/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * Contains the API functions for the AEC. */ #include "echo_cancellation.h" #include <math.h> #ifdef WEBRTC_AEC_DEBUG_DUMP #include <stdio.h> #endif #include <stdlib.h> #include <string.h> #include "aec_core.h" #include "aec_resampler.h" #include "ring_buffer.h" #include "typedefs.h" // Maximum length of resampled signal. Must be an integer multiple of frames // (ceil(1/(1 + MIN_SKEW)*2) + 1)*FRAME_LEN // The factor of 2 handles wb, and the + 1 is as a safety margin // TODO(bjornv): Replace with kResamplerBufferSize #define MAX_RESAMP_LEN (5 * FRAME_LEN) static const int kMaxBufSizeStart = 62; // In partitions static const int sampMsNb = 8; // samples per ms in nb // Target suppression levels for nlp modes // log{0.001, 0.00001, 0.00000001} static const float targetSupp[3] = {-6.9f, -11.5f, -18.4f}; static const float minOverDrive[3] = {1.0f, 2.0f, 5.0f}; static const int initCheck = 42; #ifdef WEBRTC_AEC_DEBUG_DUMP static int instance_count = 0; #endif typedef struct { int delayCtr; int sampFreq; int splitSampFreq; int scSampFreq; float sampFactor; // scSampRate / sampFreq short nlpMode; short autoOnOff; short activity; short skewMode; int bufSizeStart; //short bufResetCtr; // counts number of noncausal frames int knownDelay; short initFlag; // indicates if AEC has been initialized // Variables used for averaging far end buffer size short counter; int sum; short firstVal; short checkBufSizeCtr; // Variables used for delay shifts short msInSndCardBuf; short filtDelay; // Filtered delay estimate. int timeForDelayChange; int ECstartup; int checkBuffSize; short lastDelayDiff; #ifdef WEBRTC_AEC_DEBUG_DUMP void* far_pre_buf_s16; // Time domain far-end pre-buffer in int16_t. FILE *bufFile; FILE *delayFile; FILE *skewFile; #endif // Structures void *resampler; int skewFrCtr; int resample; // if the skew is small enough we don't resample int highSkewCtr; float skew; void* far_pre_buf; // Time domain far-end pre-buffer. int lastError; aec_t *aec; } aecpc_t; // Estimates delay to set the position of the far-end buffer read pointer // (controlled by knownDelay) static int EstBufDelay(aecpc_t *aecInst); WebRtc_Word32 WebRtcAec_Create(void **aecInst) { aecpc_t *aecpc; if (aecInst == NULL) { return -1; } aecpc = malloc(sizeof(aecpc_t)); *aecInst = aecpc; if (aecpc == NULL) { return -1; } if (WebRtcAec_CreateAec(&aecpc->aec) == -1) { WebRtcAec_Free(aecpc); aecpc = NULL; return -1; } if (WebRtcAec_CreateResampler(&aecpc->resampler) == -1) { WebRtcAec_Free(aecpc); aecpc = NULL; return -1; } // Create far-end pre-buffer. The buffer size has to be large enough for // largest possible drift compensation (kResamplerBufferSize) + "almost" an // FFT buffer (PART_LEN2 - 1). if (WebRtc_CreateBuffer(&aecpc->far_pre_buf, PART_LEN2 + kResamplerBufferSize, sizeof(float)) == -1) { WebRtcAec_Free(aecpc); aecpc = NULL; return -1; } aecpc->initFlag = 0; aecpc->lastError = 0; #ifdef WEBRTC_AEC_DEBUG_DUMP if (WebRtc_CreateBuffer(&aecpc->far_pre_buf_s16, PART_LEN2 + kResamplerBufferSize, sizeof(int16_t)) == -1) { WebRtcAec_Free(aecpc); aecpc = NULL; return -1; } { char filename[64]; sprintf(filename, "aec_far%d.pcm", instance_count); aecpc->aec->farFile = fopen(filename, "wb"); sprintf(filename, "aec_near%d.pcm", instance_count); aecpc->aec->nearFile = fopen(filename, "wb"); sprintf(filename, "aec_out%d.pcm", instance_count); aecpc->aec->outFile = fopen(filename, "wb"); sprintf(filename, "aec_out_linear%d.pcm", instance_count); aecpc->aec->outLinearFile = fopen(filename, "wb"); sprintf(filename, "aec_buf%d.dat", instance_count); aecpc->bufFile = fopen(filename, "wb"); sprintf(filename, "aec_skew%d.dat", instance_count); aecpc->skewFile = fopen(filename, "wb"); sprintf(filename, "aec_delay%d.dat", instance_count); aecpc->delayFile = fopen(filename, "wb"); instance_count++; } #endif return 0; } WebRtc_Word32 WebRtcAec_Free(void *aecInst) { aecpc_t *aecpc = aecInst; if (aecpc == NULL) { return -1; } WebRtc_FreeBuffer(aecpc->far_pre_buf); #ifdef WEBRTC_AEC_DEBUG_DUMP WebRtc_FreeBuffer(aecpc->far_pre_buf_s16); fclose(aecpc->aec->farFile); fclose(aecpc->aec->nearFile); fclose(aecpc->aec->outFile); fclose(aecpc->aec->outLinearFile); fclose(aecpc->bufFile); fclose(aecpc->skewFile); fclose(aecpc->delayFile); #endif WebRtcAec_FreeAec(aecpc->aec); WebRtcAec_FreeResampler(aecpc->resampler); free(aecpc); return 0; } WebRtc_Word32 WebRtcAec_Init(void *aecInst, WebRtc_Word32 sampFreq, WebRtc_Word32 scSampFreq) { aecpc_t *aecpc = aecInst; AecConfig aecConfig; if (aecpc == NULL) { return -1; } if (sampFreq != 8000 && sampFreq != 16000 && sampFreq != 32000) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } aecpc->sampFreq = sampFreq; if (scSampFreq < 1 || scSampFreq > 96000) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } aecpc->scSampFreq = scSampFreq; // Initialize echo canceller core if (WebRtcAec_InitAec(aecpc->aec, aecpc->sampFreq) == -1) { aecpc->lastError = AEC_UNSPECIFIED_ERROR; return -1; } if (WebRtcAec_InitResampler(aecpc->resampler, aecpc->scSampFreq) == -1) { aecpc->lastError = AEC_UNSPECIFIED_ERROR; return -1; } if (WebRtc_InitBuffer(aecpc->far_pre_buf) == -1) { aecpc->lastError = AEC_UNSPECIFIED_ERROR; return -1; } WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); // Start overlap. aecpc->initFlag = initCheck; // indicates that initialization has been done if (aecpc->sampFreq == 32000) { aecpc->splitSampFreq = 16000; } else { aecpc->splitSampFreq = sampFreq; } aecpc->skewFrCtr = 0; aecpc->activity = 0; aecpc->delayCtr = 0; aecpc->sum = 0; aecpc->counter = 0; aecpc->checkBuffSize = 1; aecpc->firstVal = 0; aecpc->ECstartup = 1; aecpc->bufSizeStart = 0; aecpc->checkBufSizeCtr = 0; aecpc->filtDelay = 0; aecpc->timeForDelayChange = 0; aecpc->knownDelay = 0; aecpc->lastDelayDiff = 0; aecpc->skew = 0; aecpc->resample = kAecFalse; aecpc->highSkewCtr = 0; aecpc->sampFactor = (aecpc->scSampFreq * 1.0f) / aecpc->splitSampFreq; // Default settings. aecConfig.nlpMode = kAecNlpModerate; aecConfig.skewMode = kAecFalse; aecConfig.metricsMode = kAecFalse; aecConfig.delay_logging = kAecFalse; if (WebRtcAec_set_config(aecpc, aecConfig) == -1) { aecpc->lastError = AEC_UNSPECIFIED_ERROR; return -1; } #ifdef WEBRTC_AEC_DEBUG_DUMP if (WebRtc_InitBuffer(aecpc->far_pre_buf_s16) == -1) { aecpc->lastError = AEC_UNSPECIFIED_ERROR; return -1; } WebRtc_MoveReadPtr(aecpc->far_pre_buf_s16, -PART_LEN); // Start overlap. #endif return 0; } // only buffer L band for farend WebRtc_Word32 WebRtcAec_BufferFarend(void *aecInst, const WebRtc_Word16 *farend, WebRtc_Word16 nrOfSamples) { aecpc_t *aecpc = aecInst; WebRtc_Word32 retVal = 0; int newNrOfSamples = (int) nrOfSamples; short newFarend[MAX_RESAMP_LEN]; const int16_t* farend_ptr = farend; float tmp_farend[MAX_RESAMP_LEN]; const float* farend_float = tmp_farend; float skew; int i = 0; if (aecpc == NULL) { return -1; } if (farend == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (aecpc->initFlag != initCheck) { aecpc->lastError = AEC_UNINITIALIZED_ERROR; return -1; } // number of samples == 160 for SWB input if (nrOfSamples != 80 && nrOfSamples != 160) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } skew = aecpc->skew; if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) { // Resample and get a new number of samples newNrOfSamples = WebRtcAec_ResampleLinear(aecpc->resampler, farend, nrOfSamples, skew, newFarend); farend_ptr = (const int16_t*) newFarend; } aecpc->aec->system_delay += newNrOfSamples; #ifdef WEBRTC_AEC_DEBUG_DUMP WebRtc_WriteBuffer(aecpc->far_pre_buf_s16, farend_ptr, (size_t) newNrOfSamples); #endif // Cast to float and write the time-domain data to |far_pre_buf|. for (i = 0; i < newNrOfSamples; i++) { tmp_farend[i] = (float) farend_ptr[i]; } WebRtc_WriteBuffer(aecpc->far_pre_buf, farend_float, (size_t) newNrOfSamples); // Transform to frequency domain if we have enough data. while (WebRtc_available_read(aecpc->far_pre_buf) >= PART_LEN2) { // We have enough data to pass to the FFT, hence read PART_LEN2 samples. WebRtc_ReadBuffer(aecpc->far_pre_buf, (void**) &farend_float, tmp_farend, PART_LEN2); WebRtcAec_BufferFarendPartition(aecpc->aec, farend_float); // Rewind |far_pre_buf| PART_LEN samples for overlap before continuing. WebRtc_MoveReadPtr(aecpc->far_pre_buf, -PART_LEN); #ifdef WEBRTC_AEC_DEBUG_DUMP WebRtc_ReadBuffer(aecpc->far_pre_buf_s16, (void**) &farend_ptr, newFarend, PART_LEN2); WebRtc_WriteBuffer(aecpc->aec->far_time_buf, &farend_ptr[PART_LEN], 1); WebRtc_MoveReadPtr(aecpc->far_pre_buf_s16, -PART_LEN); #endif } return retVal; } WebRtc_Word32 WebRtcAec_Process(void *aecInst, const WebRtc_Word16 *nearend, const WebRtc_Word16 *nearendH, WebRtc_Word16 *out, WebRtc_Word16 *outH, WebRtc_Word16 nrOfSamples, WebRtc_Word16 msInSndCardBuf, WebRtc_Word32 skew) { aecpc_t *aecpc = aecInst; WebRtc_Word32 retVal = 0; short i; short nBlocks10ms; short nFrames; // Limit resampling to doubling/halving of signal const float minSkewEst = -0.5f; const float maxSkewEst = 1.0f; if (aecpc == NULL) { return -1; } if (nearend == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (out == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (aecpc->initFlag != initCheck) { aecpc->lastError = AEC_UNINITIALIZED_ERROR; return -1; } // number of samples == 160 for SWB input if (nrOfSamples != 80 && nrOfSamples != 160) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } // Check for valid pointers based on sampling rate if (aecpc->sampFreq == 32000 && nearendH == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (msInSndCardBuf < 0) { msInSndCardBuf = 0; aecpc->lastError = AEC_BAD_PARAMETER_WARNING; retVal = -1; } else if (msInSndCardBuf > 500) { msInSndCardBuf = 500; aecpc->lastError = AEC_BAD_PARAMETER_WARNING; retVal = -1; } // TODO(andrew): we need to