/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include "dbstabsmooth.h"
///// TODO TODO ////////// Replace this with the actual definition from Jayan's reply /////////////
#define vp_copy_motion_no_id vp_copy_motion
///////////////////////////////////////////////////////////////////////////////////////////////////
static bool vpmotion_add(VP_MOTION *in1, VP_MOTION *in2, VP_MOTION *out);
static bool vpmotion_multiply(VP_MOTION *in1, double factor, VP_MOTION *out);
db_StabilizationSmoother::db_StabilizationSmoother()
{
Init();
}
void db_StabilizationSmoother::Init()
{
f_smoothOn = true;
f_smoothReset = false;
f_smoothFactor = 1.0f;
f_minDampingFactor = 0.2f;
f_zoom = 1.0f;
VP_MOTION_ID(f_motLF);
VP_MOTION_ID(f_imotLF);
f_hsize = 0;
f_vsize = 0;
VP_MOTION_ID(f_disp_mot);
VP_MOTION_ID(f_src_mot);
VP_MOTION_ID(f_diff_avg);
for( int i = 0; i < MOTION_ARRAY-1; i++) {
VP_MOTION_ID(f_hist_mot_speed[i]);
VP_MOTION_ID(f_hist_mot[i]);
VP_MOTION_ID(f_hist_diff_mot[i]);
}
VP_MOTION_ID(f_hist_mot[MOTION_ARRAY-1]);
}
db_StabilizationSmoother::~db_StabilizationSmoother()
{}
bool db_StabilizationSmoother::smoothMotion(VP_MOTION *inmot, VP_MOTION *outmot)
{
VP_MOTION_ID(f_motLF);
VP_MOTION_ID(f_imotLF);
f_motLF.insid = inmot->refid;
f_motLF.refid = inmot->insid;
if(f_smoothOn) {
if(!f_smoothReset) {
MXX(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MXX(f_motLF) + (1.0-f_smoothFactor)* (double) MXX(*inmot));
MXY(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MXY(f_motLF) + (1.0-f_smoothFactor)* (double) MXY(*inmot));
MXZ(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MXZ(f_motLF) + (1.0-f_smoothFactor)* (double) MXZ(*inmot));
MXW(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MXW(f_motLF) + (1.0-f_smoothFactor)* (double) MXW(*inmot));
MYX(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MYX(f_motLF) + (1.0-f_smoothFactor)* (double) MYX(*inmot));
MYY(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MYY(f_motLF) + (1.0-f_smoothFactor)* (double) MYY(*inmot));
MYZ(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MYZ(f_motLF) + (1.0-f_smoothFactor)* (double) MYZ(*inmot));
MYW(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MYW(f_motLF) + (1.0-f_smoothFactor)* (double) MYW(*inmot));
MZX(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MZX(f_motLF) + (1.0-f_smoothFactor)* (double) MZX(*inmot));
MZY(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MZY(f_motLF) + (1.0-f_smoothFactor)* (double) MZY(*inmot));
MZZ(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MZZ(f_motLF) + (1.0-f_smoothFactor)* (double) MZZ(*inmot));
MZW(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MZW(f_motLF) + (1.0-f_smoothFactor)* (double) MZW(*inmot));
MWX(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MWX(f_motLF) + (1.0-f_smoothFactor)* (double) MWX(*inmot));
MWY(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MWY(f_motLF) + (1.0-f_smoothFactor)* (double) MWY(*inmot));
MWZ(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MWZ(f_motLF) + (1.0-f_smoothFactor)* (double) MWZ(*inmot));
