/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "interpreter.h"
#include <math.h>
#include "base/logging.h"
#include "class_linker-inl.h"
#include "common_throws.h"
#include "dex_file-inl.h"
#include "dex_instruction-inl.h"
#include "dex_instruction.h"
#include "entrypoints/entrypoint_utils.h"
#include "gc/accounting/card_table-inl.h"
#include "invoke_arg_array_builder.h"
#include "nth_caller_visitor.h"
#include "mirror/art_field-inl.h"
#include "mirror/art_method.h"
#include "mirror/art_method-inl.h"
#include "mirror/class.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "object_utils.h"
#include "ScopedLocalRef.h"
#include "scoped_thread_state_change.h"
#include "thread.h"
#include "well_known_classes.h"
using ::art::mirror::ArtField;
using ::art::mirror::ArtMethod;
using ::art::mirror::Array;
using ::art::mirror::BooleanArray;
using ::art::mirror::ByteArray;
using ::art::mirror::CharArray;
using ::art::mirror::Class;
using ::art::mirror::ClassLoader;
using ::art::mirror::IntArray;
using ::art::mirror::LongArray;
using ::art::mirror::Object;
using ::art::mirror::ObjectArray;
using ::art::mirror::ShortArray;
using ::art::mirror::String;
using ::art::mirror::Throwable;
namespace art {
namespace interpreter {
static const int32_t kMaxInt = std::numeric_limits<int32_t>::max();
static const int32_t kMinInt = std::numeric_limits<int32_t>::min();
static const int64_t kMaxLong = std::numeric_limits<int64_t>::max();
static const int64_t kMinLong = std::numeric_limits<int64_t>::min();
static void UnstartedRuntimeInvoke(Thread* self, MethodHelper& mh,
const DexFile::CodeItem* code_item, ShadowFrame* shadow_frame,
JValue* result, size_t arg_offset)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// In a runtime that's not started we intercept certain methods to avoid complicated dependency
// problems in core libraries.
std::string name(PrettyMethod(shadow_frame->GetMethod()));
if (name == "java.lang.Class java.lang.Class.forName(java.lang.String)") {
std::string descriptor(DotToDescriptor(shadow_frame->GetVRegReference(arg_offset)->AsString()->ToModifiedUtf8().c_str()));
ClassLoader* class_loader = NULL; // shadow_frame.GetMethod()->GetDeclaringClass()->GetClassLoader();
Class* found = Runtime::Current()->GetClassLinker()->FindClass(descriptor.c_str(),
class_loader);
CHECK(found != NULL) << "Class.forName failed in un-started runtime for class: "
<< PrettyDescriptor(descriptor);
result->SetL(found);
} else if (name == "java.lang.Object java.lang.Class.newInstance()") {
Class* klass = shadow_frame->GetVRegReference(arg_offset)->AsClass();
ArtMethod* c = klass->FindDeclaredDirectMethod("<init>", "()V");
CHECK(c != NULL);
SirtRef<Object> obj(self, klass->AllocObject(self));
CHECK(obj.get() != NULL);
EnterInterpreterFromInvoke(self, c, obj.get(), NULL, NULL);
result->SetL(obj.get());
} else if (name == "java.lang.reflect.Field java.lang.Class.getDeclaredField(java.lang.String)") {
// Special managed code cut-out to allow field lookup in a un-started runtime that'd fail
// going the reflective Dex way.
Class* klass = shadow_frame->GetVRegReference(arg_offset)->AsClass();
String* name = shadow_frame->GetVRegReference(arg_offset + 1)->AsString();
ArtField* found = NULL;
FieldHelper fh;
ObjectArray<ArtField>* fields = klass->GetIFields();
for (int32_t i = 0; i < fields->GetLength() && found == NULL; ++i) {
ArtField* f = fields->Get(i);
fh.ChangeField(f);
if (name->Equals(fh.GetName())) {
found = f;
}
}
if (found == NULL) {
fields = klass->GetSFields();
for (int32_t i = 0; i < fields->GetLength() && found == NULL; ++i) {
ArtField* f = fields->Get(i);
fh.ChangeField(f);
if (name->Equals(fh.GetName())) {
found = f;
}
}
}
CHECK(found != NULL)
<< "Failed to find field in Class.getDeclaredField in un-started runtime. name="
<< name->ToModifiedUtf8() << " class=" << PrettyDescriptor(klass);
// TODO: getDeclaredField calls GetType once the field is found to ensure a
// NoClassDefFoundError is thrown if the field's type cannot be resolved.
Class* jlr_Field = self->DecodeJObject(WellKnownClasses::java_lang_reflect_Field)->AsClass();
SirtRef<Object> field(self, jlr_Field->AllocObject(self));
CHECK(field.get() != NULL);
ArtMethod* c = jlr_Field->FindDeclaredDirectMethod("<init>", "(Ljava/lang/reflect/ArtField;)V");
uint32_t args[1];
args[0] = reinterpret_cast<uint32_t>(found);
EnterInterpreterFromInvoke(self, c, field.get(), args, NULL);
result->SetL(field.get());
} else if (name == "void java.lang.System.arraycopy(java.lang.Object, int, java.lang.Object, int, int)" ||
name == "void java.lang.System.arraycopy(char[], int, char[], int, int)") {
// Special case array copying without initializing System.
Class* ctype = shadow_frame->GetVRegReference(arg_offset)->GetClass()->GetComponentType();
jint srcPos = shadow_frame->GetVReg(arg_offset + 1);
jint dstPos = shadow_frame->GetVReg(arg_offset + 3);
jint length = shadow_frame->GetVReg(arg_offset + 4);
if (!ctype->IsPrimitive()) {
ObjectArray<Object>* src = shadow_frame->GetVRegReference(arg_offset)->AsObjectArray<Object>();
ObjectArray<Object>* dst = shadow_frame->GetVRegReference(arg_offset + 2)->AsObjectArray<Object>();
for (jint i = 0; i < length; ++i) {
dst->Set(dstPos + i, src->Get(srcPos + i));
}
} else if (ctype->IsPrimitiveChar()) {
CharArray* src = shadow_frame->GetVRegReference(arg_offset)->AsCharArray();
CharArray* dst = shadow_frame->GetVRegReference(arg_offset + 2)->AsCharArray();
for (jint i = 0; i < length; ++i) {
dst->Set(dstPos + i, src->Get(srcPos + i));
}
} else if (ctype->IsPrimitiveInt()) {
IntArray* src = shadow_frame->GetVRegReference(arg_offset)->AsIntArray();
IntArray* dst = shadow_frame->GetVRegReference(arg_offset + 2)->AsIntArray();
for (jint i = 0; i < length; ++i) {
dst->Set(dstPos + i, src->Get(srcPos + i));
}
} else {
UNIMPLEMENTED(FATAL) << "System.arraycopy of unexpected type: " << PrettyDescriptor(ctype);
}
} else {
// Not special, continue with regular interpreter execution.
artInterpreterToInterpreterBridge(self, mh, code_item, shadow_frame, result);
}
}
// Hand select a number of methods to be run in a not yet started runtime without using JNI.
static void UnstartedRuntimeJni(Thread* self, ArtMethod* method,
Object* receiver, uint32_t* args, JValue* result)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
std::string name(PrettyMethod(method));
if (name == "java.lang.ClassLoader dalvik.system.VMStack.getCallingClassLoader()") {
result->SetL(NULL);
} else if (name == "java.lang.Class dalvik.system.VMStack.getStackClass2()") {
NthCallerVisitor visitor(self, 3);
visitor.WalkStack();
result->SetL(visitor.caller->GetDeclaringClass());
} else if (name == "double java.lang.Math.log(double)") {
JValue value;
value.SetJ((static_cast<uint64_t>(args[1]) << 32) | args[0]);
result->SetD(log(value.GetD()));
} else if (name == "java.lang.String java.lang.Class.getNameNative()") {
result->SetL(receiver->AsClass()->ComputeName());
} else if (name == "int java.lang.Float.floatToRawIntBits(float)") {
result->SetI(args[0]);
} else if (name == "float java.lang.Float.intBitsToFloat(int)") {
result->SetI(args[0]);
} else if (name == "double java.lang.Math.exp(double)") {
JValue value;
value.SetJ((static_cast<uint64_t>(args[1]) << 32) | args[0]);
result->SetD(exp(value.GetD()));
} else if (name == "java.lang.Object java.lang.Object.internalClone()") {
result->SetL(receiver->Clone(self));
} else if (name == "void java.lang.Object.notifyAll()") {
receiver->NotifyAll(self);
} else if (name == "int java.lang.String.compareTo(java.lang.String)") {
String* rhs = reinterpret_cast<Object*>(args[0])->AsString();
CHECK(rhs != NULL);
result->SetI(receiver->AsString()->CompareTo(rhs));
} else if (name == "java.lang.String java.lang.String.intern()") {
result->SetL(receiver->AsString()->Intern());
} else if (name == "int java.lang.String.fastIndexOf(int, int)") {
result->SetI(receiver->AsString()->FastIndexOf(args[0], args[1]));
} else if (name == "java.lang.Object java.lang.reflect.Array.createMultiArray(java.lang.Class, int[])") {
result->SetL(Array::CreateMultiArray(self, reinterpret_cast<Object*>(args[0])->AsClass(), reinterpret_cast<Object*>(args[1])->AsIntArray()));
} else if (name == "java.lang.Object java.lang.Throwable.nativeFillInStackTrace()") {
ScopedObjectAccessUnchecked soa(self);
result->SetL(soa.Decode<Object*>(self->CreateInternalStackTrace(soa)));
} else if (name == "boolean java.nio.ByteOrder.isLittleEndian()") {
result->SetJ(JNI_TRUE);
} else if (name == "boolean sun.misc.Unsafe.compareAndSwapInt(java.lang.Object, long, int, int)") {
Object* obj = reinterpret_cast<Object*>(args[0]);
jlong offset = (static_cast<uint64_t>(args[2]) << 32) | args[1];
jint expectedValue = args[3];
jint newValue = args[4];
byte* raw_addr = reinterpret_cast<byte*>(obj) + offset;
volatile int32_t* address = reinterpret_cast<volatile int32_t*>(raw_addr);
// Note: android_atomic_release_cas() returns 0 on success, not failure.
int r = android_atomic_release_cas(expectedValue, newValue, address);
result->SetZ(r == 0);
} else if (name == "void sun.misc.Unsafe.putObject(java.lang.Object, long, java.lang.Object)") {
Object* obj = reinterpret_cast<Object*>(args[0]);
Object* newValue = reinterpret_cast<Object*>(args[3]);
obj->SetFieldObject(MemberOffset((static_cast<uint64_t>(args[2]) << 32) | args[1]), newValue, false);
} else {
LOG(FATAL) << "Attempt to invoke native method in non-started runtime: " << name;
}
}
static void InterpreterJni(Thread* self, ArtMethod* method, StringPiece shorty,
Object* receiver, uint32_t* args, JValue* result)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// TODO: The following enters JNI code using a typedef-ed function rather than the JNI compiler,
// it should be removed and JNI compiled stubs used instead.
