/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <stdlib.h> #include "dbstabsmooth.h" ///// TODO TODO ////////// Replace this with the actual definition from Jayan's reply ///////////// #define vp_copy_motion_no_id vp_copy_motion /////////////////////////////////////////////////////////////////////////////////////////////////// static bool vpmotion_add(VP_MOTION *in1, VP_MOTION *in2, VP_MOTION *out); static bool vpmotion_multiply(VP_MOTION *in1, double factor, VP_MOTION *out); db_StabilizationSmoother::db_StabilizationSmoother() { Init(); } void db_StabilizationSmoother::Init() { f_smoothOn = true; f_smoothReset = false; f_smoothFactor = 1.0f; f_minDampingFactor = 0.2f; f_zoom = 1.0f; VP_MOTION_ID(f_motLF); VP_MOTION_ID(f_imotLF); f_hsize = 0; f_vsize = 0; VP_MOTION_ID(f_disp_mot); VP_MOTION_ID(f_src_mot); VP_MOTION_ID(f_diff_avg); for( int i = 0; i < MOTION_ARRAY-1; i++) { VP_MOTION_ID(f_hist_mot_speed[i]); VP_MOTION_ID(f_hist_mot[i]); VP_MOTION_ID(f_hist_diff_mot[i]); } VP_MOTION_ID(f_hist_mot[MOTION_ARRAY-1]); } db_StabilizationSmoother::~db_StabilizationSmoother() {} bool db_StabilizationSmoother::smoothMotion(VP_MOTION *inmot, VP_MOTION *outmot) { VP_MOTION_ID(f_motLF); VP_MOTION_ID(f_imotLF); f_motLF.insid = inmot->refid; f_motLF.refid = inmot->insid; if(f_smoothOn) { if(!f_smoothReset) { MXX(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MXX(f_motLF) + (1.0-f_smoothFactor)* (double) MXX(*inmot)); MXY(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MXY(f_motLF) + (1.0-f_smoothFactor)* (double) MXY(*inmot)); MXZ(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MXZ(f_motLF) + (1.0-f_smoothFactor)* (double) MXZ(*inmot)); MXW(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MXW(f_motLF) + (1.0-f_smoothFactor)* (double) MXW(*inmot)); MYX(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MYX(f_motLF) + (1.0-f_smoothFactor)* (double) MYX(*inmot)); MYY(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MYY(f_motLF) + (1.0-f_smoothFactor)* (double) MYY(*inmot)); MYZ(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MYZ(f_motLF) + (1.0-f_smoothFactor)* (double) MYZ(*inmot)); MYW(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MYW(f_motLF) + (1.0-f_smoothFactor)* (double) MYW(*inmot)); MZX(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MZX(f_motLF) + (1.0-f_smoothFactor)* (double) MZX(*inmot)); MZY(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MZY(f_motLF) + (1.0-f_smoothFactor)* (double) MZY(*inmot)); MZZ(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MZZ(f_motLF) + (1.0-f_smoothFactor)* (double) MZZ(*inmot)); MZW(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MZW(f_motLF) + (1.0-f_smoothFactor)* (double) MZW(*inmot)); MWX(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MWX(f_motLF) + (1.0-f_smoothFactor)* (double) MWX(*inmot)); MWY(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MWY(f_motLF) + (1.0-f_smoothFactor)* (double) MWY(*inmot)); MWZ(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MWZ(f_motLF) + (1.0-f_smoothFactor)* (double) MWZ(*inmot)); MWW(f_motLF) = (VP_PAR) (f_smoothFactor*(double) MWW(f_motLF) + (1.0-f_smoothFactor)* (double) MWW(*inmot)); } else vp_copy_motion_no_id(inmot, &f_motLF); // f_smoothFactor = 0.0 // Only allow LF motion to be compensated. Remove HF motion from // the output transformation if(!vp_invert_motion(&f_motLF, &f_imotLF)) return false; if(!vp_cascade_motion(&f_imotLF, inmot, outmot)) return false; } else { vp_copy_motion_no_id(inmot, outmot); } return true; } bool db_StabilizationSmoother::smoothMotionAdaptive(/*VP_BIMG *bimg,*/int hsize, int vsize, VP_MOTION *inmot, VP_MOTION *outmot) { VP_MOTION tmpMotion, testMotion; VP_PAR p1x, p2x, p3x, p4x; VP_PAR p1y, p2y, p3y, p4y; double smoothFactor; double minSmoothFactor = f_minDampingFactor; // int hsize = bimg->w; // int vsize = bimg->h; double border_factor = 