// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/command_line.h"
#include "base/file_util.h"
#include "base/logging.h"
#include "base/process/kill.h"
#include "base/process/launch.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/utf_string_conversions.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "tools/gn/err.h"
#include "tools/gn/filesystem_utils.h"
#include "tools/gn/functions.h"
#include "tools/gn/input_conversion.h"
#include "tools/gn/input_file.h"
#include "tools/gn/parse_tree.h"
#include "tools/gn/scheduler.h"
#include "tools/gn/trace.h"
#include "tools/gn/value.h"
#if defined(OS_WIN)
#include <windows.h>
#include "base/win/scoped_handle.h"
#include "base/win/scoped_process_information.h"
#endif
#if defined(OS_POSIX)
#include <fcntl.h>
#include <unistd.h>
#include "base/posix/file_descriptor_shuffle.h"
#endif
namespace functions {
namespace {
const char kNoExecSwitch[] = "no-exec";
#if defined(OS_WIN)
bool ExecProcess(const CommandLine& cmdline,
const base::FilePath& startup_dir,
std::string* std_out,
std::string* std_err,
int* exit_code) {
SECURITY_ATTRIBUTES sa_attr;
// Set the bInheritHandle flag so pipe handles are inherited.
sa_attr.nLength = sizeof(SECURITY_ATTRIBUTES);
sa_attr.bInheritHandle = TRUE;
sa_attr.lpSecurityDescriptor = NULL;
// Create the pipe for the child process's STDOUT.
HANDLE out_read = NULL;
HANDLE out_write = NULL;
if (!CreatePipe(&out_read, &out_write, &sa_attr, 0)) {
NOTREACHED() << "Failed to create pipe";
return false;
}
base::win::ScopedHandle scoped_out_read(out_read);
base::win::ScopedHandle scoped_out_write(out_write);
// Create the pipe for the child process's STDERR.
HANDLE err_read = NULL;
HANDLE err_write = NULL;
if (!CreatePipe(&err_read, &err_write, &sa_attr, 0)) {
NOTREACHED() << "Failed to create pipe";
return false;
}
base::win::ScopedHandle scoped_err_read(err_read);
base::win::ScopedHandle scoped_err_write(err_write);
// Ensure the read handle to the pipe for STDOUT/STDERR is not inherited.
if (!SetHandleInformation(out_read, HANDLE_FLAG_INHERIT, 0)) {
NOTREACHED() << "Failed to disabled pipe inheritance";
return false;
}
if (!SetHandleInformation(err_read, HANDLE_FLAG_INHERIT, 0)) {
NOTREACHED() << "Failed to disabled pipe inheritance";
return false;
}
base::FilePath::StringType cmdline_str(cmdline.GetCommandLineString());
STARTUPINFO start_info = {};
start_info.cb = sizeof(STARTUPINFO);
start_info.hStdOutput = out_write;
// Keep the normal stdin.
start_info.hStdInput = GetStdHandle(STD_INPUT_HANDLE);
// FIXME(brettw) set stderr here when we actually read it below.
//start_info.hStdError = err_write;
start_info.hStdError = GetStdHandle(STD_ERROR_HANDLE);
start_info.dwFlags |= STARTF_USESTDHANDLES;
// Create the child process.
PROCESS_INFORMATION temp_process_info = {};
if (!CreateProcess(NULL,
&cmdline_str[0],
NULL, NULL,
TRUE, // Handles are inherited.
0, NULL,
startup_dir.value().c_str(),
&start_info, &temp_process_info)) {
return false;
}
base::win::ScopedProcessInformation proc_info(temp_process_info);
// Close our writing end of pipes now. Otherwise later read would not be able
// to detect end of child's output.
scoped_out_write.Close();
scoped_err_write.Close();
// Read output from the child process's pipe for STDOUT
const int kBufferSize = 1024;
char buffer[kBufferSize];
// FIXME(brettw) read from stderr here! This is complicated because we want
// to read both of them at the same time, probably need overlapped I/O.
// Also uncomment start_info code above.
for (;;) {
DWORD bytes_read = 0;
BOOL success = ReadFile(out_read, buffer, kBufferSize, &bytes_read, NULL);
if (!success || bytes_read == 0)
break;
std_out->append(buffer, bytes_read);
}
// Let's wait for the process to finish.