ScopedObjectAccessUnchecked soa(self);
if (method->IsStatic()) {
if (shorty == "L") {
typedef jobject (fnptr)(JNIEnv*, jclass);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jclass> klass(soa.Env(),
soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
jobject jresult;
{
ScopedThreadStateChange tsc(self, kNative);
jresult = fn(soa.Env(), klass.get());
}
result->SetL(soa.Decode<Object*>(jresult));
} else if (shorty == "V") {
typedef void (fnptr)(JNIEnv*, jclass);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jclass> klass(soa.Env(),
soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
ScopedThreadStateChange tsc(self, kNative);
fn(soa.Env(), klass.get());
} else if (shorty == "Z") {
typedef jboolean (fnptr)(JNIEnv*, jclass);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jclass> klass(soa.Env(),
soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
ScopedThreadStateChange tsc(self, kNative);
result->SetZ(fn(soa.Env(), klass.get()));
} else if (shorty == "BI") {
typedef jbyte (fnptr)(JNIEnv*, jclass, jint);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jclass> klass(soa.Env(),
soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
ScopedThreadStateChange tsc(self, kNative);
result->SetB(fn(soa.Env(), klass.get(), args[0]));
} else if (shorty == "II") {
typedef jint (fnptr)(JNIEnv*, jclass, jint);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jclass> klass(soa.Env(),
soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
ScopedThreadStateChange tsc(self, kNative);
result->SetI(fn(soa.Env(), klass.get(), args[0]));
} else if (shorty == "LL") {
typedef jobject (fnptr)(JNIEnv*, jclass, jobject);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jclass> klass(soa.Env(),
soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
ScopedLocalRef<jobject> arg0(soa.Env(),
soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[0])));
jobject jresult;
{
ScopedThreadStateChange tsc(self, kNative);
jresult = fn(soa.Env(), klass.get(), arg0.get());
}
result->SetL(soa.Decode<Object*>(jresult));
} else if (shorty == "IIZ") {
typedef jint (fnptr)(JNIEnv*, jclass, jint, jboolean);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jclass> klass(soa.Env(),
soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
ScopedThreadStateChange tsc(self, kNative);
result->SetI(fn(soa.Env(), klass.get(), args[0], args[1]));
} else if (shorty == "ILI") {
typedef jint (fnptr)(JNIEnv*, jclass, jobject, jint);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jclass> klass(soa.Env(),
soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
ScopedLocalRef<jobject> arg0(soa.Env(),
soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[0])));
ScopedThreadStateChange tsc(self, kNative);
result->SetI(fn(soa.Env(), klass.get(), arg0.get(), args[1]));
} else if (shorty == "SIZ") {
typedef jshort (fnptr)(JNIEnv*, jclass, jint, jboolean);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jclass> klass(soa.Env(),
soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
ScopedThreadStateChange tsc(self, kNative);
result->SetS(fn(soa.Env(), klass.get(), args[0], args[1]));
} else if (shorty == "VIZ") {
typedef void (fnptr)(JNIEnv*, jclass, jint, jboolean);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jclass> klass(soa.Env(),
soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
ScopedThreadStateChange tsc(self, kNative);
fn(soa.Env(), klass.get(), args[0], args[1]);
} else if (shorty == "ZLL") {
typedef jboolean (fnptr)(JNIEnv*, jclass, jobject, jobject);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jclass> klass(soa.Env(),
soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
ScopedLocalRef<jobject> arg0(soa.Env(),
soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[0])));
ScopedLocalRef<jobject> arg1(soa.Env(),
soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[1])));
ScopedThreadStateChange tsc(self, kNative);
result->SetZ(fn(soa.Env(), klass.get(), arg0.get(), arg1.get()));
} else if (shorty == "ZILL") {
typedef jboolean (fnptr)(JNIEnv*, jclass, jint, jobject, jobject);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jclass> klass(soa.Env(),
soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
ScopedLocalRef<jobject> arg1(soa.Env(),
soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[1])));
ScopedLocalRef<jobject> arg2(soa.Env(),
soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[2])));
ScopedThreadStateChange tsc(self, kNative);
result->SetZ(fn(soa.Env(), klass.get(), args[0], arg1.get(), arg2.get()));
} else if (shorty == "VILII") {
typedef void (fnptr)(JNIEnv*, jclass, jint, jobject, jint, jint);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jclass> klass(soa.Env(),
soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
ScopedLocalRef<jobject> arg1(soa.Env(),
soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[1])));
ScopedThreadStateChange tsc(self, kNative);
fn(soa.Env(), klass.get(), args[0], arg1.get(), args[2], args[3]);
} else if (shorty == "VLILII") {
typedef void (fnptr)(JNIEnv*, jclass, jobject, jint, jobject, jint, jint);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jclass> klass(soa.Env(),
soa.AddLocalReference<jclass>(method->GetDeclaringClass()));
ScopedLocalRef<jobject> arg0(soa.Env(),
soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[0])));
ScopedLocalRef<jobject> arg2(soa.Env(),
soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[2])));
ScopedThreadStateChange tsc(self, kNative);
fn(soa.Env(), klass.get(), arg0.get(), args[1], arg2.get(), args[3], args[4]);
} else {
LOG(FATAL) << "Do something with static native method: " << PrettyMethod(method)
<< " shorty: " << shorty;
}
} else {
if (shorty == "L") {
typedef jobject (fnptr)(JNIEnv*, jobject);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jobject> rcvr(soa.Env(),
soa.AddLocalReference<jobject>(receiver));
jobject jresult;
{
ScopedThreadStateChange tsc(self, kNative);
jresult = fn(soa.Env(), rcvr.get());
}
result->SetL(soa.Decode<Object*>(jresult));
} else if (shorty == "V") {
typedef void (fnptr)(JNIEnv*, jobject);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jobject> rcvr(soa.Env(),
soa.AddLocalReference<jobject>(receiver));
ScopedThreadStateChange tsc(self, kNative);
fn(soa.Env(), rcvr.get());
} else if (shorty == "LL") {
typedef jobject (fnptr)(JNIEnv*, jobject, jobject);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jobject> rcvr(soa.Env(),
soa.AddLocalReference<jobject>(receiver));
ScopedLocalRef<jobject> arg0(soa.Env(),
soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[0])));
jobject jresult;
{
ScopedThreadStateChange tsc(self, kNative);
jresult = fn(soa.Env(), rcvr.get(), arg0.get());
}
result->SetL(soa.Decode<Object*>(jresult));
ScopedThreadStateChange tsc(self, kNative);
} else if (shorty == "III") {
typedef jint (fnptr)(JNIEnv*, jobject, jint, jint);
const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod());
ScopedLocalRef<jobject> rcvr(soa.Env(),
soa.AddLocalReference<jobject>(receiver));
ScopedThreadStateChange tsc(self, kNative);
result->SetI(fn(soa.Env(), rcvr.get(), args[0], args[1]));
} else {
LOG(FATAL) << "Do something with native method: " << PrettyMethod(method)
<< " shorty: " << shorty;
}
}
}
static void DoMonitorEnter(Thread* self, Object* ref) NO_THREAD_SAFETY_ANALYSIS {
ref->MonitorEnter(self);
}
static void DoMonitorExit(Thread* self, Object* ref) NO_THREAD_SAFETY_ANALYSIS {
ref->MonitorExit(self);
}
// TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template
// specialization.
template<InvokeType type, bool is_range, bool do_access_check>
static bool DoInvoke(Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, JValue* result) NO_THREAD_SAFETY_ANALYSIS;
template<InvokeType type, bool is_range, bool do_access_check>
static bool DoInvoke(Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, JValue* result) {
bool do_assignability_check = do_access_check;
uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
uint32_t vregC = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
Object* receiver = (type == kStatic) ? NULL : shadow_frame.GetVRegReference(vregC);
ArtMethod* method = FindMethodFromCode(method_idx, receiver, shadow_frame.GetMethod(), self,
do_access_check, type);
if (UNLIKELY(method == NULL)) {
CHECK(self->IsExceptionPending());
result->SetJ(0);
return false;
} else if (UNLIKELY(method->IsAbstract())) {
ThrowAbstractMethodError(method);
result->SetJ(0);
return false;
}
MethodHelper mh(method);
const DexFile::CodeItem* code_item = mh.GetCodeItem();
uint16_t num_regs;
uint16_t num_ins;
if (LIKELY(code_item != NULL)) {
num_regs = code_item->registers_size_;
num_ins = code_item->ins_size_;
} else {
DCHECK(method->IsNative() || method->IsProxyMethod());
num_regs = num_ins = ArtMethod::NumArgRegisters(mh.GetShorty());
if (!method->IsStatic()) {
num_regs++;
num_ins++;
}
}
void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
ShadowFrame* new_shadow_frame(ShadowFrame::Create(num_regs, &shadow_frame, method, 0, memory));
size_t cur_reg = num_regs - num_ins;
if (receiver != NULL) {
new_shadow_frame->SetVRegReference(cur_reg, receiver);
++cur_reg;
}
const DexFile::TypeList* params;
if (do_assignability_check) {
params = mh.GetParameterTypeList();
}
size_t arg_offset = (receiver == NULL) ? 0 : 1;
const char* shorty = mh.GetShorty();
uint32_t arg[5];
if (!is_range) {
inst->GetArgs(arg);
}
for (size_t shorty_pos = 0; cur_reg < num_regs; ++shorty_pos, cur_reg++, arg_offset++) {
DCHECK_LT(shorty_pos + 1, mh.GetShortyLength());
size_t arg_pos = is_range ? vregC + arg_offset : arg[arg_offset];
switch (shorty[shorty_pos + 1]) {
case 'L': {
Object* o = shadow_frame.GetVRegReference(arg_pos);
if (do_assignability_check && o != NULL) {
Class* arg_type = mh.GetClassFromTypeIdx(params->GetTypeItem(shorty_pos).type_idx_);
if (arg_type == NULL) {
CHECK(self->IsExceptionPending());
return false;
}
if (!o->VerifierInstanceOf(arg_type)) {
// This should never happen.
self->ThrowNewExceptionF(self->GetCurrentLocationForThrow(),
"Ljava/lang/VirtualMachineError;",
"Invoking %s with bad arg %d, type '%s' not instance of '%s'",
mh.GetName(), shorty_pos,
ClassHelper(o->GetClass()).GetDescriptor(),
ClassHelper(arg_type).GetDescriptor());
return false;
}
}
new_shadow_frame->SetVRegReference(cur_reg, o);
break;
}
case 'J': case 'D': {
uint64_t wide_value = (static_cast<uint64_t>(shadow_frame.GetVReg(arg_pos + 1)) << 32) |
static_cast<uint32_t>(shadow_frame.GetVReg(arg_pos));
new_shadow_frame->SetVRegLong(cur_reg, wide_value);
cur_reg++;
arg_offset++;
break;
}
default:
new_shadow_frame->SetVReg(cur_reg, shadow_frame.GetVReg(arg_pos));
break;
}
}
if (LIKELY(Runtime::Current()->IsStarted())) {
(method->GetEntryPointFromInterpreter())(self, mh, code_item, new_shadow_frame, result);
} else {
UnstartedRuntimeInvoke(self, mh, code_item, new_shadow_frame, result, num_regs - num_ins);
}
return !self->IsExceptionPending();
}
// TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template
// specialization.
template<bool is_range>
static bool DoInvokeVirtualQuick(Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, JValue* result)
NO_THREAD_SAFETY_ANALYSIS;
template<bool is_range>
static bool DoInvokeVirtualQuick(Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst, JValue* result) {
uint32_t vregC = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c();
Object* receiver = shadow_frame.GetVRegReference(vregC);
if (UNLIKELY(receiver == NULL)) {
// We lost the reference to the method index so we cannot get a more
// precised exception message.
