// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "profile-generator-inl.h"
#include "compiler.h"
#include "debug.h"
#include "sampler.h"
#include "global-handles.h"
#include "scopeinfo.h"
#include "unicode.h"
#include "zone-inl.h"
namespace v8 {
namespace internal {
bool StringsStorage::StringsMatch(void* key1, void* key2) {
return strcmp(reinterpret_cast<char*>(key1),
reinterpret_cast<char*>(key2)) == 0;
}
StringsStorage::StringsStorage(Heap* heap)
: hash_seed_(heap->HashSeed()), names_(StringsMatch) {
}
StringsStorage::~StringsStorage() {
for (HashMap::Entry* p = names_.Start();
p != NULL;
p = names_.Next(p)) {
DeleteArray(reinterpret_cast<const char*>(p->value));
}
}
const char* StringsStorage::GetCopy(const char* src) {
int len = static_cast<int>(strlen(src));
HashMap::Entry* entry = GetEntry(src, len);
if (entry->value == NULL) {
Vector<char> dst = Vector<char>::New(len + 1);
OS::StrNCpy(dst, src, len);
dst[len] = '\0';
entry->key = dst.start();
entry->value = entry->key;
}
return reinterpret_cast<const char*>(entry->value);
}
const char* StringsStorage::GetFormatted(const char* format, ...) {
va_list args;
va_start(args, format);
const char* result = GetVFormatted(format, args);
va_end(args);
return result;
}
const char* StringsStorage::AddOrDisposeString(char* str, int len) {
HashMap::Entry* entry = GetEntry(str, len);
if (entry->value == NULL) {
// New entry added.
entry->key = str;
entry->value = str;
} else {
DeleteArray(str);
}
return reinterpret_cast<const char*>(entry->value);
}
const char* StringsStorage::GetVFormatted(const char* format, va_list args) {
Vector<char> str = Vector<char>::New(1024);
int len = OS::VSNPrintF(str, format, args);
if (len == -1) {
DeleteArray(str.start());
return GetCopy(format);
}
return AddOrDisposeString(str.start(), len);
}
const char* StringsStorage::GetName(Name* name) {
if (name->IsString()) {
String* str = String::cast(name);
int length = Min(kMaxNameSize, str->length());
int actual_length = 0;
SmartArrayPointer<char> data =
str->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL, 0, length,
&actual_length);
return AddOrDisposeString(data.Detach(), actual_length);
} else if (name->IsSymbol()) {
return "<symbol>";
}
return "";
}
const char* StringsStorage::GetName(int index) {
return GetFormatted("%d", index);
}
const char* StringsStorage::GetFunctionName(Name* name) {
return BeautifyFunctionName(GetName(name));
}
const char* StringsStorage::GetFunctionName(const char* name) {
return BeautifyFunctionName(GetCopy(name));
}
const char* StringsStorage::BeautifyFunctionName(const char* name) {
return (*name == 0) ? ProfileGenerator::kAnonymousFunctionName : name;
}
size_t StringsStorage::GetUsedMemorySize() const {
size_t size = sizeof(*this);
size += sizeof(HashMap::Entry) * names_.capacity();
for (HashMap::Entry* p = names_.Start(); p != NULL; p = names_.Next(p)) {
size += strlen(reinterpret_cast<const char*>(p->value)) + 1;
}
return size;
}
HashMap::Entry* StringsStorage::GetEntry(const char* str, int len) {
uint32_t hash = StringHasher::HashSequentialString(str, len, hash_seed_);
return names_.Lookup(const_cast<char*>(str), hash, true);
}
const char* const CodeEntry::kEmptyNamePrefix = "";
const char* const CodeEntry::kEmptyResourceName = "";
const char* const CodeEntry::kEmptyBailoutReason = "";
CodeEntry::~CodeEntry() {
delete no_frame_ranges_;
}
uint32_t CodeEntry::GetCallUid() const {
uint32_t hash = ComputeIntegerHash(tag_, v8::internal::kZeroHashSeed);
if (shared_id_ != 0) {