0.01;//0.2; double border_x = border_factor * hsize; double border_y = border_factor * vsize; VP_MOTION_ID(f_motLF); VP_MOTION_ID(f_imotLF); VP_MOTION_ID(testMotion); VP_MOTION_ID(tmpMotion); if (f_smoothOn) { VP_MOTION identityMotion; VP_MOTION_ID(identityMotion); // initialize the motion vp_copy_motion(inmot/*in*/, &testMotion/*out*/); VP_PAR delta = vp_motion_cornerdiff(&testMotion, &identityMotion, 0, 0,(int)hsize, (int)vsize); smoothFactor = 0.99 - 0.0015 * delta; if(smoothFactor < minSmoothFactor) smoothFactor = minSmoothFactor; // Find the amount of motion that must be compensated so that no "border" pixels are seen in the stable video for (smoothFactor = smoothFactor; smoothFactor >= minSmoothFactor; smoothFactor -= 0.01) { // Compute the smoothed motion if(!smoothMotion(inmot, &tmpMotion, smoothFactor)) break; // TmpMotion, or Qsi where s is the smoothed display reference and i is the // current image, tells us how points in the S co-ordinate system map to // points in the I CS. We would like to check whether the four corners of the // warped and smoothed display reference lies entirely within the I co-ordinate // system. If yes, then the amount of smoothing is sufficient so that NO // border pixels are seen at the output. We test for f_smoothFactor terms // between 0.9 and 1.0, in steps of 0.01, and between 0.5 ands 0.9 in steps of 0.1 (void) vp_zoom_motion2d(&tmpMotion, &testMotion, 1, hsize, vsize, (double)f_zoom); // needs to return bool VP_WARP_POINT_2D(0, 0, testMotion, p1x, p1y); VP_WARP_POINT_2D(hsize - 1, 0, testMotion, p2x, p2y); VP_WARP_POINT_2D(hsize - 1, vsize - 1, testMotion, p3x, p3y); VP_WARP_POINT_2D(0, vsize - 1, testMotion, p4x, p4y); if (!is_point_in_rect((double)p1x,(double)p1y,-border_x,-border_y,(double)(hsize+2.0*border_x),(double)(vsize+2.0*border_y))) { continue; } if (!is_point_in_rect((double)p2x, (double)p2y,-border_x,-border_y,(double)(hsize+2.0*border_x),(double)(vsize+2.0*border_y))) { continue; } if (!is_point_in_rect((double)p3x,(double)p3y,-border_x,-border_y,(double)(hsize+2.0*border_x),(double)(vsize+2.0*border_y))) { continue; } if (!is_point_in_rect((double)p4x, (double)p4y,-border_x,-border_y,(double)(hsize+2.0*border_x),(double)(vsize+2.0*border_y))) { continue; } // If we get here, then all the points are in the rectangle. // Therefore, break out of this loop break; } // if we get here and f_smoothFactor <= fMinDampingFactor, reset the stab reference if (smoothFactor < f_minDampingFactor) smoothFactor = f_minDampingFactor; // use the smoothed motion for stabilization vp_copy_motion_no_id(&tmpMotion/*in*/, outmot/*out*/); } else { vp_copy_motion_no_id(inmot, outmot); } return true; } bool db_StabilizationSmoother::smoothMotion(VP_MOTION *inmot, VP_MOTION *outmot, double smooth_factor) { f_motLF.insid = inmot->refid; f_motLF.refid = inmot->insid; if(f_smoothOn) { if(!f_smoothReset) { MXX(f_motLF) = (VP_PAR) (smooth_factor*(double) MXX(f_motLF) + (1.0-smooth_factor)* (double) MXX(*inmot)); MXY(f_motLF) = (VP_PAR) (smooth_factor*(double) MXY(f_motLF) + (1.0-smooth_factor)* (double) MXY(*inmot)); MXZ(f_motLF) = (VP_PAR) (smooth_factor*(double) MXZ(f_motLF) + (1.0-smooth_factor)* (double) MXZ(*inmot)); MXW(f_motLF) = (VP_PAR) (smooth_factor*(double) MXW(f_motLF) + (1.0-smooth_factor)* (double) MXW(*inmot)); MYX(f_motLF) = (VP_PAR) (smooth_factor*(double) MYX(f_motLF) + (1.0-smooth_factor)* (double) MYX(*inmot)); MYY(f_motLF) = (VP_PAR) (smooth_factor*(double) MYY(f_motLF) + (1.0-smooth_factor)* (double) MYY(*inmot)); MYZ(f_motLF) = (VP_PAR) (smooth_factor*(double) MYZ(f_motLF) + (1.0-smooth_factor)* (double) MYZ(*inmot)); MYW(f_motLF) = (VP_PAR) (smooth_factor*(double) MYW(f_motLF) + (1.0-smooth_factor)* (double) MYW(*inmot)); MZX(f_motLF) = (VP_PAR) (smooth_factor*(double) MZX(f_motLF) + (1.0-smooth_factor)* (double) MZX(*inmot)); MZY(f_motLF) = (VP_PAR) (smooth_factor*(double) MZY(f_motLF) + (1.0-smooth_factor)* (double) MZY(*inmot)); MZZ(f_motLF) = (VP_PAR) (smooth_factor*(double) MZZ(f_motLF) + (1.0-smooth_factor)* (double) MZZ(*inmot)); MZW(f_motLF) = (VP_PAR) (smooth_factor*(double) MZW(f_motLF) + (1.0-smooth_factor)* (double) MZW(*inmot)); MWX(f_motLF) = (VP_PAR) (smooth_factor*(double) MWX(f_motLF) + (1.0-smooth_factor)* (double) MWX(*inmot)); MWY(f_motLF) = (VP_PAR) (smooth_factor*(double) MWY(f_motLF) + (1.0-smooth_factor)* (double) MWY(*inmot)); MWZ(f_motLF) = (VP_PAR) (smooth_factor*(double) MWZ(f_motLF) + (1.0-smooth_factor)* (double) MWZ(*inmot)); MWW(f_motLF) = (VP_PAR) (smooth_factor*(double) MWW(f_motLF) + (1.0-smooth_factor)* (double) MWW(*inmot)); } else vp_copy_motion_no_id(inmot, &f_motLF); // smooth_factor = 0.0 // Only allow LF motion to be compensated. Remove HF motion from // the output transformation if(!vp_invert_motion(&f_motLF, &f_imotLF)) return false; if(!vp_cascade_motion(&f_imotLF, inmot, outmot)) return false; } else { vp_copy_motion_no_id(inmot, outmot); } return true; } //! Overloaded smoother function that takes in user-specidied smoothing factor bool db_StabilizationSmoother::smoothMotion1(VP_MOTION *inmot, VP_MOTION *outmot, VP_MOTION *motLF, VP_MOTION *imotLF, double factor) { if(!f_smoothOn) { vp_copy_motion(inmot, outmot); return true; } else { if(!f_smoothReset) { MXX(*motLF) = (VP_PAR) (factor*(double) MXX(*motLF) + (1.0-factor)* (double) MXX(*inmot)); MXY(*motLF) = (VP_PAR) (factor*(double) MXY(*motLF) + (1.0-factor)* (double) MXY(*inmot)); MXZ(*motLF) = (VP_PAR) (factor*(double) MXZ(*motLF) + (1.0-factor)* (double) MXZ(*inmot)); MXW(*motLF) = (VP_PAR) (factor*(double) MXW(*motLF) + (1.0-factor)* (double) MXW(*inmot)); MYX(*motLF) = (VP_PAR) (factor*(double) MYX(*motLF) + (1.0-factor)* (double) MYX(*inmot)); MYY(*motLF) = (VP_PAR) (factor*(double) MYY(*motLF) + (1.0-factor)* (double) MYY(*inmot)); MYZ(*motLF) = (VP_PAR) (factor*(double) MYZ(*motLF) + (1.0-factor)* (double) MYZ(*inmot)); MYW(*motLF) = (VP_PAR) (factor*(double) MYW(*motLF) + (1.0-factor)* (double) MYW(*inmot)); MZX(*motLF) = (VP_PAR) (factor*(double) MZX(*motLF) + (1.0-factor)* (double) MZX(*inmot)); MZY(*motLF) = (VP_PAR) (factor*(double) MZY(*motLF) + (1.0-factor)* (double) MZY(*inmot)); MZZ(*motLF) = (VP_PAR) (factor*(double) MZZ(*motLF) + (1.0-factor)* (double) MZZ(*inmot)); MZW(*motLF) = (VP_PAR) (factor*(double) MZW(*motLF) + (1.0-factor)* (double) MZW(*inmot)); MWX(*motLF) = (VP_PAR) (factor*(double) MWX(*motLF) + (1.0-factor)* (double) MWX(*inmot)); MWY(*motLF) = (VP_PAR) (factor*(double) MWY(*motLF) + (1.0-factor)* (double) MWY(*inmot)); MWZ(*motLF) = (VP_PAR) (factor*(double) MWZ(*motLF) + (1.0-factor)* (double) MWZ(*inmot)); MWW(*motLF) = (VP_PAR) (factor*(double) MWW(*motLF) + (1.0-factor)* (double) MWW(*inmot)); } else { vp_copy_motion(inmot, motLF); } // Only allow LF motion to be compensated. Remove HF motion from the output transformation if(!vp_invert_motion(motLF, imotLF)) { #if DEBUG_PRINT printfOS("Invert failed \n"); #endif return false; } if(!vp_cascade_motion(imotLF, inmot, outmot)) { #if DEBUG_PRINT printfOS("cascade failed \n"); #endif return false; } } return true; } bool db_StabilizationSmoother::is_point_in_rect(double px, double py, double rx, double ry, double w, double h) { if (px < rx) return(false); if (px >= rx + w) return(false); if (py < ry) return(false); if (py >= ry + h) return(false); return(true); } static bool vpmotion_add(VP_MOTION *in1, VP_MOTION *in2, VP_MOTION *out) { int i; if(in1 == NULL || in2 == NULL || out == NULL) return false; for(i = 0; i < VP_MAX_MOTION_PAR; i++) out->par[i] = in1->par[i] + in2->par[i]; return true; } static bool vpmotion_multiply(VP_MOTION *in1, double factor, VP_MOTION *out) { int i; if(in1 == NULL || out == NULL) return false; for(i = 0; i < VP_MAX_MOTION_PAR; i++) out->par[i] = in1->par[i] * factor; return true; }