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
return false;
}
uint32_t vtable_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
// TODO: use ObjectArray<T>::GetWithoutChecks ?
ArtMethod* method = receiver->GetClass()->GetVTable()->Get(vtable_idx);
if (UNLIKELY(method == NULL)) {
CHECK(self->IsExceptionPending());
result->SetJ(0);
return false;
} else if (UNLIKELY(method->IsAbstract())) {
ThrowAbstractMethodError(method);
result->SetJ(0);
return false;
}
MethodHelper mh(method);
const DexFile::CodeItem* code_item = mh.GetCodeItem();
uint16_t num_regs;
uint16_t num_ins;
if (code_item != NULL) {
num_regs = code_item->registers_size_;
num_ins = code_item->ins_size_;
} else {
DCHECK(method->IsNative() || method->IsProxyMethod());
num_regs = num_ins = ArtMethod::NumArgRegisters(mh.GetShorty());
if (!method->IsStatic()) {
num_regs++;
num_ins++;
}
}
void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
ShadowFrame* new_shadow_frame(ShadowFrame::Create(num_regs, &shadow_frame,
method, 0, memory));
size_t cur_reg = num_regs - num_ins;
if (receiver != NULL) {
new_shadow_frame->SetVRegReference(cur_reg, receiver);
++cur_reg;
}
size_t arg_offset = (receiver == NULL) ? 0 : 1;
const char* shorty = mh.GetShorty();
uint32_t arg[5];
if (!is_range) {
inst->GetArgs(arg);
}
for (size_t shorty_pos = 0; cur_reg < num_regs; ++shorty_pos, cur_reg++, arg_offset++) {
DCHECK_LT(shorty_pos + 1, mh.GetShortyLength());
size_t arg_pos = is_range ? vregC + arg_offset : arg[arg_offset];
switch (shorty[shorty_pos + 1]) {
case 'L': {
Object* o = shadow_frame.GetVRegReference(arg_pos);
new_shadow_frame->SetVRegReference(cur_reg, o);
break;
}
case 'J': case 'D': {
uint64_t wide_value = (static_cast<uint64_t>(shadow_frame.GetVReg(arg_pos + 1)) << 32) |
static_cast<uint32_t>(shadow_frame.GetVReg(arg_pos));
new_shadow_frame->SetVRegLong(cur_reg, wide_value);
cur_reg++;
arg_offset++;
break;
}
default:
new_shadow_frame->SetVReg(cur_reg, shadow_frame.GetVReg(arg_pos));
break;
}
}
if (LIKELY(Runtime::Current()->IsStarted())) {
(method->GetEntryPointFromInterpreter())(self, mh, code_item, new_shadow_frame, result);
} else {
UnstartedRuntimeInvoke(self, mh, code_item, new_shadow_frame, result, num_regs - num_ins);
}
return !self->IsExceptionPending();
}
// We use template functions to optimize compiler inlining process. Otherwise,
// some parts of the code (like a switch statement) which depend on a constant
// parameter would not be inlined while it should be. These constant parameters
// are now part of the template arguments.
// Note these template functions are static and inlined so they should not be
// part of the final object file.
// TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template
// specialization.
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check>
static bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst)
NO_THREAD_SAFETY_ANALYSIS ALWAYS_INLINE;
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check>
static inline bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst) {
bool is_static = (find_type == StaticObjectRead) || (find_type == StaticPrimitiveRead);
uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
ArtField* f = FindFieldFromCode(field_idx, shadow_frame.GetMethod(), self,
find_type, Primitive::FieldSize(field_type),
do_access_check);
if (UNLIKELY(f == NULL)) {
CHECK(self->IsExceptionPending());
return false;
}
Object* obj;
if (is_static) {
obj = f->GetDeclaringClass();
} else {
obj = shadow_frame.GetVRegReference(inst->VRegB_22c());
if (UNLIKELY(obj == NULL)) {
ThrowNullPointerExceptionForFieldAccess(shadow_frame.GetCurrentLocationForThrow(), f, true);
return false;
}
}
uint32_t vregA = is_static ? inst->VRegA_21c() : inst->VRegA_22c();
switch (field_type) {
case Primitive::kPrimBoolean:
shadow_frame.SetVReg(vregA, f->GetBoolean(obj));
break;
case Primitive::kPrimByte:
shadow_frame.SetVReg(vregA, f->GetByte(obj));
break;
case Primitive::kPrimChar:
shadow_frame.SetVReg(vregA, f->GetChar(obj));
break;
case Primitive::kPrimShort:
shadow_frame.SetVReg(vregA, f->GetShort(obj));
break;
case Primitive::kPrimInt:
shadow_frame.SetVReg(vregA, f->GetInt(obj));
break;
case Primitive::kPrimLong:
shadow_frame.SetVRegLong(vregA, f->GetLong(obj));
break;
case Primitive::kPrimNot:
shadow_frame.SetVRegReference(vregA, f->GetObject(obj));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
}
return true;
}
// TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template
// specialization.
template<Primitive::Type field_type>
static bool DoIGetQuick(Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst)
NO_THREAD_SAFETY_ANALYSIS ALWAYS_INLINE;
template<Primitive::Type field_type>
static inline bool DoIGetQuick(Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst) {
Object* obj = shadow_frame.GetVRegReference(inst->VRegB_22c());
if (UNLIKELY(obj == NULL)) {
// We lost the reference to the field index so we cannot get a more
// precised exception message.
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
return false;
}
MemberOffset field_offset(inst->VRegC_22c());
const bool is_volatile = false; // iget-x-quick only on non volatile fields.
const uint32_t vregA = inst->VRegA_22c();
switch (field_type) {
case Primitive::kPrimInt:
shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetField32(field_offset, is_volatile)));
break;
case Primitive::kPrimLong:
shadow_frame.SetVRegLong(vregA, static_cast<int64_t>(obj->GetField64(field_offset, is_volatile)));
break;
case Primitive::kPrimNot:
shadow_frame.SetVRegReference(vregA, obj->GetFieldObject<mirror::Object*>(field_offset, is_volatile));
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
}
return true;
}
// TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template
// specialization.
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check>
static bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame,
const Instruction* inst)
NO_THREAD_SAFETY_ANALYSIS ALWAYS_INLINE;
template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check>
static inline bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame,
const Instruction* inst) {
bool do_assignability_check = do_access_check;
bool is_static = (find_type == StaticObjectWrite) || (find_type == StaticPrimitiveWrite);
uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
ArtField* f = FindFieldFromCode(field_idx, shadow_frame.GetMethod(), self,
find_type, Primitive::FieldSize(field_type),
do_access_check);
if (UNLIKELY(f == NULL)) {
CHECK(self->IsExceptionPending());
return false;
}
Object* obj;
if (is_static) {
obj = f->GetDeclaringClass();
} else {
obj = shadow_frame.GetVRegReference(inst->VRegB_22c());
if (UNLIKELY(obj == NULL)) {
ThrowNullPointerExceptionForFieldAccess(shadow_frame.GetCurrentLocationForThrow(),
f, false);
return false;
}
}
uint32_t vregA = is_static ? inst->VRegA_21c() : inst->VRegA_22c();
switch (field_type) {
case Primitive::kPrimBoolean:
f->SetBoolean(obj, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimByte:
f->SetByte(obj, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimChar:
f->SetChar(obj, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimShort:
f->SetShort(obj, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimInt:
f->SetInt(obj, shadow_frame.GetVReg(vregA));
break;
case Primitive::kPrimLong:
f->SetLong(obj, shadow_frame.GetVRegLong(vregA));
break;
case Primitive::kPrimNot: {
Object* reg = shadow_frame.GetVRegReference(vregA);
if (do_assignability_check && reg != NULL) {
Class* field_class = FieldHelper(f).GetType();
if (!reg->VerifierInstanceOf(field_class)) {
// This should never happen.
self->ThrowNewExceptionF(self->GetCurrentLocationForThrow(),
"Ljava/lang/VirtualMachineError;",
"Put '%s' that is not instance of field '%s' in '%s'",
ClassHelper(reg->GetClass()).GetDescriptor(),
ClassHelper(field_class).GetDescriptor(),
ClassHelper(f->GetDeclaringClass()).GetDescriptor());
return false;
}
}
f->SetObj(obj, reg);
break;
}
default:
LOG(FATAL) << "Unreachable: " << field_type;
}
return true;
}
// TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template
// specialization.
template<Primitive::Type field_type>
static bool DoIPutQuick(Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst)
NO_THREAD_SAFETY_ANALYSIS ALWAYS_INLINE;
template<Primitive::Type field_type>
static inline bool DoIPutQuick(Thread* self, ShadowFrame& shadow_frame,
const Instruction* inst) {
Object* obj = shadow_frame.GetVRegReference(inst->VRegB_22c());
if (UNLIKELY(obj == NULL)) {
// We lost the reference to the field index so we cannot get a more
// precised exception message.
