//===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the PowerPC-specific support for the FastISel class. Some // of the target-specific code is generated by tablegen in the file // PPCGenFastISel.inc, which is #included here. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "ppcfastisel" #include "PPC.h" #include "PPCISelLowering.h" #include "PPCSubtarget.h" #include "PPCTargetMachine.h" #include "MCTargetDesc/PPCPredicates.h" #include "llvm/ADT/Optional.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Operator.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" using namespace llvm; namespace { typedef struct Address { enum { RegBase, FrameIndexBase } BaseType; union { unsigned Reg; int FI; } Base; int Offset; // Innocuous defaults for our address. Address() : BaseType(RegBase), Offset(0) { Base.Reg = 0; } } Address; class PPCFastISel : public FastISel { const TargetMachine &TM; const TargetInstrInfo &TII; const TargetLowering &TLI; const PPCSubtarget &PPCSubTarget; LLVMContext *Context; public: explicit PPCFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()), TII(*TM.getInstrInfo()), TLI(*TM.getTargetLowering()), PPCSubTarget( *((static_cast<const PPCTargetMachine *>(&TM))->getSubtargetImpl()) ), Context(&FuncInfo.Fn->getContext()) { } // Backend specific FastISel code. private: virtual bool TargetSelectInstruction(const Instruction *I); virtual unsigned TargetMaterializeConstant(const Constant *C); virtual unsigned TargetMaterializeAlloca(const AllocaInst *AI); virtual bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, const LoadInst *LI); virtual bool FastLowerArguments(); // Utility routines. private: unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT); unsigned PPCMaterializeInt(const Constant *C, MVT VT); unsigned PPCMaterialize32BitInt(int64_t Imm, const TargetRegisterClass *RC); unsigned PPCMaterialize64BitInt(int64_t Imm, const TargetRegisterClass *RC); private: #include "PPCGenFastISel.inc" }; } // end anonymous namespace // Attempt to fast-select an instruction that wasn't handled by // the table-generated machinery. TBD. bool PPCFastISel::TargetSelectInstruction(const Instruction *I) { return I && false; } // Materialize a floating-point constant into a register, and return // the register number (or zero if we failed to handle it). unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) { // No plans to handle long double here. if (VT != MVT::f32 && VT != MVT::f64) return 0; // All FP constants are loaded from the constant pool. unsigned Align = TD.getPrefTypeAlignment(CFP->getType()); assert(Align > 0 && "Unexpectedly missing alignment information!"); unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); CodeModel::Model CModel = TM.getCodeModel(); MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad, (VT == MVT::f32) ? 4 : 8, Align); // For small code model, generate a LDtocCPT. if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::LDtocCPT), DestReg) .addConstantPoolIndex(Idx).addReg(PPC::X2).addMemOperand(MMO); else { // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)). unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD; unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ADDIStocHA), TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), DestReg) .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO) .addReg(TmpReg) .addMemOperand(MMO); } return DestReg; } // Materialize a 32-bit integer constant into a register, and return // the register number (or zero if we failed to handle it). unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm, const TargetRegisterClass *RC) { unsigned Lo = Imm & 0xFFFF; unsigned Hi = (Imm >> 16) & 0xFFFF; unsigned ResultReg = createResultReg(RC); bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass); if (isInt<16>(Imm)) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg) .addImm(Imm); else if (Lo) { // Both Lo and Hi have nonzero bits. unsigned TmpReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg) .addImm(Hi); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg) .addReg(TmpReg).addImm(Lo); } else // Just Hi bits. BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg) .addImm(Hi); return ResultReg; } // Materialize a 64-bit integer constant into a register, and return // the register number (or zero if we failed to handle it). unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm, const TargetRegisterClass *RC) { unsigned Remainder = 0; unsigned Shift = 0; // If the value doesn't fit in 32 bits, see if we can shift it // so that it fits in 32 bits. if (!isInt<32>(Imm)) { Shift = countTrailingZeros<uint64_t>(Imm); int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift; if (isInt<32>(ImmSh)) Imm = ImmSh; else { Remainder = Imm; Shift = 32; Imm >>= 32; } } // Handle the high-order 32 bits (if shifted) or the whole 32 bits // (if not shifted). unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC); if (!Shift) return TmpReg1; // If upper 32 bits were not zero, we've built them and need to shift // them into place. unsigned TmpReg2; if (Imm) { TmpReg2 = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::RLDICR), TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift); } else TmpReg2 = TmpReg1; unsigned TmpReg3, Hi, Lo; if ((Hi = (Remainder >> 16) & 0xFFFF)) { TmpReg3 = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORIS8), TmpReg3).addReg(TmpReg2).addImm(Hi); } else TmpReg3 = TmpReg2; if ((Lo = Remainder & 0xFFFF)) { unsigned ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(PPC::ORI8), ResultReg).addReg(TmpReg3).addImm(Lo); return ResultReg; } return TmpReg3; } // Materialize an integer constant into a register, and return // the register number (or zero if we failed to handle it). unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT) { if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) return 0; const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); // If the constant is in range, use a load-immediate. const ConstantInt *CI = cast<ConstantInt>(C); if (isInt<16>(CI->getSExtValue())) { unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI; unsigned ImmReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ImmReg) .addImm(CI->getSExtValue()); return ImmReg; } // Construct the constant piecewise. int64_t Imm = CI->getZExtValue(); if (VT == MVT::i64) return PPCMaterialize64BitInt(Imm, RC); else if (VT == MVT::i32) return PPCMaterialize32BitInt(Imm, RC); return 0; } // Materialize a constant into a register, and return the register // number (or zero if we failed to handle it). unsigned PPCFastISel::TargetMaterializeConstant(const Constant *C) { EVT CEVT = TLI.getValueType(C->getType(), true); // Only handle simple types. if (!CEVT.isSimple()) return 0; MVT VT = CEVT.getSimpleVT(); if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) return PPCMaterializeFP(CFP, VT); else if (isa<ConstantInt>(C)) return PPCMaterializeInt(C, VT); // TBD: Global values. return 0; } // Materialize the address created by an alloca into a register, and // return the register number (or zero if we failed to handle it). TBD. unsigned PPCFastISel::TargetMaterializeAlloca(const AllocaInst *AI) { return AI && 0; } // Fold loads into extends when possible. TBD. bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, const LoadInst *LI) { return MI && OpNo && LI && false; } // Attempt to lower call arguments in a faster way than done by // the selection DAG code. bool PPCFastISel::FastLowerArguments() { // Defer to normal argument lowering for now. It's reasonably // efficient. Consider doing something like ARM to handle the // case where all args fit in registers, no varargs, no float // or vector args. return false; } namespace llvm { // Create the fast instruction selector for PowerPC64 ELF. FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) { const TargetMachine &TM = FuncInfo.MF->getTarget(); // Only available on 64-bit ELF for now. const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>(); if (Subtarget->isPPC64() && Subtarget->isSVR4ABI()) return new PPCFastISel(FuncInfo, LibInfo); return 0; } }