// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/command_line.h" #include "base/file_util.h" #include "base/logging.h" #include "base/process/kill.h" #include "base/process/launch.h" #include "base/strings/string_number_conversions.h" #include "base/strings/utf_string_conversions.h" #include "base/time/time.h" #include "build/build_config.h" #include "tools/gn/err.h" #include "tools/gn/filesystem_utils.h" #include "tools/gn/functions.h" #include "tools/gn/input_conversion.h" #include "tools/gn/input_file.h" #include "tools/gn/parse_tree.h" #include "tools/gn/scheduler.h" #include "tools/gn/trace.h" #include "tools/gn/value.h" #if defined(OS_WIN) #include <windows.h> #include "base/win/scoped_handle.h" #include "base/win/scoped_process_information.h" #endif #if defined(OS_POSIX) #include <fcntl.h> #include <unistd.h> #include "base/posix/file_descriptor_shuffle.h" #endif namespace functions { namespace { const char kNoExecSwitch[] = "no-exec"; #if defined(OS_WIN) bool ExecProcess(const CommandLine& cmdline, const base::FilePath& startup_dir, std::string* std_out, std::string* std_err, int* exit_code) { SECURITY_ATTRIBUTES sa_attr; // Set the bInheritHandle flag so pipe handles are inherited. sa_attr.nLength = sizeof(SECURITY_ATTRIBUTES); sa_attr.bInheritHandle = TRUE; sa_attr.lpSecurityDescriptor = NULL; // Create the pipe for the child process's STDOUT. HANDLE out_read = NULL; HANDLE out_write = NULL; if (!CreatePipe(&out_read, &out_write, &sa_attr, 0)) { NOTREACHED() << "Failed to create pipe"; return false; } base::win::ScopedHandle scoped_out_read(out_read); base::win::ScopedHandle scoped_out_write(out_write); // Create the pipe for the child process's STDERR. HANDLE err_read = NULL; HANDLE err_write = NULL; if (!CreatePipe(&err_read, &err_write, &sa_attr, 0)) { NOTREACHED() << "Failed to create pipe"; return false; } base::win::ScopedHandle scoped_err_read(err_read); base::win::ScopedHandle scoped_err_write(err_write); // Ensure the read handle to the pipe for STDOUT/STDERR is not inherited. if (!SetHandleInformation(out_read, HANDLE_FLAG_INHERIT, 0)) { NOTREACHED() << "Failed to disabled pipe inheritance"; return false; } if (!SetHandleInformation(err_read, HANDLE_FLAG_INHERIT, 0)) { NOTREACHED() << "Failed to disabled pipe inheritance"; return false; } base::FilePath::StringType cmdline_str(cmdline.GetCommandLineString()); STARTUPINFO start_info = {}; start_info.cb = sizeof(STARTUPINFO); start_info.hStdOutput = out_write; // Keep the normal stdin. start_info.hStdInput = GetStdHandle(STD_INPUT_HANDLE); // FIXME(brettw) set stderr here when we actually read it below. //start_info.hStdError = err_write; start_info.hStdError = GetStdHandle(STD_ERROR_HANDLE); start_info.dwFlags |= STARTF_USESTDHANDLES; // Create the child process. PROCESS_INFORMATION temp_process_info = {}; if (!CreateProcess(NULL, &cmdline_str[0], NULL, NULL, TRUE, // Handles are inherited. 0, NULL, startup_dir.value().c_str(), &start_info, &temp_process_info)) { return false; } base::win::ScopedProcessInformation proc_info(temp_process_info); // Close our writing end of pipes now. Otherwise later read would not be able // to detect end of child's output. scoped_out_write.Close(); scoped_err_write.Close(); // Read output from the child process's pipe for STDOUT const int kBufferSize = 1024; char buffer[kBufferSize]; // FIXME(brettw) read from stderr here! This is complicated because we want // to read both of them at the same time, probably need overlapped I/O. // Also uncomment start_info code above. for (;;) { DWORD bytes_read = 0; BOOL success = ReadFile(out_read, buffer, kBufferSize, &bytes_read, NULL); if (!success || bytes_read == 0) break; std_out->append(buffer, bytes_read); } // Let's wait for the process to finish. WaitForSingleObject(proc_info.process_handle(), INFINITE); DWORD dw_exit_code; GetExitCodeProcess(proc_info.process_handle(), &dw_exit_code); *exit_code = static_cast<int>(dw_exit_code); return true; } #else