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
return false;
}
MemberOffset field_offset(inst->VRegC_22c());
const bool is_volatile = false; // iput-x-quick only on non volatile fields.
const uint32_t vregA = inst->VRegA_22c();
switch (field_type) {
case Primitive::kPrimInt:
obj->SetField32(field_offset, shadow_frame.GetVReg(vregA), is_volatile);
break;
case Primitive::kPrimLong:
obj->SetField64(field_offset, shadow_frame.GetVRegLong(vregA), is_volatile);
break;
case Primitive::kPrimNot:
obj->SetFieldObject(field_offset, shadow_frame.GetVRegReference(vregA), is_volatile);
break;
default:
LOG(FATAL) << "Unreachable: " << field_type;
}
return true;
}
static inline String* ResolveString(Thread* self, MethodHelper& mh, uint32_t string_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
Class* java_lang_string_class = String::GetJavaLangString();
if (UNLIKELY(!java_lang_string_class->IsInitialized())) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
if (UNLIKELY(!class_linker->EnsureInitialized(java_lang_string_class,
true, true))) {
DCHECK(self->IsExceptionPending());
return NULL;
}
}
return mh.ResolveString(string_idx);
}
static inline bool DoIntDivide(ShadowFrame& shadow_frame, size_t result_reg,
int32_t dividend, int32_t divisor)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinInt && divisor == -1)) {
shadow_frame.SetVReg(result_reg, kMinInt);
} else {
shadow_frame.SetVReg(result_reg, dividend / divisor);
}
return true;
}
static inline bool DoIntRemainder(ShadowFrame& shadow_frame, size_t result_reg,
int32_t dividend, int32_t divisor)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinInt && divisor == -1)) {
shadow_frame.SetVReg(result_reg, 0);
} else {
shadow_frame.SetVReg(result_reg, dividend % divisor);
}
return true;
}
static inline bool DoLongDivide(ShadowFrame& shadow_frame, size_t result_reg,
int64_t dividend, int64_t divisor)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinLong && divisor == -1)) {
shadow_frame.SetVRegLong(result_reg, kMinLong);
} else {
shadow_frame.SetVRegLong(result_reg, dividend / divisor);
}
return true;
}
static inline bool DoLongRemainder(ShadowFrame& shadow_frame, size_t result_reg,
int64_t dividend, int64_t divisor)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (UNLIKELY(divisor == 0)) {
ThrowArithmeticExceptionDivideByZero();
return false;
}
if (UNLIKELY(dividend == kMinLong && divisor == -1)) {
shadow_frame.SetVRegLong(result_reg, 0);
} else {
shadow_frame.SetVRegLong(result_reg, dividend % divisor);
}
return true;
}
// TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template
// specialization.
// Returns true on success, otherwise throws an exception and returns false.
template <bool is_range, bool do_access_check>
static bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame,
Thread* self, JValue* result)
NO_THREAD_SAFETY_ANALYSIS ALWAYS_INLINE;
template <bool is_range, bool do_access_check>
static inline bool DoFilledNewArray(const Instruction* inst,
const ShadowFrame& shadow_frame,
Thread* self, JValue* result) {
DCHECK(inst->Opcode() == Instruction::FILLED_NEW_ARRAY ||
inst->Opcode() == Instruction::FILLED_NEW_ARRAY_RANGE);
const int32_t length = is_range ? inst->VRegA_3rc() : inst->VRegA_35c();
if (!is_range) {
// Checks FILLED_NEW_ARRAY's length does not exceed 5 arguments.
CHECK_LE(length, 5);
}
if (UNLIKELY(length < 0)) {
ThrowNegativeArraySizeException(length);
return false;
}
uint16_t type_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
Class* arrayClass = ResolveVerifyAndClinit(type_idx, shadow_frame.GetMethod(),
self, false, do_access_check);
if (UNLIKELY(arrayClass == NULL)) {
DCHECK(self->IsExceptionPending());
return false;
}
CHECK(arrayClass->IsArrayClass());
Class* componentClass = arrayClass->GetComponentType();
if (UNLIKELY(componentClass->IsPrimitive() && !componentClass->IsPrimitiveInt())) {
if (componentClass->IsPrimitiveLong() || componentClass->IsPrimitiveDouble()) {
ThrowRuntimeException("Bad filled array request for type %s",
PrettyDescriptor(componentClass).c_str());
} else {
self->ThrowNewExceptionF(shadow_frame.GetCurrentLocationForThrow(),
"Ljava/lang/InternalError;",
"Found type %s; filled-new-array not implemented for anything but \'int\'",
PrettyDescriptor(componentClass).c_str());
}
return false;
}
Object* newArray = Array::Alloc(self, arrayClass, length);
if (UNLIKELY(newArray == NULL)) {
DCHECK(self->IsExceptionPending());
return false;
}
if (is_range) {
uint32_t vregC = inst->VRegC_3rc();
const bool is_primitive_int_component = componentClass->IsPrimitiveInt();
for (int32_t i = 0; i < length; ++i) {
if (is_primitive_int_component) {
newArray->AsIntArray()->Set(i, shadow_frame.GetVReg(vregC + i));
} else {
newArray->AsObjectArray<Object>()->Set(i, shadow_frame.GetVRegReference(vregC + i));
}
}
} else {
uint32_t arg[5];
inst->GetArgs(arg);
const bool is_primitive_int_component = componentClass->IsPrimitiveInt();
for (int32_t i = 0; i < length; ++i) {
if (is_primitive_int_component) {
newArray->AsIntArray()->Set(i, shadow_frame.GetVReg(arg[i]));
} else {
newArray->AsObjectArray<Object>()->Set(i, shadow_frame.GetVRegReference(arg[i]));
}
}
}
result->SetL(newArray);
return true;
}
static inline const Instruction* DoSparseSwitch(const Instruction* inst,
const ShadowFrame& shadow_frame)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(inst->Opcode() == Instruction::SPARSE_SWITCH);
const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t();
int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t());
DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature));
uint16_t size = switch_data[1];
DCHECK_GT(size, 0);
const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]);
DCHECK(IsAligned<4>(keys));
const int32_t* entries = keys + size;
DCHECK(IsAligned<4>(entries));
int lo = 0;
int hi = size - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
int32_t foundVal = keys[mid];
if (test_val < foundVal) {
hi = mid - 1;
} else if (test_val > foundVal) {
lo = mid + 1;
} else {
return inst->RelativeAt(entries[mid]);
}
}
return inst->Next_3xx();
}
static inline const Instruction* FindNextInstructionFollowingException(Thread* self,
ShadowFrame& shadow_frame,
uint32_t dex_pc,
const uint16_t* insns,
SirtRef<Object>& this_object_ref,
instrumentation::Instrumentation* instrumentation)
ALWAYS_INLINE;
static inline const Instruction* FindNextInstructionFollowingException(Thread* self,
ShadowFrame& shadow_frame,
uint32_t dex_pc,
const uint16_t* insns,
SirtRef<Object>& this_object_ref,
instrumentation::Instrumentation* instrumentation)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
self->VerifyStack();
ThrowLocation throw_location;
mirror::Throwable* exception = self->GetException(&throw_location);
bool clear_exception;
uint32_t found_dex_pc = shadow_frame.GetMethod()->FindCatchBlock(exception->GetClass(), dex_pc,
&clear_exception);
if (found_dex_pc == DexFile::kDexNoIndex) {
instrumentation->MethodUnwindEvent(self, this_object_ref.get(),
shadow_frame.GetMethod(), dex_pc);
return NULL;
} else {
instrumentation->ExceptionCaughtEvent(self, throw_location,
shadow_frame.GetMethod(),
found_dex_pc, exception);
if (clear_exception) {
self->ClearException();
}
return Instruction::At(insns + found_dex_pc);
}
}
#define HANDLE_PENDING_EXCEPTION() \
CHECK(self->IsExceptionPending()); \
inst = FindNextInstructionFollowingException(self, shadow_frame, inst->GetDexPc(insns), insns, \
this_object_ref, instrumentation); \
if (inst == NULL) { \
return JValue(); /* Handled in caller. */ \
}
#define POSSIBLY_HANDLE_PENDING_EXCEPTION(is_exception_pending, next_function) \
if (UNLIKELY(is_exception_pending)) { \
HANDLE_PENDING_EXCEPTION(); \
} else { \
inst = inst->next_function(); \
}
static void UnexpectedOpcode(const Instruction* inst, MethodHelper& mh)
__attribute__((cold, noreturn, noinline));
static void UnexpectedOpcode(const Instruction* inst, MethodHelper& mh)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
LOG(FATAL) << "Unexpected instruction: " << inst->DumpString(&mh.GetDexFile());
exit(0); // Unreachable, keep GCC happy.
}
// Code to run before each dex instruction.
#define PREAMBLE()
// TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template
// specialization.
template<bool do_access_check>
static JValue ExecuteImpl(Thread* self, MethodHelper& mh, const DexFile::CodeItem* code_item,
ShadowFrame& shadow_frame, JValue result_register)
NO_THREAD_SAFETY_ANALYSIS __attribute__((hot));
template<bool do_access_check>
static JValue ExecuteImpl(Thread* self, MethodHelper& mh, const DexFile::CodeItem* code_item,
ShadowFrame& shadow_frame, JValue result_register) {
bool do_assignability_check = do_access_check;
if (UNLIKELY(!shadow_frame.HasReferenceArray())) {
LOG(FATAL) << "Invalid shadow frame for interpreter use";
return JValue();
}
self->VerifyStack();
instrumentation::Instrumentation* const instrumentation = Runtime::Current()->GetInstrumentation();
// As the 'this' object won't change during the execution of current code, we
// want to cache it in local variables. Nevertheless, in order to let the
// garbage collector access it, we store it into sirt references.
SirtRef<Object> this_object_ref(self, shadow_frame.GetThisObject(code_item->ins_size_));
uint32_t dex_pc = shadow_frame.GetDexPC();
if (LIKELY(dex_pc == 0)) { // We are entering the method as opposed to deoptimizing..