MWW(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MWW(f_motLF) + (1.0-f_smoothFactor)* (double) MWW(*inmot));
}
else
vp_copy_motion_no_id(inmot, &f_motLF); // f_smoothFactor = 0.0
// Only allow LF motion to be compensated. Remove HF motion from
// the output transformation
if(!vp_invert_motion(&f_motLF, &f_imotLF))
return false;
if(!vp_cascade_motion(&f_imotLF, inmot, outmot))
return false;
}
else {
vp_copy_motion_no_id(inmot, outmot);
}
return true;
}
bool db_StabilizationSmoother::smoothMotionAdaptive(/*VP_BIMG *bimg,*/int hsize, int vsize, VP_MOTION *inmot, VP_MOTION *outmot)
{
VP_MOTION tmpMotion, testMotion;
VP_PAR p1x, p2x, p3x, p4x;
VP_PAR p1y, p2y, p3y, p4y;
double smoothFactor;
double minSmoothFactor = f_minDampingFactor;
// int hsize = bimg->w;
// int vsize = bimg->h;
double border_factor = 0.01;//0.2;
double border_x = border_factor * hsize;
double border_y = border_factor * vsize;
VP_MOTION_ID(f_motLF);
VP_MOTION_ID(f_imotLF);
VP_MOTION_ID(testMotion);
VP_MOTION_ID(tmpMotion);
if (f_smoothOn) {
VP_MOTION identityMotion;
VP_MOTION_ID(identityMotion); // initialize the motion
vp_copy_motion(inmot/*in*/, &testMotion/*out*/);
VP_PAR delta = vp_motion_cornerdiff(&testMotion, &identityMotion, 0, 0,(int)hsize, (int)vsize);
smoothFactor = 0.99 - 0.0015 * delta;
if(smoothFactor < minSmoothFactor)
smoothFactor = minSmoothFactor;
// Find the amount of motion that must be compensated so that no "border" pixels are seen in the stable video
for (smoothFactor = smoothFactor; smoothFactor >= minSmoothFactor; smoothFactor -= 0.01) {
// Compute the smoothed motion
if(!smoothMotion(inmot, &tmpMotion, smoothFactor))
break;
// TmpMotion, or Qsi where s is the smoothed display reference and i is the
// current image, tells us how points in the S co-ordinate system map to
// points in the I CS. We would like to check whether the four corners of the
// warped and smoothed display reference lies entirely within the I co-ordinate
// system. If yes, then the amount of smoothing is sufficient so that NO
// border pixels are seen at the output. We test for f_smoothFactor terms
// between 0.9 and 1.0, in steps of 0.01, and between 0.5 ands 0.9 in steps of 0.1
(void) vp_zoom_motion2d(&tmpMotion, &testMotion, 1, hsize, vsize, (double)f_zoom); // needs to return bool
VP_WARP_POINT_2D(0, 0, testMotion, p1x, p1y);
VP_WARP_POINT_2D(hsize - 1, 0, testMotion, p2x, p2y);
VP_WARP_POINT_2D(hsize - 1, vsize - 1, testMotion, p3x, p3y);
VP_WARP_POINT_2D(0, vsize - 1, testMotion, p4x, p4y);
if (!is_point_in_rect((double)p1x,(double)p1y,-border_x,-border_y,(double)(hsize+2.0*border_x),(double)(vsize+2.0*border_y))) {
continue;
}
if (!is_point_in_rect((double)p2x, (double)p2y,-border_x,-border_y,(double)(hsize+2.0*border_x),(double)(vsize+2.0*border_y))) {
continue;
}
if (!is_point_in_rect((double)p3x,(double)p3y,-border_x,-border_y,(double)(hsize+2.0*border_x),(double)(vsize+2.0*border_y))) {
continue;
}
if (!is_point_in_rect((double)p4x, (double)p4y,-border_x,-border_y,(double)(hsize+2.0*border_x),(double)(vsize+2.0*border_y))) {
continue;
}
// If we get here, then all the points are in the rectangle.
