// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "profile-generator-inl.h" #include "compiler.h" #include "debug.h" #include "sampler.h" #include "global-handles.h" #include "scopeinfo.h" #include "unicode.h" #include "zone-inl.h" namespace v8 { namespace internal { bool StringsStorage::StringsMatch(void* key1, void* key2) { return strcmp(reinterpret_cast<char*>(key1), reinterpret_cast<char*>(key2)) == 0; } StringsStorage::StringsStorage(Heap* heap) : hash_seed_(heap->HashSeed()), names_(StringsMatch) { } StringsStorage::~StringsStorage() { for (HashMap::Entry* p = names_.Start(); p != NULL; p = names_.Next(p)) { DeleteArray(reinterpret_cast<const char*>(p->value)); } } const char* StringsStorage::GetCopy(const char* src) { int len = static_cast<int>(strlen(src)); HashMap::Entry* entry = GetEntry(src, len); if (entry->value == NULL) { Vector<char> dst = Vector<char>::New(len + 1); OS::StrNCpy(dst, src, len); dst[len] = '\0'; entry->key = dst.start(); entry->value = entry->key; } return reinterpret_cast<const char*>(entry->value); } const char* StringsStorage::GetFormatted(const char* format, ...) { va_list args; va_start(args, format); const char* result = GetVFormatted(format, args); va_end(args); return result; } const char* StringsStorage::AddOrDisposeString(char* str, int len) { HashMap::Entry* entry = GetEntry(str, len); if (entry->value == NULL) { // New entry added. entry->key = str; entry->value = str; } else { DeleteArray(str); } return reinterpret_cast<const char*>(entry->value); } const char* StringsStorage::GetVFormatted(const char* format, va_list args) { Vector<char> str = Vector<char>::New(1024); int len = OS::VSNPrintF(str, format, args); if (len == -1) { DeleteArray(str.start()); return GetCopy(format); } return AddOrDisposeString(str.start(), len); } const char* StringsStorage::GetName(Name* name) { if (name->IsString()) { String* str = String::cast(name); int length = Min(kMaxNameSize, str->length()); int actual_length = 0; SmartArrayPointer<char> data = str->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL, 0, length, &actual_length); return AddOrDisposeString(data.Detach(), actual_length); } else if (name->IsSymbol()) { return "<symbol>"; } return ""; } const char* StringsStorage::GetName(int index) { return GetFormatted("%d", index); } const char* StringsStorage::GetFunctionName(Name* name) { return BeautifyFunctionName(GetName(name)); } const char* StringsStorage::GetFunctionName(const char* name) { return BeautifyFunctionName(GetCopy(name)); } const char* StringsStorage::BeautifyFunctionName(const char* name) { return (*name == 0) ? ProfileGenerator::kAnonymousFunctionName : name; } size_t StringsStorage::GetUsedMemorySize() const { size_t size = sizeof(*this); size += sizeof(HashMap::Entry) * names_.capacity(); for (HashMap::Entry* p = names_.Start(); p != NULL; p = names_.Next(p)) { size += strlen(reinterpret_cast<const char*>(p->value)) + 1; } return size; } HashMap::Entry* StringsStorage::GetEntry(const char* str, int len) { uint32_t hash = StringHasher::HashSequentialString(str, len, hash_seed_); return names_.Lookup(const_cast<char*>(str), hash, true); } const char* const CodeEntry::kEmptyNamePrefix = ""; const char* const CodeEntry::kEmptyResourceName = ""; const char* const CodeEntry::kEmptyBailoutReason = ""; CodeEntry::~CodeEntry() { delete no_frame_ranges_; } uint32_t CodeEntry::GetCallUid() const { uint32_t hash = ComputeIntegerHash(tag_, v8::internal::kZeroHashSeed); if (shared_id_ != 0) { hash ^= ComputeIntegerHash(static_cast<uint32_t>(shared_id_), v8::internal::kZeroHashSeed); } else { hash ^= ComputeIntegerHash( static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_prefix_)), v8::internal::kZeroHashSeed); hash ^= ComputeIntegerHash( static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name_)), v8::internal::kZeroHashSeed); hash ^= ComputeIntegerHash( static_cast<uint32_t>(reinterpret_cast<uintptr_t>(resource_name_)), v8::internal::kZeroHashSeed); hash ^= ComputeIntegerHash(line_number_, v8::internal::kZeroHashSeed); } return hash; } bool CodeEntry::IsSameAs(CodeEntry* entry) const { return this == entry || (tag_ == entry->tag_ && shared_id_ == entry->shared_id_ && (shared_id_ != 0 || (name_prefix_ == entry->name_prefix_ && name_ == entry->name_ && resource_name_ == entry->resource_name_ && line_number_ == entry->line_number_))); } void CodeEntry::SetBuiltinId(Builtins::Name id) { tag_ = Logger::BUILTIN_TAG; builtin_id_ = id; } ProfileNode* ProfileNode::FindChild(CodeEntry* entry) { HashMap::Entry* map_entry = children_.Lookup(entry, CodeEntryHash(entry), false); return map_entry != NULL ? reinterpret_cast<ProfileNode*>(map_entry->value) : NULL; } ProfileNode* ProfileNode::FindOrAddChild(CodeEntry* entry) { HashMap::Entry* map_entry = children_.Lookup(entry, CodeEntryHash(entry), true); if (map_entry->value == NULL) { // New node added. ProfileNode* new_node = new ProfileNode(tree_, entry); map_entry->value = new_node; children_list_.Add(new_node); } return reinterpret_cast<ProfileNode*>(map_entry->value); } void ProfileNode::Print(int indent) { OS::Print("%5u %*c %s%s %d #%d %s", self_ticks_, indent, ' ', entry_->name_prefix(), entry_->name(), entry_->script_id(), id(), entry_->bailout_reason()); if (entry_->resource_name()[0] != '\0') OS::Print(" %s:%d", entry_->resource_name(), entry_->line_number()); OS::Print("\n"); for (HashMap::Entry* p = children_.Start(); p != NULL; p = children_.Next(p)) { reinterpret_cast<ProfileNode*>(p->value)->Print(indent + 2); } } class DeleteNodesCallback { public: void BeforeTraversingChild(ProfileNode*, ProfileNode*) { } void AfterAllChildrenTraversed(ProfileNode* node) { delete node; } void AfterChildTraversed(ProfileNode*, ProfileNode*) { } }; ProfileTree::ProfileTree() : root_entry_(Logger::FUNCTION_TAG, "(root)"), next_node_id_(1), root_(new ProfileNode(this, &root_entry_)) { } ProfileTree::~ProfileTree() { DeleteNodesCallback cb; TraverseDepthFirst(&cb); } ProfileNode* ProfileTree::AddPathFromEnd(const Vector<CodeEntry*>& path) { ProfileNode* node = root_; for (CodeEntry** entry = path.start() + path.length() - 1; entry != path.start() - 1; --entry) { if (*entry != NULL) { node = node->FindOrAddChild(*entry); } } node->IncrementSelfTicks(); return node; } void ProfileTree::AddPathFromStart(const Vector<CodeEntry*>& path) { ProfileNode* node = root_; for (CodeEntry** entry = path.start(); entry != path.start() + path.length(); ++entry) { if (*entry != NULL) { node = node->FindOrAddChild(*entry); } } node->IncrementSelfTicks(); } struct NodesPair { NodesPair(ProfileNode* src, ProfileNode* dst) : src(src), dst(dst) { } ProfileNode* src; ProfileNode* dst; }; class Position { public: explicit Position(ProfileNode* node) : node(node), child_idx_(0) { } INLINE(ProfileNode* current_child()) { return node->children()->at(child_idx_); } INLINE(bool has_current_child()) { return child_idx_ < node->children()->length(); } INLINE(void next_child()) { ++child_idx_; } ProfileNode* node; private: int child_idx_; }; // Non-recursive implementation of a depth-first post-order tree traversal. template <typename Callback> void ProfileTree::TraverseDepthFirst(Callback* callback) { List<Position> stack(10); stack.Add(Position(root_)); while (stack.length() > 0) { Position& current = stack.last(); if (current.has_current_child()) { callback->BeforeTraversingChild(current.node, current.current_child()); stack.Add(Position(current.current_child())); } else { callback->AfterAllChildrenTraversed(current.node); if (stack.length() > 1) { Position& parent = stack[stack.length() - 2]; callback->AfterChildTraversed(parent.node, current.node); parent.next_child(); } // Remove child from the stack. stack.RemoveLast(); } } } CpuProfile::CpuProfile(const char* title, unsigned uid, bool record_samples) : title_(title), uid_(uid), record_samples_(record_samples), start_time_(Time::NowFromSystemTime()) { timer_.Start(); } void CpuProfile::AddPath(const Vector<CodeEntry*>& path) { ProfileNode* top_frame_node = top_down_.AddPathFromEnd(path); if (record_samples_) samples_.Add(top_frame_node); } void CpuProfile::CalculateTotalTicksAndSamplingRate() { end_time_ = start_time_ + timer_.Elapsed(); } void CpuProfile::Print() { OS::Print("[Top down]:\n"); top_down_.Print(); } CodeEntry* const CodeMap::kSharedFunctionCodeEntry = NULL; const CodeMap::CodeTreeConfig::Key CodeMap::CodeTreeConfig::kNoKey = NULL; void CodeMap::AddCode(Address addr, CodeEntry* entry, unsigned size) { DeleteAllCoveredCode(addr, addr + size); CodeTree::Locator locator; tree_.Insert(addr, &locator); locator.set_value(CodeEntryInfo(entry, size)); } void