if (UNLIKELY(instrumentation->HasMethodEntryListeners())) {
instrumentation->MethodEnterEvent(self, this_object_ref.get(),
shadow_frame.GetMethod(), 0);
}
}
const uint16_t* const insns = code_item->insns_;
const Instruction* inst = Instruction::At(insns + dex_pc);
while (true) {
dex_pc = inst->GetDexPc(insns);
shadow_frame.SetDexPC(dex_pc);
if (UNLIKELY(self->TestAllFlags())) {
CheckSuspend(self);
}
if (UNLIKELY(instrumentation->HasDexPcListeners())) {
instrumentation->DexPcMovedEvent(self, this_object_ref.get(),
shadow_frame.GetMethod(), dex_pc);
}
const bool kTracing = false;
if (kTracing) {
#define TRACE_LOG std::cerr
TRACE_LOG << PrettyMethod(shadow_frame.GetMethod())
<< StringPrintf("\n0x%x: ", dex_pc)
<< inst->DumpString(&mh.GetDexFile()) << "\n";
for (size_t i = 0; i < shadow_frame.NumberOfVRegs(); ++i) {
uint32_t raw_value = shadow_frame.GetVReg(i);
Object* ref_value = shadow_frame.GetVRegReference(i);
TRACE_LOG << StringPrintf(" vreg%d=0x%08X", i, raw_value);
if (ref_value != NULL) {
if (ref_value->GetClass()->IsStringClass() &&
ref_value->AsString()->GetCharArray() != NULL) {
TRACE_LOG << "/java.lang.String \"" << ref_value->AsString()->ToModifiedUtf8() << "\"";
} else {
TRACE_LOG << "/" << PrettyTypeOf(ref_value);
}
}
}
TRACE_LOG << "\n";
#undef TRACE_LOG
}
switch (inst->Opcode()) {
case Instruction::NOP:
PREAMBLE();
inst = inst->Next_1xx();
break;
case Instruction::MOVE:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_12x(),
shadow_frame.GetVReg(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::MOVE_FROM16:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22x(),
shadow_frame.GetVReg(inst->VRegB_22x()));
inst = inst->Next_2xx();
break;
case Instruction::MOVE_16:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_32x(),
shadow_frame.GetVReg(inst->VRegB_32x()));
inst = inst->Next_3xx();
break;
case Instruction::MOVE_WIDE:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_12x(),
shadow_frame.GetVRegLong(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::MOVE_WIDE_FROM16:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_22x(),
shadow_frame.GetVRegLong(inst->VRegB_22x()));
inst = inst->Next_2xx();
break;
case Instruction::MOVE_WIDE_16:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_32x(),
shadow_frame.GetVRegLong(inst->VRegB_32x()));
inst = inst->Next_3xx();
break;
case Instruction::MOVE_OBJECT:
PREAMBLE();
shadow_frame.SetVRegReference(inst->VRegA_12x(),
shadow_frame.GetVRegReference(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::MOVE_OBJECT_FROM16:
PREAMBLE();
shadow_frame.SetVRegReference(inst->VRegA_22x(),
shadow_frame.GetVRegReference(inst->VRegB_22x()));
inst = inst->Next_2xx();
break;
case Instruction::MOVE_OBJECT_16:
PREAMBLE();
shadow_frame.SetVRegReference(inst->VRegA_32x(),
shadow_frame.GetVRegReference(inst->VRegB_32x()));
inst = inst->Next_3xx();
break;
case Instruction::MOVE_RESULT:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_11x(), result_register.GetI());
inst = inst->Next_1xx();
break;
case Instruction::MOVE_RESULT_WIDE:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_11x(), result_register.GetJ());
inst = inst->Next_1xx();
break;
case Instruction::MOVE_RESULT_OBJECT:
PREAMBLE();
shadow_frame.SetVRegReference(inst->VRegA_11x(), result_register.GetL());
inst = inst->Next_1xx();
break;
case Instruction::MOVE_EXCEPTION: {
PREAMBLE();
Throwable* exception = self->GetException(NULL);
self->ClearException();
shadow_frame.SetVRegReference(inst->VRegA_11x(), exception);
inst = inst->Next_1xx();
break;
}
case Instruction::RETURN_VOID: {
PREAMBLE();
JValue result;
if (UNLIKELY(instrumentation->HasMethodExitListeners())) {
instrumentation->MethodExitEvent(self, this_object_ref.get(),
shadow_frame.GetMethod(), inst->GetDexPc(insns),
result);
}
return result;
}
case Instruction::RETURN_VOID_BARRIER: {
PREAMBLE();
ANDROID_MEMBAR_STORE();
JValue result;
if (UNLIKELY(instrumentation->HasMethodExitListeners())) {
instrumentation->MethodExitEvent(self, this_object_ref.get(),
shadow_frame.GetMethod(), inst->GetDexPc(insns),
result);
}
return result;
}
case Instruction::RETURN: {
PREAMBLE();
JValue result;
result.SetJ(0);
result.SetI(shadow_frame.GetVReg(inst->VRegA_11x()));
if (UNLIKELY(instrumentation->HasMethodExitListeners())) {
instrumentation->MethodExitEvent(self, this_object_ref.get(),
shadow_frame.GetMethod(), inst->GetDexPc(insns),
result);
}
return result;
}
case Instruction::RETURN_WIDE: {
PREAMBLE();
JValue result;
result.SetJ(shadow_frame.GetVRegLong(inst->VRegA_11x()));
if (UNLIKELY(instrumentation->HasMethodExitListeners())) {
instrumentation->MethodExitEvent(self, this_object_ref.get(),
shadow_frame.GetMethod(), inst->GetDexPc(insns),
result);
}
return result;
}
case Instruction::RETURN_OBJECT: {
PREAMBLE();
JValue result;
Object* obj_result = shadow_frame.GetVRegReference(inst->VRegA_11x());
result.SetJ(0);
result.SetL(obj_result);
if (do_assignability_check && obj_result != NULL) {
Class* return_type = MethodHelper(shadow_frame.GetMethod()).GetReturnType();
if (return_type == NULL) {
// Return the pending exception.
HANDLE_PENDING_EXCEPTION();
}
if (!obj_result->VerifierInstanceOf(return_type)) {
// This should never happen.
self->ThrowNewExceptionF(self->GetCurrentLocationForThrow(),
"Ljava/lang/VirtualMachineError;",
"Returning '%s' that is not instance of return type '%s'",
ClassHelper(obj_result->GetClass()).GetDescriptor(),
ClassHelper(return_type).GetDescriptor());
HANDLE_PENDING_EXCEPTION();
}
}
if (UNLIKELY(instrumentation->HasMethodExitListeners())) {
instrumentation->MethodExitEvent(self, this_object_ref.get(),
shadow_frame.GetMethod(), inst->GetDexPc(insns),
result);
}
return result;
}
case Instruction::CONST_4: {
PREAMBLE();
uint4_t dst = inst->VRegA_11n();
int4_t val = inst->VRegB_11n();
shadow_frame.SetVReg(dst, val);
if (val == 0) {
shadow_frame.SetVRegReference(dst, NULL);
}
inst = inst->Next_1xx();
break;
}
case Instruction::CONST_16: {
PREAMBLE();
uint8_t dst = inst->VRegA_21s();
int16_t val = inst->VRegB_21s();
shadow_frame.SetVReg(dst, val);
if (val == 0) {
shadow_frame.SetVRegReference(dst, NULL);
}
inst = inst->Next_2xx();
break;
}
case Instruction::CONST: {
PREAMBLE();
uint8_t dst = inst->VRegA_31i();
int32_t val = inst->VRegB_31i();
shadow_frame.SetVReg(dst, val);
if (val == 0) {
shadow_frame.SetVRegReference(dst, NULL);
}
inst = inst->Next_3xx();
break;
}
case Instruction::CONST_HIGH16: {
PREAMBLE();
uint8_t dst = inst->VRegA_21h();
int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
shadow_frame.SetVReg(dst, val);
if (val == 0) {
shadow_frame.SetVRegReference(dst, NULL);
}
inst = inst->Next_2xx();
break;
}
case Instruction::CONST_WIDE_16:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_21s(), inst->VRegB_21s());
inst = inst->Next_2xx();
break;
case Instruction::CONST_WIDE_32:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_31i(), inst->VRegB_31i());
inst = inst->Next_3xx();
break;
case Instruction::CONST_WIDE:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_51l(), inst->VRegB_51l());
inst = inst->Next_51l();
break;
case Instruction::CONST_WIDE_HIGH16:
shadow_frame.SetVRegLong(inst->VRegA_21h(),
static_cast<uint64_t>(inst->VRegB_21h()) << 48);
inst = inst->Next_2xx();
break;
case Instruction::CONST_STRING: {
PREAMBLE();
String* s = ResolveString(self, mh, inst->VRegB_21c());
if (UNLIKELY(s == NULL)) {
HANDLE_PENDING_EXCEPTION();
} else {
shadow_frame.SetVRegReference(inst->VRegA_21c(), s);
inst = inst->Next_2xx();
}
break;
}
case Instruction::CONST_STRING_JUMBO: {
PREAMBLE();
String* s = ResolveString(self, mh, inst->VRegB_31c());
if (UNLIKELY(s == NULL)) {
HANDLE_PENDING_EXCEPTION();
} else {
shadow_frame.SetVRegReference(inst->VRegA_31c(), s);
inst = inst->Next_3xx();
}
break;
}
case Instruction::CONST_CLASS: {
PREAMBLE();
Class* c = ResolveVerifyAndClinit(inst->VRegB_21c(), shadow_frame.GetMethod(),
self, false, do_access_check);
if (UNLIKELY(c == NULL)) {
HANDLE_PENDING_EXCEPTION();
} else {
shadow_frame.SetVRegReference(inst->VRegA_21c(), c);
inst = inst->Next_2xx();
}
break;
}
case Instruction::MONITOR_ENTER: {
PREAMBLE();
Object* obj = shadow_frame.GetVRegReference(inst->VRegA_11x());
if (UNLIKELY(obj == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
} else {
DoMonitorEnter(self, obj);
POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_1xx);
}
break;
}
case Instruction::MONITOR_EXIT: {
PREAMBLE();
Object* obj = shadow_frame.GetVRegReference(inst->VRegA_11x());
if (UNLIKELY(obj == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
} else {
DoMonitorExit(self, obj);
POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_1xx);
}
break;
}
case Instruction::CHECK_CAST: {
PREAMBLE();
Class* c = ResolveVerifyAndClinit(inst->VRegB_21c(), shadow_frame.GetMethod(),
self, false, do_access_check);
if (UNLIKELY(c == NULL)) {
HANDLE_PENDING_EXCEPTION();
} else {
Object* obj = shadow_frame.GetVRegReference(inst->VRegA_21c());
if (UNLIKELY(obj != NULL && !obj->InstanceOf(c))) {
ThrowClassCastException(c, obj->GetClass());
HANDLE_PENDING_EXCEPTION();
} else {
inst = inst->Next_2xx();
}
}
break;
}
case Instruction::INSTANCE_OF: {
PREAMBLE();
Class* c = ResolveVerifyAndClinit(inst->VRegC_22c(), shadow_frame.GetMethod(),
self, false, do_access_check);
if (UNLIKELY(c == NULL)) {
HANDLE_PENDING_EXCEPTION();
} else {
Object* obj = shadow_frame.GetVRegReference(inst->VRegB_22c());
shadow_frame.SetVReg(inst->VRegA_22c(), (obj != NULL && obj->InstanceOf(c)) ? 1 : 0);
inst = inst->Next_2xx();
}
break;
}
case Instruction::ARRAY_LENGTH: {
PREAMBLE();
Object* array = shadow_frame.GetVRegReference(inst->VRegB_12x());
if (UNLIKELY(array == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
} else {
shadow_frame.SetVReg(inst->VRegA_12x(), array->AsArray()->GetLength());
inst = inst->Next_1xx();
}
break;
}
case Instruction::NEW_INSTANCE: {
PREAMBLE();
Object* obj = AllocObjectFromCode(inst->VRegB_21c(), shadow_frame.GetMethod(),
self, do_access_check);
if (UNLIKELY(obj == NULL)) {
HANDLE_PENDING_EXCEPTION();
} else {
shadow_frame.SetVRegReference(inst->VRegA_21c(), obj);
inst = inst->Next_2xx();
}
break;
}
case Instruction::NEW_ARRAY: {
PREAMBLE();
int32_t length = shadow_frame.GetVReg(inst->VRegB_22c());
Object* obj = AllocArrayFromCode(inst->VRegC_22c(), shadow_frame.GetMethod(),
length, self, do_access_check);
if (UNLIKELY(obj == NULL)) {
HANDLE_PENDING_EXCEPTION();
} else {
shadow_frame.SetVRegReference(inst->VRegA_22c(), obj);
inst = inst->Next_2xx();
}
break;
}
case Instruction::FILLED_NEW_ARRAY: {
PREAMBLE();
bool success = DoFilledNewArray<false, do_access_check>(inst, shadow_frame,
self, &result_register);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
break;
}
case Instruction::FILLED_NEW_ARRAY_RANGE: {
PREAMBLE();
bool success = DoFilledNewArray<true, do_access_check>(inst, shadow_frame,
self, &result_register);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
break;
}
case Instruction::FILL_ARRAY_DATA: {
PREAMBLE();
Object* obj = shadow_frame.GetVRegReference(inst->VRegA_31t());
if (UNLIKELY(obj == NULL)) {
ThrowNullPointerException(NULL, "null array in FILL_ARRAY_DATA");
HANDLE_PENDING_EXCEPTION();
break;
}
Array* array = obj->AsArray();
DCHECK(array->IsArrayInstance() && !array->IsObjectArray());
const uint16_t* payload_addr = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t();
const Instruction::ArrayDataPayload* payload =
reinterpret_cast<const Instruction::ArrayDataPayload*>(payload_addr);
if (UNLIKELY(static_cast<int32_t>(payload->element_count) > array->GetLength())) {
self->ThrowNewExceptionF(shadow_frame.GetCurrentLocationForThrow(),
"Ljava/lang/ArrayIndexOutOfBoundsException;",
"failed FILL_ARRAY_DATA; length=%d, index=%d",
array->GetLength(), payload->element_count);
HANDLE_PENDING_EXCEPTION();
break;
}
uint32_t size_in_bytes = payload->element_count * payload->element_width;
memcpy(array->GetRawData(payload->element_width), payload->data, size_in_bytes);
inst = inst->Next_3xx();
break;
}
case Instruction::THROW: {
PREAMBLE();
Object* exception = shadow_frame.GetVRegReference(inst->VRegA_11x());
if (UNLIKELY(exception == NULL)) {
ThrowNullPointerException(NULL, "throw with null exception");
} else if (do_assignability_check && !exception->GetClass()->IsThrowableClass()) {
// This should never happen.
