#include "GrBicubicEffect.h"
#define DS(x) SkDoubleToScalar(x)
const SkScalar GrBicubicEffect::gMitchellCoefficients[16] = {
DS( 1.0 / 18.0), DS(-9.0 / 18.0), DS( 15.0 / 18.0), DS( -7.0 / 18.0),
DS(16.0 / 18.0), DS( 0.0 / 18.0), DS(-36.0 / 18.0), DS( 21.0 / 18.0),
DS( 1.0 / 18.0), DS( 9.0 / 18.0), DS( 27.0 / 18.0), DS(-21.0 / 18.0),
DS( 0.0 / 18.0), DS( 0.0 / 18.0), DS( -6.0 / 18.0), DS( 7.0 / 18.0),
};
class GrGLBicubicEffect : public GrGLEffect {
public:
GrGLBicubicEffect(const GrBackendEffectFactory& factory,
const GrDrawEffect&);
virtual void emitCode(GrGLShaderBuilder*,
const GrDrawEffect&,
EffectKey,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray&) SK_OVERRIDE;
virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE;
private:
typedef GrGLUniformManager::UniformHandle UniformHandle;
UniformHandle fCoefficientsUni;
UniformHandle fImageIncrementUni;
typedef GrGLEffect INHERITED;
};
GrGLBicubicEffect::GrGLBicubicEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&)
: INHERITED(factory) {
}
void GrGLBicubicEffect::emitCode(GrGLShaderBuilder* builder,
const GrDrawEffect&,
EffectKey key,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray& coords,
const TextureSamplerArray& samplers) {
sk_ignore_unused_variable(inputColor);
SkString coords2D = builder->ensureFSCoords2D(coords, 0);
fCoefficientsUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kMat44f_GrSLType, "Coefficients");
fImageIncrementUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility,
kVec2f_GrSLType, "ImageIncrement");
const char* imgInc = builder->getUniformCStr(fImageIncrementUni);
const char* coeff = builder->getUniformCStr(fCoefficientsUni);
SkString cubicBlendName;
static const GrGLShaderVar gCubicBlendArgs[] = {
GrGLShaderVar("coefficients", kMat44f_GrSLType),
GrGLShaderVar("t", kFloat_GrSLType),
GrGLShaderVar("c0", kVec4f_GrSLType),
GrGLShaderVar("c1", kVec4f_GrSLType),
GrGLShaderVar("c2", kVec4f_GrSLType),
GrGLShaderVar("c3", kVec4f_GrSLType),
};
builder->fsEmitFunction(kVec4f_GrSLType,
"cubicBlend",
SK_ARRAY_COUNT(gCubicBlendArgs),
gCubicBlendArgs,
"\tvec4 ts = vec4(1.0, t, t * t, t * t * t);\n"
"\tvec4 c = coefficients * ts;\n"
"\treturn c.x * c0 + c.y * c1 + c.z * c2 + c.w * c3;\n",
&cubicBlendName);
builder->fsCodeAppendf("\tvec2 coord = %s - %s * vec2(0.5);\n", coords2D.c_str(), imgInc);
// We unnormalize the coord in order to determine our fractional offset (f) within the texel
// We then snap coord to a texel center and renormalize. The snap prevents cases where the
// starting coords are near a texel boundary and accumulations of imgInc would cause us to skip/
// double hit a texel.
builder->fsCodeAppendf("\tcoord /= %s;\n", imgInc);
builder->fsCodeAppend("\tvec2 f = fract(coord);\n");
builder->fsCodeAppendf("\tcoord = (coord - f + vec2(0.5)) * %s;\n", imgInc);
for (int y = 0; y < 4; ++y) {
for (int x = 0; x < 4; ++x) {
SkString coord;
coord.printf("coord + %s * vec2(%d, %d)", imgInc, x - 1, y - 1);
builder->fsCodeAppendf("\tvec4 s%d%d = ", x, y);
builder->fsAppendTextureLookup(samplers[0], coord.c_str());
builder->fsCodeAppend(";\n");
}
builder->fsCodeAppendf("\tvec4 s%d = %s(%s, f.x, s0%d, s1%d, s2%d, s3%d);\n", y, cubicBlendName.c_str(), coeff, y, y, y, y);
}
builder->fsCodeAppendf("\t%s = %s(%s, f.y, s0, s1, s2, s3);\n", outputColor, cubicBlendName.c_str(), coeff);
}
void GrGLBicubicEffect::setData(const GrGLUniformManager& uman,
const GrDrawEffect& drawEffect) {
const GrBicubicEffect& effect = drawEffect.castEffect<GrBicubicEffect>();
GrTexture& texture = *effect.texture(0);
float imageIncrement[2];
imageIncrement[0] = 1.0f / texture.width();
imageIncrement[1] = 1.0f / texture.height();
uman.set2fv(fImageIncrementUni, 1, imageIncrement);
uman.setMatrix4f(fCoefficientsUni, effect.coefficients());
}
GrBicubicEffect::GrBicubicEffect(GrTexture* texture,
const SkScalar coefficients[16],
const SkMatrix &matrix,
const SkShader::TileMode tileModes[2])
: INHERITED(texture, matrix, GrTextureParams(tileModes, GrTextureParams::kNone_FilterMode)) {
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
// Convert from row-major scalars to column-major floats.
fCoefficients[x * 4 + y] = SkScalarToFloat(coefficients[y * 4 + x]);
}
}
this->setWillNotUseInputColor();
}
GrBicubicEffect::~GrBicubicEffect() {
}
const GrBackendEffectFactory& GrBicubicEffect::getFactory() const {
return GrTBackendEffectFactory<GrBicubicEffect>::getInstance();
}
bool GrBicubicEffect::onIsEqual(const GrEffect& sBase) const {
const GrBicubicEffect& s = CastEffect<GrBicubicEffect>(sBase);
return this->textureAccess(0) == s.textureAccess(0) &&
!memcmp(fCoefficients, s.coefficients(), 16);
}
void GrBicubicEffect::getConstantColorComponents(GrColor* color, uint32_t* validFlags) const {
// FIXME: Perhaps we can do better.
*validFlags = 0;
return;
}
GR_DEFINE_EFFECT_TEST(GrBicubicEffect);
GrEffectRef* GrBicubicEffect::TestCreate(SkRandom* random,
GrContext* context,
const GrDrawTargetCaps&,
GrTexture* textures[]) {
int texIdx = random->nextBool() ? GrEffectUnitTest::kSkiaPMTextureIdx :
GrEffectUnitTest::kAlphaTextureIdx;
SkScalar coefficients[16];
for (int i = 0; i < 16; i++) {
coefficients[i] = random->nextSScalar1();
}
return GrBicubicEffect::Create(textures[texIdx], coefficients);
}