investigate if this +10 is really wanted. msInSndCardBuf += 10; aecpc->msInSndCardBuf = msInSndCardBuf; if (aecpc->skewMode == kAecTrue) { if (aecpc->skewFrCtr < 25) { aecpc->skewFrCtr++; } else { retVal = WebRtcAec_GetSkew(aecpc->resampler, skew, &aecpc->skew); if (retVal == -1) { aecpc->skew = 0; aecpc->lastError = AEC_BAD_PARAMETER_WARNING; } aecpc->skew /= aecpc->sampFactor*nrOfSamples; if (aecpc->skew < 1.0e-3 && aecpc->skew > -1.0e-3) { aecpc->resample = kAecFalse; } else { aecpc->resample = kAecTrue; } if (aecpc->skew < minSkewEst) { aecpc->skew = minSkewEst; } else if (aecpc->skew > maxSkewEst) { aecpc->skew = maxSkewEst; } #ifdef WEBRTC_AEC_DEBUG_DUMP fwrite(&aecpc->skew, sizeof(aecpc->skew), 1, aecpc->skewFile); #endif } } nFrames = nrOfSamples / FRAME_LEN; nBlocks10ms = nFrames / aecpc->aec->mult; if (aecpc->ECstartup) { if (nearend != out) { // Only needed if they don't already point to the same place. memcpy(out, nearend, sizeof(short) * nrOfSamples); } // The AEC is in the start up mode // AEC is disabled until the system delay is OK // Mechanism to ensure that the system delay is reasonably stable. if (aecpc->checkBuffSize) { aecpc->checkBufSizeCtr++; // Before we fill up the far-end buffer we require the system delay // to be stable (+/-8 ms) compared to the first value. This // comparison is made during the following 6 consecutive 10 ms // blocks. If it seems to be stable then we start to fill up the // far-end buffer. if (aecpc->counter == 0) { aecpc->firstVal = aecpc->msInSndCardBuf; aecpc->sum = 0; } if (abs(aecpc->firstVal - aecpc->msInSndCardBuf) < WEBRTC_SPL_MAX(0.2 * aecpc->msInSndCardBuf, sampMsNb)) { aecpc->sum += aecpc->msInSndCardBuf; aecpc->counter++; } else { aecpc->counter = 0; } if (aecpc->counter * nBlocks10ms >= 6) { // The far-end buffer size is determined in partitions of // PART_LEN samples. Use 75% of the average value of the system // delay as buffer size to start with. aecpc->bufSizeStart = WEBRTC_SPL_MIN((3 * aecpc->sum * aecpc->aec->mult * 8) / (4 * aecpc->counter * PART_LEN), kMaxBufSizeStart); // Buffer size has now been determined. aecpc->checkBuffSize = 0; } if (aecpc->checkBufSizeCtr * nBlocks10ms > 50) { // For really bad systems, don't disable the echo canceller for // more than 0.5 sec. aecpc->bufSizeStart = WEBRTC_SPL_MIN((aecpc->msInSndCardBuf * aecpc->aec->mult * 3) / 40, kMaxBufSizeStart); aecpc->checkBuffSize = 0; } } // If |checkBuffSize| changed in the if-statement above. if (!aecpc->checkBuffSize) { // The system delay is now reasonably stable (or has been unstable // for too long). When the far-end buffer is filled with // approximately the same amount of data as reported by the system // we end the startup phase. int overhead_elements = aecpc->aec->system_delay / PART_LEN - aecpc->bufSizeStart; if (overhead_elements == 0) { // Enable the AEC aecpc->ECstartup = 0; } else if (overhead_elements > 0) { WebRtc_MoveReadPtr(aecpc->aec->far_buf_windowed, overhead_elements); WebRtc_MoveReadPtr(aecpc->aec->far_buf, overhead_elements); #ifdef WEBRTC_AEC_DEBUG_DUMP WebRtc_MoveReadPtr(aecpc->aec->far_time_buf, overhead_elements); #endif // TODO(bjornv): Do we need a check on how much we actually // moved the read pointer? It should always be possible to move // the