpc->lastError;
}
static int EstBufDelay(aecpc_t* aecpc) {
int nSampSndCard = aecpc->msInSndCardBuf * sampMsNb * aecpc->aec->mult;
int current_delay = nSampSndCard - aecpc->aec->system_delay;
int delay_difference = 0;
// Before we proceed with the delay estimate filtering we:
// 1) Compensate for the frame that will be read.
// 2) Compensate for drift resampling.
// 1) Compensating for the frame(s) that will be read/processed.
current_delay += FRAME_LEN * aecpc->aec->mult;
// 2) Account for resampling frame delay.
if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) {
current_delay -= kResamplingDelay;
}
aecpc->filtDelay = WEBRTC_SPL_MAX(0, (short) (0.8 * aecpc->filtDelay +
0.2 * current_delay));
delay_difference = aecpc->filtDelay - aecpc->knownDelay;
if (delay_difference > 224) {
if (aecpc->lastDelayDiff < 96) {
aecpc->timeForDelayChange = 0;
} else {
aecpc->timeForDelayChange++;
}
} else if (delay_difference < 96 && aecpc->knownDelay > 0) {
if (aecpc->lastDelayDiff > 224) {
aecpc->timeForDelayChange = 0;
} else {
aecpc->timeForDelayChange++;
}
} else {
aecpc->timeForDelayChange = 0;
}
aecpc->lastDelayDiff = delay_difference;
if (aecpc->timeForDelayChange > 25) {
aecpc->knownDelay = WEBRTC_SPL_MAX((int) aecpc->filtDelay - 160, 0);
}
return 0;
}