hash ^= ComputeIntegerHash(static_cast<uint32_t>(shared_id_),
v8::internal::kZeroHashSeed);
} else {
hash ^= ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_prefix_)),
v8::internal::kZeroHashSeed);
hash ^= ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_)),
v8::internal::kZeroHashSeed);
hash ^= ComputeIntegerHash(
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(resource_name_)),
v8::internal::kZeroHashSeed);
hash ^= ComputeIntegerHash(line_number_, v8::internal::kZeroHashSeed);
}
return hash;
}
bool CodeEntry::IsSameAs(CodeEntry* entry) const {
return this == entry
|| (tag_ == entry->tag_
&& shared_id_ == entry->shared_id_
&& (shared_id_ != 0
|| (name_prefix_ == entry->name_prefix_
&& name_ == entry->name_
&& resource_name_ == entry->resource_name_
&& line_number_ == entry->line_number_)));
}
void CodeEntry::SetBuiltinId(Builtins::Name id) {
tag_ = Logger::BUILTIN_TAG;
builtin_id_ = id;
}
ProfileNode* ProfileNode::FindChild(CodeEntry* entry) {
HashMap::Entry* map_entry =
children_.Lookup(entry, CodeEntryHash(entry), false);
return map_entry != NULL ?
reinterpret_cast<ProfileNode*>(map_entry->value) : NULL;
}
ProfileNode* ProfileNode::FindOrAddChild(CodeEntry* entry) {
HashMap::Entry* map_entry =
children_.Lookup(entry, CodeEntryHash(entry), true);
if (map_entry->value == NULL) {
// New node added.
ProfileNode* new_node = new ProfileNode(tree_, entry);
map_entry->value = new_node;
children_list_.Add(new_node);
}
return reinterpret_cast<ProfileNode*>(map_entry->value);
}
void ProfileNode::Print(int indent) {
OS::Print("%5u %*c %s%s %d #%d %s",
self_ticks_,
indent, ' ',
entry_->name_prefix(),
entry_->name(),
entry_->script_id(),
id(),
entry_->bailout_reason());
if (entry_->resource_name()[0] != '\0')
OS::Print(" %s:%d", entry_->resource_name(), entry_->line_number());
OS::Print("\n");
for (HashMap::Entry* p = children_.Start();
p != NULL;
p = children_.Next(p)) {
reinterpret_cast<ProfileNode*>(p->value)->Print(indent + 2);
}
}
class DeleteNodesCallback {
public:
void BeforeTraversingChild(ProfileNode*, ProfileNode*) { }
void AfterAllChildrenTraversed(ProfileNode* node) {
delete node;
}
void AfterChildTraversed(ProfileNode*, ProfileNode*) { }
};
ProfileTree::ProfileTree()
: root_entry_(Logger::FUNCTION_TAG, "(root)"),
next_node_id_(1),
root_(new ProfileNode(this, &root_entry_)) {
}
ProfileTree::~ProfileTree() {
DeleteNodesCallback cb;
TraverseDepthFirst(&cb);
}
ProfileNode* ProfileTree::AddPathFromEnd(const Vector<CodeEntry*>& path) {
ProfileNode* node = root_;
for (CodeEntry** entry = path.start() + path.length() - 1;
entry != path.start() - 1;
--entry) {
if (*entry != NULL) {
node = node->FindOrAddChild(*entry);
}
}
node->IncrementSelfTicks();
return node;
}
void ProfileTree::AddPathFromStart(const Vector<CodeEntry*>& path) {
ProfileNode* node = root_;
for (CodeEntry** entry = path.start();
entry != path.start() + path.length();
++entry) {
if (*entry != NULL) {
node = node->FindOrAddChild(*entry);
}
}
node->IncrementSelfTicks();
}
struct NodesPair {
NodesPair(ProfileNode* src, ProfileNode* dst)
: src(src), dst(dst) { }
ProfileNode* src;
ProfileNode* dst;
};
class Position {
public:
explicit Position(ProfileNode* node)
: node(node), child_idx_(0) { }
INLINE(ProfileNode* current_child()) {
return node->children()->at(child_idx_);
}
INLINE(bool has_current_child()) {
return child_idx_ < node->children()->length();
}
INLINE(void next_child()) { ++child_idx_; }
ProfileNode* node;
private:
int child_idx_;
};
// Non-recursive implementation of a depth-first post-order tree traversal.