bool ExecProcess(const CommandLine& cmdline, const base::FilePath& startup_dir, std::string* std_out, std::string* std_err, int* exit_code) { *exit_code = EXIT_FAILURE; std::vector<std::string> argv = cmdline.argv(); int pipe_fd[2]; pid_t pid; base::InjectiveMultimap fd_shuffle1, fd_shuffle2; scoped_ptr<char*[]> argv_cstr(new char*[argv.size() + 1]); fd_shuffle1.reserve(3); fd_shuffle2.reserve(3); if (pipe(pipe_fd) < 0) return false; switch (pid = fork()) { case -1: // error close(pipe_fd[0]); close(pipe_fd[1]); return false; case 0: // child { // DANGER: no calls to malloc are allowed from now on: // http://crbug.com/36678 // Obscure fork() rule: in the child, if you don't end up doing exec*(), // you call _exit() instead of exit(). This is because _exit() does not // call any previously-registered (in the parent) exit handlers, which // might do things like block waiting for threads that don't even exist // in the child. int dev_null = open("/dev/null", O_WRONLY); if (dev_null < 0) _exit(127); fd_shuffle1.push_back( base::InjectionArc(pipe_fd[1], STDOUT_FILENO, true)); fd_shuffle1.push_back( base::InjectionArc(dev_null, STDERR_FILENO, true)); fd_shuffle1.push_back( base::InjectionArc(dev_null, STDIN_FILENO, true)); // Adding another element here? Remeber to increase the argument to // reserve(), above. std::copy(fd_shuffle1.begin(), fd_shuffle1.end(), std::back_inserter(fd_shuffle2)); if (!ShuffleFileDescriptors(&fd_shuffle1)) _exit(127); file_util::SetCurrentDirectory(startup_dir); // TODO(brettw) the base version GetAppOutput does a // CloseSuperfluousFds call here. Do we need this? for (size_t i = 0; i < argv.size(); i++) argv_cstr[i] = const_cast<char*>(argv[i].c_str()); argv_cstr[argv.size()] = NULL; execvp(argv_cstr[0], argv_cstr.get()); _exit(127); } default: // parent { // Close our writing end of pipe now. Otherwise later read would not // be able to detect end of child's output (in theory we could still // write to the pipe). close(pipe_fd[1]); char buffer[256]; ssize_t bytes_read = 0; while (true) { bytes_read = HANDLE_EINTR(read(pipe_fd[0], buffer, sizeof(buffer))); if (bytes_read <= 0) break; std_out->append(buffer, bytes_read); } close(pipe_fd[0]); return base::WaitForExitCode(pid, exit_code); } } return false; } #endif } // namespace const char kExecScript[] = "exec_script"; const char kExecScript_Help[] = "exec_script: Synchronously run a script and return the output.\n" "\n" " exec_script(filename, arguments, input_conversion,\n" " [file_dependencies])\n" "\n" " Runs the given script, returning the stdout of the script. The build\n" " generation will fail if the script does not exist or returns a nonzero\n" " exit code.\n" "\n" " The current directory when executing the script will be the root\n" " build directory. If you are passing file names, you will want to use\n" " the to_build_dir() function to make file names relative to this\n" " path (see \"gn help to_build_dir\").\n" "\n" "Arguments:\n" "\n" " filename:\n" " File name of python script to execute. Non-absolute names will\n" " be treated as relative to the current build file.\n" "\n" " arguments:\n" " A list of strings to be passed to the script as arguments.\n" "\n" " input_conversion:\n" " Controls how the file is read and parsed.\n" " See \"gn help input_conversion\".\n" "\n" " dependencies:\n" " (Optional) A list of files that this script reads or otherwise\n" " depends on. These dependencies will be added to the build result\n" " such that if any of them change, the build will be regenerated and\n" " the script will be re-run.\n" "\n" " The script itself will be an implicit dependency so you do not\n" " need to list it.