WaitForSingleObject(proc_info.process_handle(), INFINITE);
DWORD dw_exit_code;
GetExitCodeProcess(proc_info.process_handle(), &dw_exit_code);
*exit_code = static_cast<int>(dw_exit_code);
return true;
}
#else
bool ExecProcess(const CommandLine& cmdline,
const base::FilePath& startup_dir,
std::string* std_out,
std::string* std_err,
int* exit_code) {
*exit_code = EXIT_FAILURE;
std::vector<std::string> argv = cmdline.argv();
int pipe_fd[2];
pid_t pid;
base::InjectiveMultimap fd_shuffle1, fd_shuffle2;
scoped_ptr<char*[]> argv_cstr(new char*[argv.size() + 1]);
fd_shuffle1.reserve(3);
fd_shuffle2.reserve(3);
if (pipe(pipe_fd) < 0)
return false;
switch (pid = fork()) {
case -1: // error
close(pipe_fd[0]);
close(pipe_fd[1]);
return false;
case 0: // child
{
// DANGER: no calls to malloc are allowed from now on:
// http://crbug.com/36678
// Obscure fork() rule: in the child, if you don't end up doing exec*(),
// you call _exit() instead of exit(). This is because _exit() does not
// call any previously-registered (in the parent) exit handlers, which
// might do things like block waiting for threads that don't even exist
// in the child.
int dev_null = open("/dev/null", O_WRONLY);
if (dev_null < 0)
_exit(127);
fd_shuffle1.push_back(
base::InjectionArc(pipe_fd[1], STDOUT_FILENO, true));
fd_shuffle1.push_back(
base::InjectionArc(dev_null, STDERR_FILENO, true));
fd_shuffle1.push_back(
base::InjectionArc(dev_null, STDIN_FILENO, true));
// Adding another element here? Remeber to increase the argument to
// reserve(), above.
std::copy(fd_shuffle1.begin(), fd_shuffle1.end(),
std::back_inserter(fd_shuffle2));
if (!ShuffleFileDescriptors(&fd_shuffle1))
_exit(127);
file_util::SetCurrentDirectory(startup_dir);
// TODO(brettw) the base version GetAppOutput does a
// CloseSuperfluousFds call here. Do we need this?
for (size_t i = 0; i < argv.size(); i++)
argv_cstr[i] = const_cast<char*>(argv[i].c_str());
argv_cstr[argv.size()] = NULL;
execvp(argv_cstr[0], argv_cstr.get());
_exit(127);
}
default: // parent
{
// Close our writing end of pipe now. Otherwise later read would not
// be able to detect end of child's output (in theory we could still
// write to the pipe).
close(pipe_fd[1]);
char buffer[256];
ssize_t bytes_read = 0;
while (true) {
bytes_read = HANDLE_EINTR(read(pipe_fd[0], buffer, sizeof(buffer)));
if (bytes_read <= 0)
break;
std_out->append(buffer, bytes_read);
}
close(pipe_fd[0]);
return base::WaitForExitCode(pid, exit_code);
}
}
return false;
}
#endif
} // namespace
const char kExecScript[] = "exec_script";
const char kExecScript_Help[] =
"exec_script: Synchronously run a script and return the output.\n"
"\n"
" exec_script(filename, arguments, input_conversion,\n"
" [file_dependencies])\n"
"\n"
" Runs the given script, returning the stdout of the script. The build\n"
" generation will fail if the script does not exist or returns a nonzero\n"
" exit code.\n"
"\n"
" The current directory when executing the script will be the root\n"
" build directory. If you are passing file names, you will want to use\n"
" the to_build_dir() function to make file names relative to this\n"
" path (see \"gn help to_build_dir\").\n"
"\n"
"Arguments:\n"
"\n"
" filename:\n"
" File name of python script to execute. Non-absolute names will\n"
" be treated as relative to the current build file.\n"
"\n"
" arguments:\n"
" A list of strings to be passed to the script as arguments.\n"
"\n"
" input_conversion:\n"
" Controls how the file is read and parsed.\n"
" See \"gn help input_conversion\".\n"
"\n"
" dependencies:\n"
" (Optional) A list of files that this script reads or otherwise\n"
" depends on. These dependencies will be added to the build result\n"
" such that if any of them change, the build will be regenerated and\n"
" the script will be re-run.\n"
"\n"
" The script itself will be an implicit dependency so you do not\n"
" need to list it.\n"
"\n"
"Example:\n"
"\n"
" all_lines = exec_script(\"myscript.py\", [some_input], \"list lines\",\n"
" [ to_build_dir(\"data_file.txt\") ])\n";
Value RunExecScript(Scope* scope,
const FunctionCallNode* function,
const std::vector<Value>& args,
Err* err) {
if (args.size() != 3 && args.size() != 4) {
*err = Err(function->function(), "Wrong number of args to write_file",
"I expected three or four arguments.");
return Value();
}
const Settings* settings = scope->settings();
const BuildSettings* build_settings = settings->build_settings();
const SourceDir& cur_dir = scope->GetSourceDir();
// Find the python script to run.