// Therefore, break out of this loop
break;
}
// if we get here and f_smoothFactor <= fMinDampingFactor, reset the stab reference
if (smoothFactor < f_minDampingFactor)
smoothFactor = f_minDampingFactor;
// use the smoothed motion for stabilization
vp_copy_motion_no_id(&tmpMotion/*in*/, outmot/*out*/);
}
else
{
vp_copy_motion_no_id(inmot, outmot);
}
return true;
}
bool db_StabilizationSmoother::smoothMotion(VP_MOTION *inmot, VP_MOTION *outmot, double smooth_factor)
{
f_motLF.insid = inmot->refid;
f_motLF.refid = inmot->insid;
if(f_smoothOn) {
if(!f_smoothReset) {
MXX(f_motLF) = (VP_PAR) (smooth_factor*(double) MXX(f_motLF) + (1.0-smooth_factor)* (double) MXX(*inmot));
MXY(f_motLF) = (VP_PAR) (smooth_factor*(double) MXY(f_motLF) + (1.0-smooth_factor)* (double) MXY(*inmot));
MXZ(f_motLF) = (VP_PAR) (smooth_factor*(double) MXZ(f_motLF) + (1.0-smooth_factor)* (double) MXZ(*inmot));
MXW(f_motLF) = (VP_PAR) (smooth_factor*(double) MXW(f_motLF) + (1.0-smooth_factor)* (double) MXW(*inmot));
MYX(f_motLF) = (VP_PAR) (smooth_factor*(double) MYX(f_motLF) + (1.0-smooth_factor)* (double) MYX(*inmot));
MYY(f_motLF) = (VP_PAR) (smooth_factor*(double) MYY(f_motLF) + (1.0-smooth_factor)* (double) MYY(*inmot));
MYZ(f_motLF) = (VP_PAR) (smooth_factor*(double) MYZ(f_motLF) + (1.0-smooth_factor)* (double) MYZ(*inmot));
MYW(f_motLF) = (VP_PAR) (smooth_factor*(double) MYW(f_motLF) + (1.0-smooth_factor)* (double) MYW(*inmot));
MZX(f_motLF) = (VP_PAR) (smooth_factor*(double) MZX(f_motLF) + (1.0-smooth_factor)* (double) MZX(*inmot));
MZY(f_motLF) = (VP_PAR) (smooth_factor*(double) MZY(f_motLF) + (1.0-smooth_factor)* (double) MZY(*inmot));
MZZ(f_motLF) = (VP_PAR) (smooth_factor*(double) MZZ(f_motLF) + (1.0-smooth_factor)* (double) MZZ(*inmot));
MZW(f_motLF) = (VP_PAR) (smooth_factor*(double) MZW(f_motLF) + (1.0-smooth_factor)* (double) MZW(*inmot));
MWX(f_motLF) = (VP_PAR) (smooth_factor*(double) MWX(f_motLF) + (1.0-smooth_factor)* (double) MWX(*inmot));
MWY(f_motLF) = (VP_PAR) (smooth_factor*(double) MWY(f_motLF) + (1.0-smooth_factor)* (double) MWY(*inmot));
MWZ(f_motLF) = (VP_PAR) (smooth_factor*(double) MWZ(f_motLF) + (1.0-smooth_factor)* (double) MWZ(*inmot));
MWW(f_motLF) = (VP_PAR) (smooth_factor*(double) MWW(f_motLF) + (1.0-smooth_factor)* (double) MWW(*inmot));
}
else
vp_copy_motion_no_id(inmot, &f_motLF); // smooth_factor = 0.0
// Only allow LF motion to be compensated. Remove HF motion from
// the output transformation
if(!vp_invert_motion(&f_motLF, &f_imotLF))
return false;
if(!vp_cascade_motion(&f_imotLF, inmot, outmot))
return false;
}
else {
vp_copy_motion_no_id(inmot, outmot);
}
return true;
}
//! Overloaded smoother function that takes in user-specidied smoothing factor
bool