self->ThrowNewExceptionF(self->GetCurrentLocationForThrow(),
"Ljava/lang/VirtualMachineError;",
"Throwing '%s' that is not instance of Throwable",
ClassHelper(exception->GetClass()).GetDescriptor());
} else {
self->SetException(shadow_frame.GetCurrentLocationForThrow(), exception->AsThrowable());
}
HANDLE_PENDING_EXCEPTION();
break;
}
case Instruction::GOTO: {
PREAMBLE();
inst = inst->RelativeAt(inst->VRegA_10t());
break;
}
case Instruction::GOTO_16: {
PREAMBLE();
inst = inst->RelativeAt(inst->VRegA_20t());
break;
}
case Instruction::GOTO_32: {
PREAMBLE();
inst = inst->RelativeAt(inst->VRegA_30t());
break;
}
case Instruction::PACKED_SWITCH: {
PREAMBLE();
const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t();
int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t());
DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature));
uint16_t size = switch_data[1];
DCHECK_GT(size, 0);
const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]);
DCHECK(IsAligned<4>(keys));
int32_t first_key = keys[0];
const int32_t* targets = reinterpret_cast<const int32_t*>(&switch_data[4]);
DCHECK(IsAligned<4>(targets));
int32_t index = test_val - first_key;
if (index >= 0 && index < size) {
inst = inst->RelativeAt(targets[index]);
} else {
inst = inst->Next_3xx();
}
break;
}
case Instruction::SPARSE_SWITCH: {
PREAMBLE();
inst = DoSparseSwitch(inst, shadow_frame);
break;
}
case Instruction::CMPL_FLOAT: {
PREAMBLE();
float val1 = shadow_frame.GetVRegFloat(inst->VRegB_23x());
float val2 = shadow_frame.GetVRegFloat(inst->VRegC_23x());
int32_t result;
if (val1 > val2) {
result = 1;
} else if (val1 == val2) {
result = 0;
} else {
result = -1;
}
shadow_frame.SetVReg(inst->VRegA_23x(), result);
inst = inst->Next_2xx();
break;
}
case Instruction::CMPG_FLOAT: {
PREAMBLE();
float val1 = shadow_frame.GetVRegFloat(inst->VRegB_23x());
float val2 = shadow_frame.GetVRegFloat(inst->VRegC_23x());
int32_t result;
if (val1 < val2) {
result = -1;
} else if (val1 == val2) {
result = 0;
} else {
result = 1;
}
shadow_frame.SetVReg(inst->VRegA_23x(), result);
inst = inst->Next_2xx();
break;
}
case Instruction::CMPL_DOUBLE: {
PREAMBLE();
double val1 = shadow_frame.GetVRegDouble(inst->VRegB_23x());
double val2 = shadow_frame.GetVRegDouble(inst->VRegC_23x());
int32_t result;
if (val1 > val2) {
result = 1;
} else if (val1 == val2) {
result = 0;
} else {
result = -1;
}
shadow_frame.SetVReg(inst->VRegA_23x(), result);
inst = inst->Next_2xx();
break;
}
case Instruction::CMPG_DOUBLE: {
PREAMBLE();
double val1 = shadow_frame.GetVRegDouble(inst->VRegB_23x());
double val2 = shadow_frame.GetVRegDouble(inst->VRegC_23x());
int32_t result;
if (val1 < val2) {
result = -1;
} else if (val1 == val2) {
result = 0;
} else {
result = 1;
}
shadow_frame.SetVReg(inst->VRegA_23x(), result);
inst = inst->Next_2xx();
break;
}
case Instruction::CMP_LONG: {
PREAMBLE();
int64_t val1 = shadow_frame.GetVRegLong(inst->VRegB_23x());
int64_t val2 = shadow_frame.GetVRegLong(inst->VRegC_23x());
int32_t result;
if (val1 > val2) {
result = 1;
} else if (val1 == val2) {
result = 0;
} else {
result = -1;
}
shadow_frame.SetVReg(inst->VRegA_23x(), result);
inst = inst->Next_2xx();
break;
}
case Instruction::IF_EQ: {
PREAMBLE();
if (shadow_frame.GetVReg(inst->VRegA_22t()) == shadow_frame.GetVReg(inst->VRegB_22t())) {
inst = inst->RelativeAt(inst->VRegC_22t());
} else {
inst = inst->Next_2xx();
}
break;
}
case Instruction::IF_NE: {
PREAMBLE();
if (shadow_frame.GetVReg(inst->VRegA_22t()) != shadow_frame.GetVReg(inst->VRegB_22t())) {
inst = inst->RelativeAt(inst->VRegC_22t());
} else {
inst = inst->Next_2xx();
}
break;
}
case Instruction::IF_LT: {
PREAMBLE();
if (shadow_frame.GetVReg(inst->VRegA_22t()) < shadow_frame.GetVReg(inst->VRegB_22t())) {
inst = inst->RelativeAt(inst->VRegC_22t());
} else {
inst = inst->Next_2xx();
}
break;
}
case Instruction::IF_GE: {
PREAMBLE();
if (shadow_frame.GetVReg(inst->VRegA_22t()) >= shadow_frame.GetVReg(inst->VRegB_22t())) {
inst = inst->RelativeAt(inst->VRegC_22t());
} else {
inst = inst->Next_2xx();
}
break;
}
case Instruction::IF_GT: {
PREAMBLE();
if (shadow_frame.GetVReg(inst->VRegA_22t()) > shadow_frame.GetVReg(inst->VRegB_22t())) {
inst = inst->RelativeAt(inst->VRegC_22t());
} else {
inst = inst->Next_2xx();
}
break;
}
case Instruction::IF_LE: {
PREAMBLE();
if (shadow_frame.GetVReg(inst->VRegA_22t()) <= shadow_frame.GetVReg(inst->VRegB_22t())) {
inst = inst->RelativeAt(inst->VRegC_22t());
} else {
inst = inst->Next_2xx();
}
break;
}
case Instruction::IF_EQZ: {
PREAMBLE();
if (shadow_frame.GetVReg(inst->VRegA_21t()) == 0) {
inst = inst->RelativeAt(inst->VRegB_21t());
} else {
inst = inst->Next_2xx();
}
break;
}
case Instruction::IF_NEZ: {
PREAMBLE();
if (shadow_frame.GetVReg(inst->VRegA_21t()) != 0) {
inst = inst->RelativeAt(inst->VRegB_21t());
} else {
inst = inst->Next_2xx();
}
break;
}
case Instruction::IF_LTZ: {
PREAMBLE();
if (shadow_frame.GetVReg(inst->VRegA_21t()) < 0) {
inst = inst->RelativeAt(inst->VRegB_21t());
} else {
inst = inst->Next_2xx();
}
break;
}
case Instruction::IF_GEZ: {
PREAMBLE();
if (shadow_frame.GetVReg(inst->VRegA_21t()) >= 0) {
inst = inst->RelativeAt(inst->VRegB_21t());
} else {
inst = inst->Next_2xx();
}
break;
}
case Instruction::IF_GTZ: {
PREAMBLE();
if (shadow_frame.GetVReg(inst->VRegA_21t()) > 0) {
inst = inst->RelativeAt(inst->VRegB_21t());
} else {
inst = inst->Next_2xx();
}
break;
}
case Instruction::IF_LEZ: {
PREAMBLE();
if (shadow_frame.GetVReg(inst->VRegA_21t()) <= 0) {
inst = inst->RelativeAt(inst->VRegB_21t());
} else {
inst = inst->Next_2xx();
}
break;
}
case Instruction::AGET_BOOLEAN: {
PREAMBLE();
Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x());
if (UNLIKELY(a == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
break;
}
int32_t index = shadow_frame.GetVReg(inst->VRegC_23x());
BooleanArray* array = a->AsBooleanArray();
if (LIKELY(array->IsValidIndex(index))) {
shadow_frame.SetVReg(inst->VRegA_23x(), array->GetData()[index]);
inst = inst->Next_2xx();
} else {
HANDLE_PENDING_EXCEPTION();
}
break;
}
case Instruction::AGET_BYTE: {
PREAMBLE();
Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x());
if (UNLIKELY(a == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
break;
}
int32_t index = shadow_frame.GetVReg(inst->VRegC_23x());
ByteArray* array = a->AsByteArray();
if (LIKELY(array->IsValidIndex(index))) {
shadow_frame.SetVReg(inst->VRegA_23x(), array->GetData()[index]);
inst = inst->Next_2xx();
} else {
HANDLE_PENDING_EXCEPTION();
}
break;
}
case Instruction::AGET_CHAR: {
PREAMBLE();
Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x());
if (UNLIKELY(a == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
break;
}
int32_t index = shadow_frame.GetVReg(inst->VRegC_23x());
CharArray* array = a->AsCharArray();
if (LIKELY(array->IsValidIndex(index))) {
shadow_frame.SetVReg(inst->VRegA_23x(), array->GetData()[index]);
inst = inst->Next_2xx();
} else {
HANDLE_PENDING_EXCEPTION();
}
break;
}
case Instruction::AGET_SHORT: {
PREAMBLE();
Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x());
if (UNLIKELY(a == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
break;
}
int32_t index = shadow_frame.GetVReg(inst->VRegC_23x());
ShortArray* array = a->AsShortArray();
if (LIKELY(array->IsValidIndex(index))) {
shadow_frame.SetVReg(inst->VRegA_23x(), array->GetData()[index]);
inst = inst->Next_2xx();
} else {
HANDLE_PENDING_EXCEPTION();
}
break;
}
case Instruction::AGET: {
PREAMBLE();
Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x());
if (UNLIKELY(a == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
break;
}
int32_t index = shadow_frame.GetVReg(inst->VRegC_23x());
IntArray* array = a->AsIntArray();
if (LIKELY(array->IsValidIndex(index))) {
shadow_frame.SetVReg(inst->VRegA_23x(), array->GetData()[index]);
inst = inst->Next_2xx();
} else {
HANDLE_PENDING_EXCEPTION();
}
break;
}
case Instruction::AGET_WIDE: {
PREAMBLE();
Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x());
if (UNLIKELY(a == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
break;
}
int32_t index = shadow_frame.GetVReg(inst->VRegC_23x());
LongArray* array = a->AsLongArray();
if (LIKELY(array->IsValidIndex(index))) {
shadow_frame.SetVRegLong(inst->VRegA_23x(), array->GetData()[index]);
inst = inst->Next_2xx();
} else {
HANDLE_PENDING_EXCEPTION();
}
break;
}
case Instruction::AGET_OBJECT: {
PREAMBLE();
Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x());
if (UNLIKELY(a == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
break;
}
int32_t index = shadow_frame.GetVReg(inst->VRegC_23x());
ObjectArray<Object>* array = a->AsObjectArray<Object>();
if (LIKELY(array->IsValidIndex(index))) {
shadow_frame.SetVRegReference(inst->VRegA_23x(), array->GetWithoutChecks(index));
inst = inst->Next_2xx();
} else {
HANDLE_PENDING_EXCEPTION();
}
break;
}
case Instruction::APUT_BOOLEAN: {
PREAMBLE();
Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x());
if (UNLIKELY(a == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
break;
}
uint8_t val = shadow_frame.GetVReg(inst->VRegA_23x());
int32_t index = shadow_frame.GetVReg(inst->VRegC_23x());
BooleanArray* array = a->AsBooleanArray();
if (LIKELY(array->IsValidIndex(index))) {
array->GetData()[index] = val;
inst = inst->Next_2xx();
} else {
HANDLE_PENDING_EXCEPTION();
}
break;
}
case Instruction::APUT_BYTE: {
PREAMBLE();
Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x());
if (UNLIKELY(a == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
break;
}
int8_t val = shadow_frame.GetVReg(inst->VRegA_23x());
int32_t index = shadow_frame.GetVReg(inst->VRegC_23x());
ByteArray* array = a->AsByteArray();
if (LIKELY(array->IsValidIndex(index))) {
array->GetData()[index] = val;