CodeMap::DeleteAllCoveredCode(Address start, Address end) { List<Address> to_delete; Address addr = end - 1; while (addr >= start) { CodeTree::Locator locator; if (!tree_.FindGreatestLessThan(addr, &locator)) break; Address start2 = locator.key(), end2 = start2 + locator.value().size; if (start2 < end && start < end2) to_delete.Add(start2); addr = start2 - 1; } for (int i = 0; i < to_delete.length(); ++i) tree_.Remove(to_delete[i]); } CodeEntry* CodeMap::FindEntry(Address addr, Address* start) { CodeTree::Locator locator; if (tree_.FindGreatestLessThan(addr, &locator)) { // locator.key() <= addr. Need to check that addr is within entry. const CodeEntryInfo& entry = locator.value(); if (addr < (locator.key() + entry.size)) { if (start) { *start = locator.key(); } return entry.entry; } } return NULL; } int CodeMap::GetSharedId(Address addr) { CodeTree::Locator locator; // For shared function entries, 'size' field is used to store their IDs. if (tree_.Find(addr, &locator)) { const CodeEntryInfo& entry = locator.value(); ASSERT(entry.entry == kSharedFunctionCodeEntry); return entry.size; } else { tree_.Insert(addr, &locator); int id = next_shared_id_++; locator.set_value(CodeEntryInfo(kSharedFunctionCodeEntry, id)); return id; } } void CodeMap::MoveCode(Address from, Address to) { if (from == to) return; CodeTree::Locator locator; if (!tree_.Find(from, &locator)) return; CodeEntryInfo entry = locator.value(); tree_.Remove(from); AddCode(to, entry.entry, entry.size); } void CodeMap::CodeTreePrinter::Call( const Address& key, const CodeMap::CodeEntryInfo& value) { // For shared function entries, 'size' field is used to store their IDs. if (value.entry == kSharedFunctionCodeEntry) { OS::Print("%p SharedFunctionInfo %d\n", key, value.size); } else { OS::Print("%p %5d %s\n", key, value.size, value.entry->name()); } } void CodeMap::Print() { CodeTreePrinter printer; tree_.ForEach(&printer); } CpuProfilesCollection::CpuProfilesCollection(Heap* heap) : function_and_resource_names_(heap), current_profiles_semaphore_(1) { } static void DeleteCodeEntry(CodeEntry** entry_ptr) { delete *entry_ptr; } static void DeleteCpuProfile(CpuProfile** profile_ptr) { delete *profile_ptr; } CpuProfilesCollection::~CpuProfilesCollection() { finished_profiles_.Iterate(DeleteCpuProfile); current_profiles_.Iterate(DeleteCpuProfile); code_entries_.Iterate(DeleteCodeEntry); } bool CpuProfilesCollection::StartProfiling(const char* title, unsigned uid, bool record_samples) { ASSERT(uid > 0); current_profiles_semaphore_.Wait(); if (current_profiles_.length() >= kMaxSimultaneousProfiles) { current_profiles_semaphore_.Signal(); return false; } for (int i = 0; i < current_profiles_.length(); ++i) { if (strcmp(current_profiles_[i]->title(), title) == 0) { // Ignore attempts to start profile with the same title. current_profiles_semaphore_.Signal(); return false; } } current_profiles_.Add(new CpuProfile(title, uid, record_samples)); current_profiles_semaphore_.Signal(); return true; } CpuProfile* CpuProfilesCollection::StopProfiling(const char* title) { const int title_len = StrLength(title); CpuProfile* profile = NULL; current_profiles_semaphore_.Wait(); for (int i = current_profiles_.length() - 1; i >= 0; --i) { if (title_len == 0 || strcmp(current_profiles_[i]->title(), title) == 0) { profile = current_profiles_.Remove(i); break; } } current_profiles_semaphore_.Signal(); if (profile == NULL) return NULL; profile->CalculateTotalTicksAndSamplingRate(); finished_profiles_.Add(profile); return profile; } bool CpuProfilesCollection::IsLastProfile(const char* title) { // Called from VM thread, and only it can mutate the list, // so no locking is needed here. if (current_profiles_.length() != 1) return false; return StrLength(title) == 0 || strcmp(current_profiles_[0]->title(), title) == 0; } void CpuProfilesCollection::RemoveProfile(CpuProfile* profile) { // Called from VM thread for a completed profile. unsigned uid = profile->uid(); for (int i = 0; i < finished_profiles_.length(); i++) { if (uid == finished_profiles_[i]->uid()) { finished_profiles_.Remove(i); return; } } UNREACHABLE(); } void CpuProfilesCollection::AddPathToCurrentProfiles( const Vector<CodeEntry*>& path) { // As starting / stopping profiles is rare relatively to this // method, we don't bother minimizing the duration of lock