//===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PowerPC-specific support for the FastISel class. Some
// of the target-specific code is generated by tablegen in the file
// PPCGenFastISel.inc, which is #included here.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ppcfastisel"
#include "PPC.h"
#include "PPCISelLowering.h"
#include "PPCSubtarget.h"
#include "PPCTargetMachine.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "llvm/ADT/Optional.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
namespace {
typedef struct Address {
enum {
RegBase,
FrameIndexBase
} BaseType;
union {
unsigned Reg;
int FI;
} Base;
int Offset;
// Innocuous defaults for our address.
Address()
: BaseType(RegBase), Offset(0) {
Base.Reg = 0;
}
} Address;
class PPCFastISel : public FastISel {
const TargetMachine &TM;
const TargetInstrInfo &TII;
const TargetLowering &TLI;
const PPCSubtarget &PPCSubTarget;
LLVMContext *Context;
public:
explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo)
: FastISel(FuncInfo, LibInfo),
TM(FuncInfo.MF->getTarget()),
TII(*TM.getInstrInfo()),
TLI(*TM.getTargetLowering()),
PPCSubTarget(
*((static_cast<const PPCTargetMachine *>(&TM))->getSubtargetImpl())
),
Context(&FuncInfo.Fn->getContext()) { }
// Backend specific FastISel code.
private:
virtual bool TargetSelectInstruction(const Instruction *I);
virtual unsigned TargetMaterializeConstant(const Constant *C);
virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI);
virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
const LoadInst *LI);
virtual bool FastLowerArguments();
// Utility routines.
private:
unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
unsigned PPCMaterializeInt(const Constant *C, MVT VT);
unsigned PPCMaterialize32BitInt(int64_t Imm,
const TargetRegisterClass *RC);
unsigned PPCMaterialize64BitInt(int64_t Imm,
const TargetRegisterClass *RC);
private:
#include "PPCGenFastISel.inc"
};
} // end anonymous namespace
// Attempt to fast-select an instruction that wasn't handled by
// the table-generated machinery. TBD.
bool PPCFastISel::TargetSelectInstruction(const Instruction *I) {
return I && false;
}
// Materialize a floating-point constant into a register, and return
// the register number (or zero if we failed to handle it).
unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
// No plans to handle long double here.
if (VT != MVT::f32 && VT != MVT::f64)
return 0;
// All FP constants are loaded from the constant pool.
unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
assert(Align > 0 && "Unexpectedly missing alignment information!");
unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
CodeModel::Model CModel = TM.getCodeModel();
MachineMemOperand *MMO =
FuncInfo.MF->getMachineMemOperand(
MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad,
(VT == MVT::f32) ? 4 : 8, Align);
// For small code model, generate a LDtocCPT.
if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault)
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocCPT),
DestReg)
.addConstantPoolIndex(Idx).addReg(PPC::X2).addMemOperand(MMO);
else {
// Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD;
unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA),
TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg)
.addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
.addReg(TmpReg)
.addMemOperand(MMO);
}
return DestReg;
}
// Materialize a 32-bit integer constant into a register, and return
// the register number (or zero if we failed to handle it).
unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
const TargetRegisterClass *RC) {
unsigned Lo = Imm & 0xFFFF;
unsigned Hi = (Imm >> 16) & 0xFFFF;
unsigned ResultReg = createResultReg(RC);
bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
if (isInt<16>(Imm))
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
.addImm(Imm);
else if (Lo) {
// Both Lo and Hi have nonzero bits.
unsigned TmpReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
.addImm(Hi);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
.addReg(TmpReg).addImm(Lo);
} else
// Just Hi bits.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
.addImm(Hi);
return ResultReg;
}
// Materialize a 64-bit integer constant into a register, and return
// the register number (or zero if we failed to handle it).
unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
const TargetRegisterClass *RC) {
unsigned Remainder = 0;
unsigned Shift = 0;
// If the value doesn't fit in 32 bits, see if we can shift it
// so that it fits in 32 bits.
if (!isInt<32>(Imm)) {
Shift = countTrailingZeros<uint64_t>(Imm);
int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
if (isInt<32>(ImmSh))
Imm = ImmSh;
else {
Remainder = Imm;
Shift = 32;
Imm >>= 32;
}
}
// Handle the high-order 32 bits (if shifted) or the whole 32 bits
// (if not shifted).
unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
if (!Shift)
return TmpReg1;
// If upper 32 bits were not zero, we've built them and need to shift
// them into place.
unsigned TmpReg2;
if (Imm) {
TmpReg2 = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLDICR),
TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
} else
TmpReg2 = TmpReg1;
unsigned TmpReg3, Hi, Lo;
if ((Hi = (Remainder >> 16) & 0xFFFF)) {
TmpReg3 = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORIS8),
TmpReg3).addReg(TmpReg2).addImm(Hi);
} else
TmpReg3 = TmpReg2;
if ((Lo = Remainder & 0xFFFF)) {
unsigned ResultReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORI8),
ResultReg).addReg(TmpReg3).addImm(Lo);
return ResultReg;
}
return TmpReg3;
}
// Materialize an integer constant into a register, and return
// the register number (or zero if we failed to handle it).
unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT) {
if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
VT != MVT::i8 && VT != MVT::i1)
return 0;
const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
&PPC::GPRCRegClass);
// If the constant is in range, use a load-immediate.
const ConstantInt *CI = cast<ConstantInt>(C);
if (isInt<16>(CI->getSExtValue())) {
unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
unsigned ImmReg = createResultReg(RC);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ImmReg)
.addImm(CI->getSExtValue());
return ImmReg;
}
// Construct the constant piecewise.
int64_t Imm = CI->getZExtValue();
if (VT == MVT::i64)
return PPCMaterialize64BitInt(Imm, RC);
else if (VT == MVT::i32)
return PPCMaterialize32BitInt(Imm, RC);
return 0;
}
// Materialize a constant into a register, and return the register
// number (or zero if we failed to handle it).
unsigned PPCFastISel::TargetMaterializeConstant(const Constant *C) {
EVT CEVT = TLI.getValueType(C->getType(), true);
// Only handle simple types.
if (!CEVT.isSimple()) return 0;
MVT VT = CEVT.getSimpleVT();
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
return PPCMaterializeFP(CFP, VT);
else if (isa<ConstantInt>(C))
return PPCMaterializeInt(C, VT);
// TBD: Global values.
return 0;
}
// Materialize the address created by an alloca into a register, and
// return the register number (or zero if we failed to handle it). TBD.
unsigned PPCFastISel::TargetMaterializeAlloca(const AllocaInst *AI) {
return AI && 0;
}
// Fold loads into extends when possible. TBD.
bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
const LoadInst *LI) {
return MI && OpNo && LI && false;
}
// Attempt to lower call arguments in a faster way than done by
// the selection DAG code.
bool PPCFastISel::FastLowerArguments() {
// Defer to normal argument lowering for now. It's reasonably
// efficient. Consider doing something like ARM to handle the
// case where all args fit in registers, no varargs, no float
// or vector args.
return false;
}
namespace llvm {
// Create the fast instruction selector for PowerPC64 ELF.
FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
const TargetLibraryInfo *LibInfo) {
const TargetMachine &TM = FuncInfo.MF->getTarget();
// Only available on 64-bit ELF for now.
const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
if (Subtarget->isPPC64() && Subtarget->isSVR4ABI())
return new PPCFastISel(FuncInfo, LibInfo);
return 0;
}
}