inst = inst->Next_2xx();
} else {
HANDLE_PENDING_EXCEPTION();
}
break;
}
case Instruction::APUT_CHAR: {
PREAMBLE();
Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x());
if (UNLIKELY(a == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
break;
}
uint16_t val = shadow_frame.GetVReg(inst->VRegA_23x());
int32_t index = shadow_frame.GetVReg(inst->VRegC_23x());
CharArray* array = a->AsCharArray();
if (LIKELY(array->IsValidIndex(index))) {
array->GetData()[index] = val;
inst = inst->Next_2xx();
} else {
HANDLE_PENDING_EXCEPTION();
}
break;
}
case Instruction::APUT_SHORT: {
PREAMBLE();
Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x());
if (UNLIKELY(a == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
break;
}
int16_t val = shadow_frame.GetVReg(inst->VRegA_23x());
int32_t index = shadow_frame.GetVReg(inst->VRegC_23x());
ShortArray* array = a->AsShortArray();
if (LIKELY(array->IsValidIndex(index))) {
array->GetData()[index] = val;
inst = inst->Next_2xx();
} else {
HANDLE_PENDING_EXCEPTION();
}
break;
}
case Instruction::APUT: {
PREAMBLE();
Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x());
if (UNLIKELY(a == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
break;
}
int32_t val = shadow_frame.GetVReg(inst->VRegA_23x());
int32_t index = shadow_frame.GetVReg(inst->VRegC_23x());
IntArray* array = a->AsIntArray();
if (LIKELY(array->IsValidIndex(index))) {
array->GetData()[index] = val;
inst = inst->Next_2xx();
} else {
HANDLE_PENDING_EXCEPTION();
}
break;
}
case Instruction::APUT_WIDE: {
PREAMBLE();
Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x());
if (UNLIKELY(a == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
break;
}
int64_t val = shadow_frame.GetVRegLong(inst->VRegA_23x());
int32_t index = shadow_frame.GetVReg(inst->VRegC_23x());
LongArray* array = a->AsLongArray();
if (LIKELY(array->IsValidIndex(index))) {
array->GetData()[index] = val;
inst = inst->Next_2xx();
} else {
HANDLE_PENDING_EXCEPTION();
}
break;
}
case Instruction::APUT_OBJECT: {
PREAMBLE();
Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x());
if (UNLIKELY(a == NULL)) {
ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow());
HANDLE_PENDING_EXCEPTION();
break;
}
int32_t index = shadow_frame.GetVReg(inst->VRegC_23x());
Object* val = shadow_frame.GetVRegReference(inst->VRegA_23x());
ObjectArray<Object>* array = a->AsObjectArray<Object>();
if (LIKELY(array->IsValidIndex(index) && array->CheckAssignable(val))) {
array->SetWithoutChecks(index, val);
inst = inst->Next_2xx();
} else {
HANDLE_PENDING_EXCEPTION();
}
break;
}
case Instruction::IGET_BOOLEAN: {
PREAMBLE();
bool success = DoFieldGet<InstancePrimitiveRead, Primitive::kPrimBoolean, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IGET_BYTE: {
PREAMBLE();
bool success = DoFieldGet<InstancePrimitiveRead, Primitive::kPrimByte, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IGET_CHAR: {
PREAMBLE();
bool success = DoFieldGet<InstancePrimitiveRead, Primitive::kPrimChar, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IGET_SHORT: {
PREAMBLE();
bool success = DoFieldGet<InstancePrimitiveRead, Primitive::kPrimShort, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IGET: {
PREAMBLE();
bool success = DoFieldGet<InstancePrimitiveRead, Primitive::kPrimInt, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IGET_WIDE: {
PREAMBLE();
bool success = DoFieldGet<InstancePrimitiveRead, Primitive::kPrimLong, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IGET_OBJECT: {
PREAMBLE();
bool success = DoFieldGet<InstanceObjectRead, Primitive::kPrimNot, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IGET_QUICK: {
PREAMBLE();
bool success = DoIGetQuick<Primitive::kPrimInt>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IGET_WIDE_QUICK: {
PREAMBLE();
bool success = DoIGetQuick<Primitive::kPrimLong>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IGET_OBJECT_QUICK: {
PREAMBLE();
bool success = DoIGetQuick<Primitive::kPrimNot>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::SGET_BOOLEAN: {
PREAMBLE();
bool success = DoFieldGet<StaticPrimitiveRead, Primitive::kPrimBoolean, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::SGET_BYTE: {
PREAMBLE();
bool success = DoFieldGet<StaticPrimitiveRead, Primitive::kPrimByte, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::SGET_CHAR: {
PREAMBLE();
bool success = DoFieldGet<StaticPrimitiveRead, Primitive::kPrimChar, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::SGET_SHORT: {
PREAMBLE();
bool success = DoFieldGet<StaticPrimitiveRead, Primitive::kPrimShort, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::SGET: {
PREAMBLE();
bool success = DoFieldGet<StaticPrimitiveRead, Primitive::kPrimInt, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::SGET_WIDE: {
PREAMBLE();
bool success = DoFieldGet<StaticPrimitiveRead, Primitive::kPrimLong, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::SGET_OBJECT: {
PREAMBLE();
bool success = DoFieldGet<StaticObjectRead, Primitive::kPrimNot, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IPUT_BOOLEAN: {
PREAMBLE();
bool success = DoFieldPut<InstancePrimitiveWrite, Primitive::kPrimBoolean, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IPUT_BYTE: {
PREAMBLE();
bool success = DoFieldPut<InstancePrimitiveWrite, Primitive::kPrimByte, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IPUT_CHAR: {
PREAMBLE();
bool success = DoFieldPut<InstancePrimitiveWrite, Primitive::kPrimChar, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IPUT_SHORT: {
PREAMBLE();
bool success = DoFieldPut<InstancePrimitiveWrite, Primitive::kPrimShort, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IPUT: {
PREAMBLE();
bool success = DoFieldPut<InstancePrimitiveWrite, Primitive::kPrimInt, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IPUT_WIDE: {
PREAMBLE();
bool success = DoFieldPut<InstancePrimitiveWrite, Primitive::kPrimLong, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IPUT_OBJECT: {
PREAMBLE();
bool success = DoFieldPut<InstanceObjectWrite, Primitive::kPrimNot, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IPUT_QUICK: {
PREAMBLE();
bool success = DoIPutQuick<Primitive::kPrimInt>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IPUT_WIDE_QUICK: {
PREAMBLE();
bool success = DoIPutQuick<Primitive::kPrimLong>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::IPUT_OBJECT_QUICK: {
PREAMBLE();
bool success = DoIPutQuick<Primitive::kPrimNot>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::SPUT_BOOLEAN: {
PREAMBLE();
bool success = DoFieldPut<StaticPrimitiveWrite, Primitive::kPrimBoolean, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::SPUT_BYTE: {
PREAMBLE();
bool success = DoFieldPut<StaticPrimitiveWrite, Primitive::kPrimByte, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::SPUT_CHAR: {
PREAMBLE();
bool success = DoFieldPut<StaticPrimitiveWrite, Primitive::kPrimChar, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::SPUT_SHORT: {
PREAMBLE();
bool success = DoFieldPut<StaticPrimitiveWrite, Primitive::kPrimShort, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::SPUT: {
PREAMBLE();
bool success = DoFieldPut<StaticPrimitiveWrite, Primitive::kPrimInt, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::SPUT_WIDE: {
PREAMBLE();
bool success = DoFieldPut<StaticPrimitiveWrite, Primitive::kPrimLong, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::SPUT_OBJECT: {
PREAMBLE();
bool success = DoFieldPut<StaticObjectWrite, Primitive::kPrimNot, do_access_check>(self, shadow_frame, inst);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::INVOKE_VIRTUAL: {
PREAMBLE();
bool success = DoInvoke<kVirtual, false, do_access_check>(self, shadow_frame, inst, &result_register);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
break;
}
case Instruction::INVOKE_VIRTUAL_RANGE: {
PREAMBLE();
bool success = DoInvoke<kVirtual, true, do_access_check>(self, shadow_frame, inst, &result_register);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
break;
}
case Instruction::INVOKE_SUPER: {
PREAMBLE();
bool success = DoInvoke<kSuper, false, do_access_check>(self, shadow_frame, inst, &result_register);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
break;
}
case Instruction::INVOKE_SUPER_RANGE: {
PREAMBLE();
bool success = DoInvoke<kSuper, true, do_access_check>(self, shadow_frame, inst, &result_register);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
break;
}
case Instruction::INVOKE_DIRECT: {
PREAMBLE();
bool success = DoInvoke<kDirect, false, do_access_check>(self, shadow_frame, inst, &result_register);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
break;
}
case Instruction::INVOKE_DIRECT_RANGE: {
PREAMBLE();
bool success = DoInvoke<kDirect, true, do_access_check>(self, shadow_frame, inst, &result_register);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
break;
}
case Instruction::INVOKE_INTERFACE: {
PREAMBLE();
bool success = DoInvoke<kInterface, false, do_access_check>(self, shadow_frame, inst, &result_register);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
break;
}
case Instruction::INVOKE_INTERFACE_RANGE: {
PREAMBLE();
bool success = DoInvoke<kInterface, true, do_access_check>(self, shadow_frame, inst, &result_register);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
break;
}
case Instruction::INVOKE_STATIC: {
PREAMBLE();
bool success = DoInvoke<kStatic, false, do_access_check>(self, shadow_frame, inst, &result_register);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
break;
}
case Instruction::INVOKE_STATIC_RANGE: {
PREAMBLE();
bool success = DoInvoke<kStatic, true, do_access_check>(self, shadow_frame, inst, &result_register);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
break;
}
