#include "GrBicubicEffect.h" #define DS(x) SkDoubleToScalar(x) const SkScalar GrBicubicEffect::gMitchellCoefficients[16] = { DS( 1.0 / 18.0), DS(-9.0 / 18.0), DS( 15.0 / 18.0), DS( -7.0 / 18.0), DS(16.0 / 18.0), DS( 0.0 / 18.0), DS(-36.0 / 18.0), DS( 21.0 / 18.0), DS( 1.0 / 18.0), DS( 9.0 / 18.0), DS( 27.0 / 18.0), DS(-21.0 / 18.0), DS( 0.0 / 18.0), DS( 0.0 / 18.0), DS( -6.0 / 18.0), DS( 7.0 / 18.0), }; class GrGLBicubicEffect : public GrGLEffect { public: GrGLBicubicEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&); virtual void emitCode(GrGLShaderBuilder*, const GrDrawEffect&, EffectKey, const char* outputColor, const char* inputColor, const TransformedCoordsArray&, const TextureSamplerArray&) SK_OVERRIDE; virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE; private: typedef GrGLUniformManager::UniformHandle UniformHandle; UniformHandle fCoefficientsUni; UniformHandle fImageIncrementUni; typedef GrGLEffect INHERITED; }; GrGLBicubicEffect::GrGLBicubicEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&) : INHERITED(factory) { } void GrGLBicubicEffect::emitCode(GrGLShaderBuilder* builder, const GrDrawEffect&, EffectKey key, const char* outputColor, const char* inputColor, const TransformedCoordsArray& coords, const TextureSamplerArray& samplers) { sk_ignore_unused_variable(inputColor); SkString coords2D = builder->ensureFSCoords2D(coords, 0); fCoefficientsUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, kMat44f_GrSLType, "Coefficients"); fImageIncrementUni = builder->addUniform(GrGLShaderBuilder::kFragment_Visibility, kVec2f_GrSLType, "ImageIncrement"); const char* imgInc = builder->getUniformCStr(fImageIncrementUni); const char* coeff = builder->getUniformCStr(fCoefficientsUni); SkString cubicBlendName; static const GrGLShaderVar gCubicBlendArgs[] = { GrGLShaderVar("coefficients", kMat44f_GrSLType), GrGLShaderVar("t", kFloat_GrSLType), GrGLShaderVar("c0", kVec4f_GrSLType), GrGLShaderVar("c1", kVec4f_GrSLType), GrGLShaderVar("c2", kVec4f_GrSLType), GrGLShaderVar("c3", kVec4f_GrSLType), }; builder->fsEmitFunction(kVec4f_GrSLType, "cubicBlend", SK_ARRAY_COUNT(gCubicBlendArgs), gCubicBlendArgs, "\tvec4 ts = vec4(1.0, t, t * t, t * t * t);\n" "\tvec4 c = coefficients * ts;\n" "\treturn c.x * c0 + c.y * c1 + c.z * c2 + c.w * c3;\n", &cubicBlendName); builder->fsCodeAppendf("\tvec2 coord = %s - %s * vec2(0.5);\n", coords2D.c_str(), imgInc); // We unnormalize the coord in order to determine our fractional offset (f) within the texel // We then snap coord to a texel center and renormalize. The snap prevents cases where the // starting coords are near a texel boundary and accumulations of imgInc would cause us to skip/ // double hit a texel. builder->fsCodeAppendf("\tcoord /= %s;\n", imgInc); builder->fsCodeAppend("\tvec2 f = fract(coord);\n"); builder->fsCodeAppendf("\tcoord = (coord - f + vec2(0.5)) * %s;\n", imgInc); for (int y = 0; y < 4; ++y) { for (int x = 0; x < 4; ++x) { SkString coord; coord.printf("coord + %s * vec2(%d, %d)", imgInc, x - 1, y - 1); builder->fsCodeAppendf("\tvec4 s%d%d = ", x, y); builder->fsAppendTextureLookup(samplers[0], coord.c_str()); builder->fsCodeAppend(";\n"); } builder->fsCodeAppendf("\tvec4 s%d = %s(%s, f.x, s0%d, s1%d, s2%d, s3%d);\n", y, cubicBlendName.c_str(), coeff, y, y, y, y); } builder->fsCodeAppendf("\t%s = %s(%s, f.y, s0, s1, s2, s3);\n", outputColor, cubicBlendName.c_str(), coeff); } void GrGLBicubicEffect::setData(const GrGLUniformManager& uman, const GrDrawEffect& drawEffect) { const GrBicubicEffect& effect = drawEffect.castEffect<GrBicubicEffect>(); GrTexture& texture = *effect.texture(0); float imageIncrement[2]; imageIncrement[0] = 1.0f / texture.width(); imageIncrement[1] = 1.0f / texture.height(); uman.set2fv(fImageIncrementUni, 1, imageIncrement); uman.setMatrix4f(fCoefficientsUni, effect.coefficients()); } GrBicubicEffect::GrBicubicEffect(GrTexture* texture, const SkScalar coefficients[16], const SkMatrix &matrix, const SkShader::TileMode tileModes[2]) : INHERITED(texture, matrix, GrTextureParams(tileModes, GrTextureParams::kNone_FilterMode)) { for (int y = 0; y < 4; y++) { for (int x = 0; x < 4; x++) { // Convert from row-major scalars to column-major floats. fCoefficients[x * 4 + y] = SkScalarToFloat(coefficients[y * 4 + x]); } } this->setWillNotUseInputColor(); } GrBicubicEffect::~GrBicubicEffect() { } const GrBackendEffectFactory& GrBicubicEffect::getFactory() const { return GrTBackendEffectFactory<GrBicubicEffect>::getInstance(); } bool GrBicubicEffect::onIsEqual(const GrEffect& sBase) const { const GrBicubicEffect& s = CastEffect<GrBicubicEffect>(sBase); return this->textureAccess(0) == s.textureAccess(0) && !memcmp(fCoefficients, s.coefficients(), 16); } void GrBicubicEffect::getConstantColorComponents(GrColor* color, uint32_t* validFlags) const { // FIXME: Perhaps we can do better. *validFlags = 0; return; } GR_DEFINE_EFFECT_TEST(GrBicubicEffect); GrEffectRef* GrBicubicEffect::TestCreate(SkRandom* random, GrContext* context, const GrDrawTargetCaps&, GrTexture* textures[]) { int texIdx = random->nextBool() ? GrEffectUnitTest::kSkiaPMTextureIdx : GrEffectUnitTest::kAlphaTextureIdx; SkScalar coefficients[16]; for (int i = 0; i < 16; i++) { coefficients[i] = random->nextSScalar1(); } return GrBicubicEffect::Create(textures[texIdx], coefficients); }