db_StabilizationSmoother::smoothMotion1(VP_MOTION *inmot, VP_MOTION *outmot, VP_MOTION *motLF, VP_MOTION *imotLF, double factor)
{
if(!f_smoothOn) {
vp_copy_motion(inmot, outmot);
return true;
}
else {
if(!f_smoothReset) {
MXX(*motLF) = (VP_PAR) (factor*(double) MXX(*motLF) + (1.0-factor)* (double) MXX(*inmot));
MXY(*motLF) = (VP_PAR) (factor*(double) MXY(*motLF) + (1.0-factor)* (double) MXY(*inmot));
MXZ(*motLF) = (VP_PAR) (factor*(double) MXZ(*motLF) + (1.0-factor)* (double) MXZ(*inmot));
MXW(*motLF) = (VP_PAR) (factor*(double) MXW(*motLF) + (1.0-factor)* (double) MXW(*inmot));
MYX(*motLF) = (VP_PAR) (factor*(double) MYX(*motLF) + (1.0-factor)* (double) MYX(*inmot));
MYY(*motLF) = (VP_PAR) (factor*(double) MYY(*motLF) + (1.0-factor)* (double) MYY(*inmot));
MYZ(*motLF) = (VP_PAR) (factor*(double) MYZ(*motLF) + (1.0-factor)* (double) MYZ(*inmot));
MYW(*motLF) = (VP_PAR) (factor*(double) MYW(*motLF) + (1.0-factor)* (double) MYW(*inmot));
MZX(*motLF) = (VP_PAR) (factor*(double) MZX(*motLF) + (1.0-factor)* (double) MZX(*inmot));
MZY(*motLF) = (VP_PAR) (factor*(double) MZY(*motLF) + (1.0-factor)* (double) MZY(*inmot));
MZZ(*motLF) = (VP_PAR) (factor*(double) MZZ(*motLF) + (1.0-factor)* (double) MZZ(*inmot));
MZW(*motLF) = (VP_PAR) (factor*(double) MZW(*motLF) + (1.0-factor)* (double) MZW(*inmot));
MWX(*motLF) = (VP_PAR) (factor*(double) MWX(*motLF) + (1.0-factor)* (double) MWX(*inmot));
MWY(*motLF) = (VP_PAR) (factor*(double) MWY(*motLF) + (1.0-factor)* (double) MWY(*inmot));
MWZ(*motLF) = (VP_PAR) (factor*(double) MWZ(*motLF) + (1.0-factor)* (double) MWZ(*inmot));
MWW(*motLF) = (VP_PAR) (factor*(double) MWW(*motLF) + (1.0-factor)* (double) MWW(*inmot));
}
else {
vp_copy_motion(inmot, motLF);
}
// Only allow LF motion to be compensated. Remove HF motion from the output transformation
if(!vp_invert_motion(motLF, imotLF)) {
#if DEBUG_PRINT
printfOS("Invert failed \n");
#endif
return false;
}
if(!vp_cascade_motion(imotLF, inmot, outmot)) {
#if DEBUG_PRINT
printfOS("cascade failed \n");
#endif
return false;
}
}
return true;
}
bool db_StabilizationSmoother::is_point_in_rect(double px, double py, double rx, double ry, double w, double h)
{
if (px < rx)
return(false);
if (px >= rx + w)
return(false);
if (py < ry)
return(false);
if (py >= ry + h)
return(false);
return(true);
}
static bool vpmotion_add(VP_MOTION *in1, VP_MOTION *in2, VP_MOTION *out)
{
int i;
if(in1 == NULL || in2 == NULL || out == NULL)
return false;
for(i = 0; i < VP_MAX_MOTION_PAR; i++)
out->par[i] = in1->par[i] + in2->par[i];
return true;
}
static bool vpmotion_multiply(VP_MOTION *in1, double factor, VP_MOTION *out)
{
int i;
if(in1 == NULL || out == NULL)
return false;
for(i = 0; i < VP_MAX_MOTION_PAR; i++)
out->par[i] = in1->par[i] * factor;
return true;
}