holding, // e.g. copying contents of the list to a local vector. current_profiles_semaphore_.Wait(); for (int i = 0; i < current_profiles_.length(); ++i) { current_profiles_[i]->AddPath(path); } current_profiles_semaphore_.Signal(); } CodeEntry* CpuProfilesCollection::NewCodeEntry( Logger::LogEventsAndTags tag, const char* name, const char* name_prefix, const char* resource_name, int line_number, int column_number) { CodeEntry* code_entry = new CodeEntry(tag, name, name_prefix, resource_name, line_number, column_number); code_entries_.Add(code_entry); return code_entry; } const char* const ProfileGenerator::kAnonymousFunctionName = "(anonymous function)"; const char* const ProfileGenerator::kProgramEntryName = "(program)"; const char* const ProfileGenerator::kIdleEntryName = "(idle)"; const char* const ProfileGenerator::kGarbageCollectorEntryName = "(garbage collector)"; const char* const ProfileGenerator::kUnresolvedFunctionName = "(unresolved function)"; ProfileGenerator::ProfileGenerator(CpuProfilesCollection* profiles) : profiles_(profiles), program_entry_( profiles->NewCodeEntry(Logger::FUNCTION_TAG, kProgramEntryName)), idle_entry_( profiles->NewCodeEntry(Logger::FUNCTION_TAG, kIdleEntryName)), gc_entry_( profiles->NewCodeEntry(Logger::BUILTIN_TAG, kGarbageCollectorEntryName)), unresolved_entry_( profiles->NewCodeEntry(Logger::FUNCTION_TAG, kUnresolvedFunctionName)) { } void ProfileGenerator::RecordTickSample(const TickSample& sample) { // Allocate space for stack frames + pc + function + vm-state. ScopedVector<CodeEntry*> entries(sample.frames_count + 3); // As actual number of decoded code entries may vary, initialize // entries vector with NULL values. CodeEntry** entry = entries.start(); memset(entry, 0, entries.length() * sizeof(*entry)); if (sample.pc != NULL) { if (sample.has_external_callback && sample.state == EXTERNAL && sample.top_frame_type == StackFrame::EXIT) { // Don't use PC when in external callback code, as it can point // inside callback's code, and we will erroneously report // that a callback calls itself. *entry++ = code_map_.FindEntry(sample.external_callback); } else { Address start; CodeEntry* pc_entry = code_map_.FindEntry(sample.pc, &start); // If pc is in the function code before it set up stack frame or after the // frame was destroyed SafeStackFrameIterator incorrectly thinks that // ebp contains return address of the current function and skips caller's // frame. Check for this case and just skip such samples. if (pc_entry) { List<OffsetRange>* ranges = pc_entry->no_frame_ranges(); if (ranges) { Code* code = Code::cast(HeapObject::FromAddress(start)); int pc_offset = static_cast<int>( sample.pc - code->instruction_start()); for (int i = 0; i < ranges->length(); i++) { OffsetRange& range = ranges->at(i); if (range.from <= pc_offset && pc_offset < range.to) { return; } } } *entry++ = pc_entry; if (pc_entry->builtin_id() == Builtins::kFunctionCall || pc_entry->builtin_id() == Builtins::kFunctionApply) { // When current function is FunctionCall or FunctionApply builtin the // top frame is either frame of the calling JS function or internal // frame. In the latter case we know the caller for sure but in the // former case we don't so we simply replace the frame with // 'unresolved' entry. if (sample.top_frame_type == StackFrame::JAVA_SCRIPT) { *entry++ = unresolved_entry_; } } } } for (const Address* stack_pos = sample.stack, *stack_end = stack_pos + sample.frames_count; stack_pos != stack_end; ++stack_pos) { *entry++ = code_map_.FindEntry(*stack_pos); } } if (FLAG_prof_browser_mode) { bool no_symbolized_entries = true; for (CodeEntry** e = entries.start(); e != entry; ++e) { if (*e != NULL) { no_symbolized_entries = false; break; } } // If no frames were symbolized, put the VM state entry in. if (no_symbolized_entries) { *entry++ = EntryForVMState(sample.state); } } profiles_->AddPathToCurrentProfiles(entries); } CodeEntry* ProfileGenerator::EntryForVMState(StateTag tag) { switch (tag) { case GC: return gc_entry_; case JS: case COMPILER: // DOM events handlers are reported as OTHER / EXTERNAL entries. // To avoid confusing people, let's put all these entries into // one bucket. case OTHER: case EXTERNAL: return program_entry_; case IDLE: return idle_entry_; default: return NULL; } } } } // namespace v8::internal