\n" "\n" "Example:\n" "\n" " all_lines = exec_script(\"myscript.py\", [some_input], \"list lines\",\n" " [ to_build_dir(\"data_file.txt\") ])\n"; Value RunExecScript(Scope* scope, const FunctionCallNode* function, const std::vector<Value>& args, Err* err) { if (args.size() != 3 && args.size() != 4) { *err = Err(function->function(), "Wrong number of args to write_file", "I expected three or four arguments."); return Value(); } const Settings* settings = scope->settings(); const BuildSettings* build_settings = settings->build_settings(); const SourceDir& cur_dir = scope->GetSourceDir(); // Find the python script to run. if (!args[0].VerifyTypeIs(Value::STRING, err)) return Value(); SourceFile script_source = cur_dir.ResolveRelativeFile(args[0].string_value()); base::FilePath script_path = build_settings->GetFullPath(script_source); if (!build_settings->secondary_source_path().empty() && !base::PathExists(script_path)) { // Fall back to secondary source root when the file doesn't exist. script_path = build_settings->GetFullPathSecondary(script_source); } ScopedTrace trace(TraceItem::TRACE_SCRIPT_EXECUTE, script_source.value()); trace.SetToolchain(settings->toolchain_label()); // Add all dependencies of this script, including the script itself, to the // build deps. g_scheduler->AddGenDependency(script_path); if (args.size() == 4) { const Value& deps_value = args[3]; if (!deps_value.VerifyTypeIs(Value::LIST, err)) return Value(); for (size_t i = 0; i < deps_value.list_value().size(); i++) { if (!deps_value.list_value()[0].VerifyTypeIs(Value::STRING, err)) return Value(); g_scheduler->AddGenDependency( build_settings->GetFullPath(cur_dir.ResolveRelativeFile( deps_value.list_value()[0].string_value()))); } } // Make the command line. const base::FilePath& python_path = build_settings->python_path(); CommandLine cmdline(python_path); cmdline.AppendArgPath(script_path); const Value& script_args = args[1]; if (!script_args.VerifyTypeIs(Value::LIST, err)) return Value(); for (size_t i = 0; i < script_args.list_value().size(); i++) { if (!script_args.list_value()[i].VerifyTypeIs(Value::STRING, err)) return Value(); cmdline.AppendArg(script_args.list_value()[i].string_value()); } // Log command line for debugging help. trace.SetCommandLine(cmdline); base::TimeTicks begin_exec; if (g_scheduler->verbose_logging()) { #if defined(OS_WIN) g_scheduler->Log("Pythoning", UTF16ToUTF8(cmdline.GetCommandLineString())); #else g_scheduler->Log("Pythoning", cmdline.GetCommandLineString()); #endif begin_exec = base::TimeTicks::Now(); } base::FilePath startup_dir = build_settings->GetFullPath(build_settings->build_dir()); // The first time a build is run, no targets will have been written so the // build output directory won't exist. We need to make sure it does before // running any scripts with this as its startup directory, although it will // be relatively rare that the directory won't exist by the time we get here. // // If this shows up on benchmarks, we can cache whether we've done this // or not and skip creating the directory. base::CreateDirectory(startup_dir); // Execute the process. // TODO(brettw) set the environment block. std::string output; std::string stderr_output; // TODO(brettw) not hooked up, see above. int exit_code = 0; if (!CommandLine::ForCurrentProcess()->HasSwitch(kNoExecSwitch)) { if (!ExecProcess(cmdline, startup_dir, &output, &stderr_output, &exit_code)) { *err = Err(function->function(), "Could not execute python.", "I was trying to execute \"" + FilePathToUTF8(python_path) + "\"."); return Value(); } } if (g_scheduler->verbose_logging()) { g_scheduler->Log("Pythoning", script_source.value() + " took " + base::Int64ToString( (base::TimeTicks::Now() - begin_exec).InMilliseconds()) + "ms"); } // TODO(brettw) maybe we need stderr also for reasonable stack dumps. if (exit_code != 0) { std::string msg = "Current dir: " + FilePathToUTF8(startup_dir) + "\nCommand: " + FilePathToUTF8(cmdline.GetCommandLineString()) + "\nReturned " + base::IntToString(exit_code); if (!output.empty()) msg += " and printed out:\n\n" + output; else msg += "."; *err = Err(function->function(), "Script returned non-zero exit code.", msg); return Value(); } return ConvertInputToValue(output, function, args[2], err); } } // namespace functions