if (!args[0].VerifyTypeIs(Value::STRING, err))
return Value();
SourceFile script_source =
cur_dir.ResolveRelativeFile(args[0].string_value());
base::FilePath script_path = build_settings->GetFullPath(script_source);
if (!build_settings->secondary_source_path().empty() &&
!base::PathExists(script_path)) {
// Fall back to secondary source root when the file doesn't exist.
script_path = build_settings->GetFullPathSecondary(script_source);
}
ScopedTrace trace(TraceItem::TRACE_SCRIPT_EXECUTE, script_source.value());
trace.SetToolchain(settings->toolchain_label());
// Add all dependencies of this script, including the script itself, to the
// build deps.
g_scheduler->AddGenDependency(script_path);
if (args.size() == 4) {
const Value& deps_value = args[3];
if (!deps_value.VerifyTypeIs(Value::LIST, err))
return Value();
for (size_t i = 0; i < deps_value.list_value().size(); i++) {
if (!deps_value.list_value()[0].VerifyTypeIs(Value::STRING, err))
return Value();
g_scheduler->AddGenDependency(
build_settings->GetFullPath(cur_dir.ResolveRelativeFile(
deps_value.list_value()[0].string_value())));
}
}
// Make the command line.
const base::FilePath& python_path = build_settings->python_path();
CommandLine cmdline(python_path);
cmdline.AppendArgPath(script_path);
const Value& script_args = args[1];
if (!script_args.VerifyTypeIs(Value::LIST, err))
return Value();
for (size_t i = 0; i < script_args.list_value().size(); i++) {
if (!script_args.list_value()[i].VerifyTypeIs(Value::STRING, err))
return Value();
cmdline.AppendArg(script_args.list_value()[i].string_value());
}
// Log command line for debugging help.
trace.SetCommandLine(cmdline);
base::TimeTicks begin_exec;
if (g_scheduler->verbose_logging()) {
#if defined(OS_WIN)
g_scheduler->Log("Pythoning", UTF16ToUTF8(cmdline.GetCommandLineString()));
#else
g_scheduler->Log("Pythoning", cmdline.GetCommandLineString());
#endif
begin_exec = base::TimeTicks::Now();
}
base::FilePath startup_dir =
build_settings->GetFullPath(build_settings->build_dir());
// The first time a build is run, no targets will have been written so the
// build output directory won't exist. We need to make sure it does before
// running any scripts with this as its startup directory, although it will
// be relatively rare that the directory won't exist by the time we get here.
//
// If this shows up on benchmarks, we can cache whether we've done this
// or not and skip creating the directory.
base::CreateDirectory(startup_dir);
// Execute the process.
// TODO(brettw) set the environment block.
std::string output;
std::string stderr_output; // TODO(brettw) not hooked up, see above.
int exit_code = 0;
if (!CommandLine::ForCurrentProcess()->HasSwitch(kNoExecSwitch)) {
if (!ExecProcess(cmdline, startup_dir,
&output, &stderr_output, &exit_code)) {
*err = Err(function->function(), "Could not execute python.",
"I was trying to execute \"" + FilePathToUTF8(python_path) + "\".");
return Value();
}
}
if (g_scheduler->verbose_logging()) {
g_scheduler->Log("Pythoning", script_source.value() + " took " +
base::Int64ToString(
(base::TimeTicks::Now() - begin_exec).InMilliseconds()) +
"ms");
}
// TODO(brettw) maybe we need stderr also for reasonable stack dumps.
if (exit_code != 0) {
std::string msg = "Current dir: " + FilePathToUTF8(startup_dir) +
"\nCommand: " + FilePathToUTF8(cmdline.GetCommandLineString()) +
"\nReturned " + base::IntToString(exit_code);
if (!output.empty())
msg += " and printed out:\n\n" + output;
else
msg += ".";
*err = Err(function->function(), "Script returned non-zero exit code.",
msg);
return Value();
}
return ConvertInputToValue(output, function, args[2], err);
}
} // namespace functions