template <typename Callback>
void ProfileTree::TraverseDepthFirst(Callback* callback) {
List<Position> stack(10);
stack.Add(Position(root_));
while (stack.length() > 0) {
Position& current = stack.last();
if (current.has_current_child()) {
callback->BeforeTraversingChild(current.node, current.current_child());
stack.Add(Position(current.current_child()));
} else {
callback->AfterAllChildrenTraversed(current.node);
if (stack.length() > 1) {
Position& parent = stack[stack.length() - 2];
callback->AfterChildTraversed(parent.node, current.node);
parent.next_child();
}
// Remove child from the stack.
stack.RemoveLast();
}
}
}
CpuProfile::CpuProfile(const char* title, unsigned uid, bool record_samples)
: title_(title),
uid_(uid),
record_samples_(record_samples),
start_time_(Time::NowFromSystemTime()) {
timer_.Start();
}
void CpuProfile::AddPath(const Vector<CodeEntry*>& path) {
ProfileNode* top_frame_node = top_down_.AddPathFromEnd(path);
if (record_samples_) samples_.Add(top_frame_node);
}
void CpuProfile::CalculateTotalTicksAndSamplingRate() {
end_time_ = start_time_ + timer_.Elapsed();
}
void CpuProfile::Print() {
OS::Print("[Top down]:\n");
top_down_.Print();
}
CodeEntry* const CodeMap::kSharedFunctionCodeEntry = NULL;
const CodeMap::CodeTreeConfig::Key CodeMap::CodeTreeConfig::kNoKey = NULL;
void CodeMap::AddCode(Address addr, CodeEntry* entry, unsigned size) {
DeleteAllCoveredCode(addr, addr + size);
CodeTree::Locator locator;
tree_.Insert(addr, &locator);
locator.set_value(CodeEntryInfo(entry, size));
}
void CodeMap::DeleteAllCoveredCode(Address start, Address end) {
List<Address> to_delete;
Address addr = end - 1;
while (addr >= start) {
CodeTree::Locator locator;
if (!tree_.FindGreatestLessThan(addr, &locator)) break;
Address start2 = locator.key(), end2 = start2 + locator.value().size;
if (start2 < end && start < end2) to_delete.Add(start2);
addr = start2 - 1;
}
for (int i = 0; i < to_delete.length(); ++i) tree_.Remove(to_delete[i]);
}
CodeEntry* CodeMap::FindEntry(Address addr, Address* start) {
CodeTree::Locator locator;
if (tree_.FindGreatestLessThan(addr, &locator)) {
// locator.key() <= addr. Need to check that addr is within entry.
const CodeEntryInfo& entry = locator.value();
if (addr < (locator.key() + entry.size)) {
if (start) {
*start = locator.key();
}
return entry.entry;
}
}
return NULL;
}
int CodeMap::GetSharedId(Address addr) {
CodeTree::Locator locator;
// For shared function entries, 'size' field is used to store their IDs.
if (tree_.Find(addr, &locator)) {
const CodeEntryInfo& entry = locator.value();
ASSERT(entry.entry == kSharedFunctionCodeEntry);
return entry.size;
} else {
tree_.Insert(addr, &locator);
int id = next_shared_id_++;
locator.set_value(CodeEntryInfo(kSharedFunctionCodeEntry, id));
return id;
}
}
void CodeMap::MoveCode(Address from, Address to) {
if (from == to) return;
CodeTree::Locator locator;
if (!tree_.Find(from, &locator)) return;
CodeEntryInfo entry = locator.value();
tree_.Remove(from);
AddCode(to, entry.entry, entry.size);
}
void CodeMap::CodeTreePrinter::Call(
const Address& key, const CodeMap::CodeEntryInfo& value) {
// For shared function entries, 'size' field is used to store their IDs.