pointer |overhead_elements| since we have only added data // to the buffer and no delay compensation nor AEC processing // has been done. aecpc->aec->system_delay -= overhead_elements * PART_LEN; // Enable the AEC aecpc->ECstartup = 0; } } } else { // AEC is enabled. int out_elements = 0; EstBufDelay(aecpc); // Note that 1 frame is supported for NB and 2 frames for WB. for (i = 0; i < nFrames; i++) { int16_t* out_ptr = NULL; int16_t out_tmp[FRAME_LEN]; // Call the AEC. WebRtcAec_ProcessFrame(aecpc->aec, &nearend[FRAME_LEN * i], &nearendH[FRAME_LEN * i], aecpc->knownDelay); // TODO(bjornv): Re-structure such that we don't have to pass // |aecpc->knownDelay| as input. Change name to something like // |system_buffer_diff|. // Stuff the out buffer if we have less than a frame to output. // This should only happen for the first frame. out_elements = (int) WebRtc_available_read(aecpc->aec->outFrBuf); if (out_elements < FRAME_LEN) { WebRtc_MoveReadPtr(aecpc->aec->outFrBuf, out_elements - FRAME_LEN); if (aecpc->sampFreq == 32000) { WebRtc_MoveReadPtr(aecpc->aec->outFrBufH, out_elements - FRAME_LEN); } } // Obtain an output frame. WebRtc_ReadBuffer(aecpc->aec->outFrBuf, (void**) &out_ptr, out_tmp, FRAME_LEN); memcpy(&out[FRAME_LEN * i], out_ptr, sizeof(int16_t) * FRAME_LEN); // For H band if (aecpc->sampFreq == 32000) { WebRtc_ReadBuffer(aecpc->aec->outFrBufH, (void**) &out_ptr, out_tmp, FRAME_LEN); memcpy(&outH[FRAME_LEN * i], out_ptr, sizeof(int16_t) * FRAME_LEN); } } } #ifdef WEBRTC_AEC_DEBUG_DUMP { int16_t far_buf_size_ms = (int16_t) (aecpc->aec->system_delay / (sampMsNb * aecpc->aec->mult)); fwrite(&far_buf_size_ms, 2, 1, aecpc->bufFile); fwrite(&(aecpc->knownDelay), sizeof(aecpc->knownDelay), 1, aecpc->delayFile); } #endif return retVal; } WebRtc_Word32 WebRtcAec_set_config(void *aecInst, AecConfig config) { aecpc_t *aecpc = aecInst; if (aecpc == NULL) { return -1; } if (aecpc->initFlag != initCheck) { aecpc->lastError = AEC_UNINITIALIZED_ERROR; return -1; } if (config.skewMode != kAecFalse && config.skewMode != kAecTrue) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } aecpc->skewMode = config.skewMode; if (config.nlpMode != kAecNlpConservative && config.nlpMode != kAecNlpModerate && config.nlpMode != kAecNlpAggressive) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } aecpc->nlpMode = config.nlpMode; aecpc->aec->targetSupp = targetSupp[aecpc->nlpMode]; aecpc->aec->minOverDrive = minOverDrive[aecpc->nlpMode]; if (config.metricsMode != kAecFalse && config.metricsMode != kAecTrue) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } aecpc->aec->metricsMode = config.metricsMode; if (aecpc->aec->metricsMode == kAecTrue) { WebRtcAec_InitMetrics(aecpc->aec); } if (config.delay_logging != kAecFalse && config.delay_logging != kAecTrue) { aecpc->lastError = AEC_BAD_PARAMETER_ERROR; return -1; } aecpc->aec->delay_logging_enabled = config.delay_logging; if (aecpc->aec->delay_logging_enabled == kAecTrue) { memset(aecpc->aec->delay_histogram, 0, sizeof(aecpc->aec->delay_histogram)); } return 0; } WebRtc_Word32 WebRtcAec_get_config(void *aecInst, AecConfig *config) { aecpc_t *aecpc = aecInst; if (aecpc == NULL) { return -1; } if (config == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (aecpc->initFlag != initCheck) { aecpc->lastError = AEC_UNINITIALIZED_ERROR; return -1; } config->nlpMode = aecpc->nlpMode; config->skewMode = aecpc->skewMode; config->metricsMode = aecpc->aec->metricsMode; config->delay_logging = aecpc->aec->delay_logging_enabled; return 0; } WebRtc_Word32 WebRtcAec_get_echo_status(void *aecInst, WebRtc_Word16 *status) { aecpc_t *aecpc = aecInst; if (aecpc == NULL) { return -1; } if (status == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (aecpc->initFlag != initCheck) { aecpc->lastError = AEC_UNINITIALIZED_ERROR; return -1; } *status = aecpc->aec->echoState; return 0; } WebRtc_Word32 WebRtcAec_GetMetrics(void *aecInst, AecMetrics *metrics) { const float upweight = 0.7f; float dtmp; short stmp; aecpc_t *aecpc = aecInst; if (aecpc == NULL) { return -1; } if (metrics == NULL) { aecpc->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (aecpc->initFlag != initCheck) { aecpc->lastError = AEC_UNINITIALIZED_ERROR; return -1; } // ERL metrics->erl.instant = (short) aecpc->aec->erl.instant; if ((aecpc->aec->erl.himean > offsetLevel) && (aecpc->aec->erl.average > offsetLevel)) { // Use a mix between regular average and upper part average dtmp = upweight * aecpc->aec->erl.himean + (1 - upweight) * aecpc->aec->erl.average; metrics->erl.average = (short) dtmp; } else { metrics->erl.average = offsetLevel; } metrics->erl.max = (short) aecpc->aec->erl.max; if (aecpc->aec->erl.min < (offsetLevel * (-1))) { metrics->erl.min = (short) aecpc->aec->erl.min; } else { metrics->erl.min = offsetLevel; } // ERLE metrics->erle.instant = (short) aecpc->aec->erle.instant; if ((aecpc->aec->erle.himean > offsetLevel) && (aecpc->aec->erle.average > offsetLevel)) { // Use a mix between regular average and upper part average dtmp = upweight * aecpc->aec->erle.himean + (1 - upweight) * aecpc->aec->erle.average; metrics->erle.average = (short) dtmp; } else { metrics->erle.average = offsetLevel; } metrics->erle.max = (short) aecpc->aec->erle.max; if (aecpc->aec->erle.min < (offsetLevel * (-1))) { metrics->erle.min = (short) aecpc->aec->erle.min; } else { metrics->erle.min = offsetLevel; } // RERL if ((metrics->erl.average > offsetLevel) && (metrics->erle.average > offsetLevel)) { stmp = metrics->erl.average + metrics->erle.average; } else { stmp = offsetLevel; } metrics->rerl.average = stmp; // No other statistics needed, but returned for completeness metrics->rerl.instant = stmp; metrics->rerl.max = stmp; metrics->rerl.min = stmp; // A_NLP metrics->aNlp.instant = (short) aecpc->aec->aNlp.instant; if ((aecpc->aec->aNlp.himean > offsetLevel) && (aecpc->aec->aNlp.average > offsetLevel)) { // Use a mix between regular average and upper part average dtmp = upweight * aecpc->aec->aNlp.himean + (1 - upweight) * aecpc->aec->aNlp.average; metrics->aNlp.average = (short) dtmp; } else { metrics->aNlp.average = offsetLevel; } metrics->aNlp.max = (short) aecpc->aec->aNlp.max; if (aecpc->aec->aNlp.min < (offsetLevel * (-1))) { metrics->aNlp.min = (short) aecpc->aec->aNlp.min; } else { metrics->aNlp.min = offsetLevel; } return 0; } int WebRtcAec_GetDelayMetrics(void* handle, int* median, int* std) { aecpc_t* self = handle; int i = 0; int delay_values = 0; int num_delay_values = 0; int my_median = 0; const int kMsPerBlock = (PART_LEN * 1000) / self->splitSampFreq; float l1_norm = 0; if (self == NULL) { return -1; } if (median == NULL) { self->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (std == NULL) { self->lastError = AEC_NULL_POINTER_ERROR; return -1; } if (self->initFlag != initCheck) { self->lastError = AEC_UNINITIALIZED_ERROR; return -1; } if (self->aec->delay_logging_enabled == 0) { // Logging disabled self->lastError = AEC_UNSUPPORTED_FUNCTION_ERROR; return -1; } // Get number of delay values since last update for (i = 0; i < kHistorySizeBlocks; i++) { num_delay_values += self->aec->delay_histogram[i]; } if (num_delay_values == 0) { // We have no new delay value data. Even though -1 is a valid estimate, it // will practically never be used since multiples of |kMsPerBlock| will // always be returned. *median = -1; *std = -1; return 0; } delay_values = num_delay_values >> 1; // Start value for median count down // Get median of delay values since last update for (i = 0; i < kHistorySizeBlocks; i++) { delay_values -= self->aec->delay_histogram[i]; if (delay_values < 0) { my_median = i; break; } } // Account for lookahead. *median = (my_median - kLookaheadBlocks) * kMsPerBlock; // Calculate the L1 norm, with median value as central moment for (i = 0; i < kHistorySizeBlocks; i++) { l1_norm += (float) (fabs(i - my_median) * self->aec->delay_histogram[i]); } *std = (int) (l1_norm / (float) num_delay_values + 0.5f) * kMsPerBlock; // Reset histogram memset(self->aec->delay_histogram, 0, sizeof(self->aec->delay_histogram)); return 0; } WebRtc_Word32 WebRtcAec_get_version(WebRtc_Word8 *versionStr, WebRtc_Word16 len) { const char version[] = "AEC 2.5.0"; const short versionLen = (short)strlen(version) + 1; // +1 for null-termination if (versionStr == NULL) { return -1; } if (versionLen > len) { return -1; } strncpy(versionStr, version, versionLen); return 0; } WebRtc_Word32 WebRtcAec_get_error_code(void *aecInst) { aecpc_t *aecpc = aecInst; if (aecpc == NULL) { return -1; } return aecpc->lastError; } static int EstBufDelay(aecpc_t* aecpc) { int nSampSndCard = aecpc->msInSndCardBuf * sampMsNb * aecpc->aec->mult; int current_delay = nSampSndCard - aecpc->aec->system_delay; int delay_difference = 0; // Before we proceed with the delay estimate filtering we: // 1) Compensate for the frame that will be read. // 2) Compensate for drift resampling. // 1) Compensating for the frame(s) that will be read/processed. current_delay += FRAME_LEN * aecpc->aec->mult; // 2) Account for resampling frame delay. if (aecpc->skewMode == kAecTrue && aecpc->resample == kAecTrue) { current_delay -= kResamplingDelay; } aecpc->filtDelay = WEBRTC_SPL_MAX(0, (short) (0.8 * aecpc->filtDelay + 0.2 * current_delay)); delay_difference = aecpc->filtDelay - aecpc->knownDelay; if (delay_difference > 224) { if (aecpc->lastDelayDiff < 96) { aecpc->timeForDelayChange = 0; } else { aecpc->timeForDelayChange++; } } else if (delay_difference < 96 && aecpc->knownDelay > 0) { if (aecpc->lastDelayDiff > 224) { aecpc->timeForDelayChange = 0; } else { aecpc->timeForDelayChange++; } } else { aecpc->timeForDelayChange = 0; } aecpc->lastDelayDiff = delay_difference; if (aecpc->timeForDelayChange > 25) { aecpc->knownDelay = WEBRTC_SPL_MAX((int) aecpc->filtDelay - 160, 0); } return 0; }