if (value.entry == kSharedFunctionCodeEntry) {
OS::Print("%p SharedFunctionInfo %d\n", key, value.size);
} else {
OS::Print("%p %5d %s\n", key, value.size, value.entry->name());
}
}
void CodeMap::Print() {
CodeTreePrinter printer;
tree_.ForEach(&printer);
}
CpuProfilesCollection::CpuProfilesCollection(Heap* heap)
: function_and_resource_names_(heap),
current_profiles_semaphore_(1) {
}
static void DeleteCodeEntry(CodeEntry** entry_ptr) {
delete *entry_ptr;
}
static void DeleteCpuProfile(CpuProfile** profile_ptr) {
delete *profile_ptr;
}
CpuProfilesCollection::~CpuProfilesCollection() {
finished_profiles_.Iterate(DeleteCpuProfile);
current_profiles_.Iterate(DeleteCpuProfile);
code_entries_.Iterate(DeleteCodeEntry);
}
bool CpuProfilesCollection::StartProfiling(const char* title, unsigned uid,
bool record_samples) {
ASSERT(uid > 0);
current_profiles_semaphore_.Wait();
if (current_profiles_.length() >= kMaxSimultaneousProfiles) {
current_profiles_semaphore_.Signal();
return false;
}
for (int i = 0; i < current_profiles_.length(); ++i) {
if (strcmp(current_profiles_[i]->title(), title) == 0) {
// Ignore attempts to start profile with the same title.
current_profiles_semaphore_.Signal();
return false;
}
}
current_profiles_.Add(new CpuProfile(title, uid, record_samples));
current_profiles_semaphore_.Signal();
return true;
}
CpuProfile* CpuProfilesCollection::StopProfiling(const char* title) {
const int title_len = StrLength(title);
CpuProfile* profile = NULL;
current_profiles_semaphore_.Wait();
for (int i = current_profiles_.length() - 1; i >= 0; --i) {
if (title_len == 0 || strcmp(current_profiles_[i]->title(), title) == 0) {
profile = current_profiles_.Remove(i);
break;
}
}
current_profiles_semaphore_.Signal();
if (profile == NULL) return NULL;
profile->CalculateTotalTicksAndSamplingRate();
finished_profiles_.Add(profile);
return profile;
}
bool CpuProfilesCollection::IsLastProfile(const char* title) {
// Called from VM thread, and only it can mutate the list,
// so no locking is needed here.
if (current_profiles_.length() != 1) return false;
return StrLength(title) == 0
|| strcmp(current_profiles_[0]->title(), title) == 0;
}
void CpuProfilesCollection::RemoveProfile(CpuProfile* profile) {
// Called from VM thread for a completed profile.
unsigned uid = profile->uid();
for (int i = 0; i < finished_profiles_.length(); i++) {
if (uid == finished_profiles_[i]->uid()) {
finished_profiles_.Remove(i);
return;
}
}
UNREACHABLE();
}
void CpuProfilesCollection::AddPathToCurrentProfiles(
const Vector<CodeEntry*>& path) {
// As starting / stopping profiles is rare relatively to this
// method, we don't bother minimizing the duration of lock holding,
// e.g. copying contents of the list to a local vector.
current_profiles_semaphore_.Wait();
for (int i = 0; i < current_profiles_.length(); ++i) {
current_profiles_[i]->AddPath(path);
}
current_profiles_semaphore_.Signal();
}
CodeEntry* CpuProfilesCollection::NewCodeEntry(
Logger::LogEventsAndTags tag,
const char* name,
const char* name_prefix,
const char* resource_name,
int line_number,
int column_number) {
CodeEntry* code_entry = new CodeEntry(tag,
name,
name_prefix,
resource_name,
line_number,
column_number);
code_entries_.Add(code_entry);
return code_entry;
}
const char* const ProfileGenerator::kAnonymousFunctionName =
"(anonymous function)";
const char* const ProfileGenerator::kProgramEntryName =
"(program)";
const char* const ProfileGenerator::kIdleEntryName =
"(idle)";
const char* const ProfileGenerator::kGarbageCollectorEntryName =
"(garbage collector)";
const char* const ProfileGenerator::kUnresolvedFunctionName =
"(unresolved function)";
ProfileGenerator::ProfileGenerator(CpuProfilesCollection* profiles)
: profiles_(profiles),
program_entry_(
profiles->NewCodeEntry(Logger::FUNCTION_TAG, kProgramEntryName)),
idle_entry_(
profiles->NewCodeEntry(Logger::FUNCTION_TAG, kIdleEntryName)),
gc_entry_(
profiles->NewCodeEntry(Logger::BUILTIN_TAG,
kGarbageCollectorEntryName)),
unresolved_entry_(
profiles->NewCodeEntry(Logger::FUNCTION_TAG,
kUnresolvedFunctionName)) {
}
void ProfileGenerator::RecordTickSample(const TickSample& sample) {
// Allocate space for stack frames + pc + function + vm-state.
ScopedVector<CodeEntry*> entries(sample.frames_count + 3);
// As actual number of decoded code entries may vary, initialize
// entries vector with NULL values.
CodeEntry** entry = entries.start();
memset(entry, 0, entries.length() * sizeof(*entry));
if (sample.pc != NULL) {
if (sample.has_external_callback && sample.state == EXTERNAL &&
sample.top_frame_type == StackFrame::EXIT) {
// Don't use PC when in external callback code, as it can point
// inside callback's code, and we will erroneously report
// that a callback calls itself.
*entry++ = code_map_.FindEntry(sample.external_callback);
} else {
Address start;
CodeEntry* pc_entry = code_map_.FindEntry(sample.pc, &start);
// If pc is in the function code before it set up stack frame or after the
// frame was destroyed SafeStackFrameIterator incorrectly thinks that
// ebp contains return address of the current function and skips caller's
// frame. Check for this case and just skip such samples.
if (pc_entry) {
List<OffsetRange>* ranges = pc_entry->no_frame_ranges();
if (ranges) {
Code* code = Code::cast(HeapObject::FromAddress(start));
int pc_offset = static_cast<int>(
sample.pc - code->instruction_start());
for (int i = 0; i < ranges->length(); i++) {
OffsetRange& range = ranges->at(i);
if (range.from <= pc_offset && pc_offset < range.to) {
return;
}
}
}
*entry++ = pc_entry;
if (pc_entry->builtin_id() == Builtins::kFunctionCall ||
pc_entry->builtin_id() == Builtins::kFunctionApply) {
// When current function is FunctionCall or FunctionApply builtin the
// top frame is either frame of the calling JS function or internal
// frame. In the latter case we know the caller for sure but in the
// former case we don't so we simply replace the frame with
// 'unresolved' entry.
if (sample.top_frame_type == StackFrame::JAVA_SCRIPT) {
*entry++ = unresolved_entry_;
}
}
}
}
for (const Address* stack_pos = sample.stack,
*stack_end = stack_pos + sample.frames_count;
stack_pos != stack_end;
++stack_pos) {
*entry++ = code_map_.FindEntry(*stack_pos);
}
}
if (FLAG_prof_browser_mode) {
bool no_symbolized_entries = true;
for (CodeEntry** e = entries.start(); e != entry; ++e) {
if (*e != NULL) {
no_symbolized_entries = false;
break;
}
}
// If no frames were symbolized, put the VM state entry in.
if (no_symbolized_entries) {
*entry++ = EntryForVMState(sample.state);
}
}
profiles_->AddPathToCurrentProfiles(entries);
}
CodeEntry* ProfileGenerator::EntryForVMState(StateTag tag) {
switch (tag) {
case GC:
return gc_entry_;
case JS:
case COMPILER:
// DOM events handlers are reported as OTHER / EXTERNAL entries.
// To avoid confusing people, let's put all these entries into
// one bucket.
case OTHER:
case EXTERNAL:
return program_entry_;
case IDLE:
return idle_entry_;
default: return NULL;
}
}
} } // namespace v8::internal