case Instruction::INVOKE_VIRTUAL_QUICK: {
PREAMBLE();
bool success = DoInvokeVirtualQuick<false>(self, shadow_frame, inst, &result_register);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
break;
}
case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
PREAMBLE();
bool success = DoInvokeVirtualQuick<true>(self, shadow_frame, inst, &result_register);
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx);
break;
}
case Instruction::NEG_INT:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_12x(), -shadow_frame.GetVReg(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::NOT_INT:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_12x(), ~shadow_frame.GetVReg(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::NEG_LONG:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_12x(), -shadow_frame.GetVRegLong(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::NOT_LONG:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_12x(), ~shadow_frame.GetVRegLong(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::NEG_FLOAT:
PREAMBLE();
shadow_frame.SetVRegFloat(inst->VRegA_12x(), -shadow_frame.GetVRegFloat(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::NEG_DOUBLE:
PREAMBLE();
shadow_frame.SetVRegDouble(inst->VRegA_12x(), -shadow_frame.GetVRegDouble(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::INT_TO_LONG:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_12x(), shadow_frame.GetVReg(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::INT_TO_FLOAT:
PREAMBLE();
shadow_frame.SetVRegFloat(inst->VRegA_12x(), shadow_frame.GetVReg(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::INT_TO_DOUBLE:
PREAMBLE();
shadow_frame.SetVRegDouble(inst->VRegA_12x(), shadow_frame.GetVReg(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::LONG_TO_INT:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_12x(), shadow_frame.GetVRegLong(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::LONG_TO_FLOAT:
PREAMBLE();
shadow_frame.SetVRegFloat(inst->VRegA_12x(), shadow_frame.GetVRegLong(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::LONG_TO_DOUBLE:
PREAMBLE();
shadow_frame.SetVRegDouble(inst->VRegA_12x(), shadow_frame.GetVRegLong(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::FLOAT_TO_INT: {
PREAMBLE();
float val = shadow_frame.GetVRegFloat(inst->VRegB_12x());
int32_t result;
if (val != val) {
result = 0;
} else if (val > static_cast<float>(kMaxInt)) {
result = kMaxInt;
} else if (val < static_cast<float>(kMinInt)) {
result = kMinInt;
} else {
result = val;
}
shadow_frame.SetVReg(inst->VRegA_12x(), result);
inst = inst->Next_1xx();
break;
}
case Instruction::FLOAT_TO_LONG: {
PREAMBLE();
float val = shadow_frame.GetVRegFloat(inst->VRegB_12x());
int64_t result;
if (val != val) {
result = 0;
} else if (val > static_cast<float>(kMaxLong)) {
result = kMaxLong;
} else if (val < static_cast<float>(kMinLong)) {
result = kMinLong;
} else {
result = val;
}
shadow_frame.SetVRegLong(inst->VRegA_12x(), result);
inst = inst->Next_1xx();
break;
}
case Instruction::FLOAT_TO_DOUBLE:
PREAMBLE();
shadow_frame.SetVRegDouble(inst->VRegA_12x(), shadow_frame.GetVRegFloat(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::DOUBLE_TO_INT: {
PREAMBLE();
double val = shadow_frame.GetVRegDouble(inst->VRegB_12x());
int32_t result;
if (val != val) {
result = 0;
} else if (val > static_cast<double>(kMaxInt)) {
result = kMaxInt;
} else if (val < static_cast<double>(kMinInt)) {
result = kMinInt;
} else {
result = val;
}
shadow_frame.SetVReg(inst->VRegA_12x(), result);
inst = inst->Next_1xx();
break;
}
case Instruction::DOUBLE_TO_LONG: {
PREAMBLE();
double val = shadow_frame.GetVRegDouble(inst->VRegB_12x());
int64_t result;
if (val != val) {
result = 0;
} else if (val > static_cast<double>(kMaxLong)) {
result = kMaxLong;
} else if (val < static_cast<double>(kMinLong)) {
result = kMinLong;
} else {
result = val;
}
shadow_frame.SetVRegLong(inst->VRegA_12x(), result);
inst = inst->Next_1xx();
break;
}
case Instruction::DOUBLE_TO_FLOAT:
PREAMBLE();
shadow_frame.SetVRegFloat(inst->VRegA_12x(), shadow_frame.GetVRegDouble(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
case Instruction::INT_TO_BYTE:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_12x(),
static_cast<int8_t>(shadow_frame.GetVReg(inst->VRegB_12x())));
inst = inst->Next_1xx();
break;
case Instruction::INT_TO_CHAR:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_12x(),
static_cast<uint16_t>(shadow_frame.GetVReg(inst->VRegB_12x())));
inst = inst->Next_1xx();
break;
case Instruction::INT_TO_SHORT:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_12x(),
static_cast<int16_t>(shadow_frame.GetVReg(inst->VRegB_12x())));
inst = inst->Next_1xx();
break;
case Instruction::ADD_INT:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_23x(),
shadow_frame.GetVReg(inst->VRegB_23x()) +
shadow_frame.GetVReg(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::SUB_INT:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_23x(),
shadow_frame.GetVReg(inst->VRegB_23x()) -
shadow_frame.GetVReg(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::MUL_INT:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_23x(),
shadow_frame.GetVReg(inst->VRegB_23x()) *
shadow_frame.GetVReg(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::DIV_INT: {
PREAMBLE();
bool success = DoIntDivide(shadow_frame, inst->VRegA_23x(),
shadow_frame.GetVReg(inst->VRegB_23x()),
shadow_frame.GetVReg(inst->VRegC_23x()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::REM_INT: {
PREAMBLE();
bool success = DoIntRemainder(shadow_frame, inst->VRegA_23x(),
shadow_frame.GetVReg(inst->VRegB_23x()),
shadow_frame.GetVReg(inst->VRegC_23x()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::SHL_INT:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_23x(),
shadow_frame.GetVReg(inst->VRegB_23x()) <<
(shadow_frame.GetVReg(inst->VRegC_23x()) & 0x1f));
inst = inst->Next_2xx();
break;
case Instruction::SHR_INT:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_23x(),
shadow_frame.GetVReg(inst->VRegB_23x()) >>
(shadow_frame.GetVReg(inst->VRegC_23x()) & 0x1f));
inst = inst->Next_2xx();
break;
case Instruction::USHR_INT:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_23x(),
static_cast<uint32_t>(shadow_frame.GetVReg(inst->VRegB_23x())) >>
(shadow_frame.GetVReg(inst->VRegC_23x()) & 0x1f));
inst = inst->Next_2xx();
break;
case Instruction::AND_INT:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_23x(),
shadow_frame.GetVReg(inst->VRegB_23x()) &
shadow_frame.GetVReg(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::OR_INT:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_23x(),
shadow_frame.GetVReg(inst->VRegB_23x()) |
shadow_frame.GetVReg(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::XOR_INT:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_23x(),
shadow_frame.GetVReg(inst->VRegB_23x()) ^
shadow_frame.GetVReg(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::ADD_LONG:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_23x(),
shadow_frame.GetVRegLong(inst->VRegB_23x()) +
shadow_frame.GetVRegLong(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::SUB_LONG:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_23x(),
shadow_frame.GetVRegLong(inst->VRegB_23x()) -
shadow_frame.GetVRegLong(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::MUL_LONG:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_23x(),
shadow_frame.GetVRegLong(inst->VRegB_23x()) *
shadow_frame.GetVRegLong(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::DIV_LONG:
PREAMBLE();
DoLongDivide(shadow_frame, inst->VRegA_23x(),
shadow_frame.GetVRegLong(inst->VRegB_23x()),
shadow_frame.GetVRegLong(inst->VRegC_23x()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_2xx);
break;
case Instruction::REM_LONG:
PREAMBLE();
DoLongRemainder(shadow_frame, inst->VRegA_23x(),
shadow_frame.GetVRegLong(inst->VRegB_23x()),
shadow_frame.GetVRegLong(inst->VRegC_23x()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_2xx);
break;
case Instruction::AND_LONG:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_23x(),
shadow_frame.GetVRegLong(inst->VRegB_23x()) &
shadow_frame.GetVRegLong(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::OR_LONG:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_23x(),
shadow_frame.GetVRegLong(inst->VRegB_23x()) |
shadow_frame.GetVRegLong(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::XOR_LONG:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_23x(),
shadow_frame.GetVRegLong(inst->VRegB_23x()) ^
shadow_frame.GetVRegLong(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::SHL_LONG:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_23x(),
shadow_frame.GetVRegLong(inst->VRegB_23x()) <<
(shadow_frame.GetVReg(inst->VRegC_23x()) & 0x3f));
inst = inst->Next_2xx();
break;
case Instruction::SHR_LONG:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_23x(),
shadow_frame.GetVRegLong(inst->VRegB_23x()) >>
(shadow_frame.GetVReg(inst->VRegC_23x()) & 0x3f));
inst = inst->Next_2xx();
break;
case Instruction::USHR_LONG:
PREAMBLE();
shadow_frame.SetVRegLong(inst->VRegA_23x(),
static_cast<uint64_t>(shadow_frame.GetVRegLong(inst->VRegB_23x())) >>
(shadow_frame.GetVReg(inst->VRegC_23x()) & 0x3f));
inst = inst->Next_2xx();
break;
case Instruction::ADD_FLOAT:
PREAMBLE();
shadow_frame.SetVRegFloat(inst->VRegA_23x(),
shadow_frame.GetVRegFloat(inst->VRegB_23x()) +
shadow_frame.GetVRegFloat(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::SUB_FLOAT:
PREAMBLE();
shadow_frame.SetVRegFloat(inst->VRegA_23x(),
shadow_frame.GetVRegFloat(inst->VRegB_23x()) -
shadow_frame.GetVRegFloat(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::MUL_FLOAT:
PREAMBLE();
shadow_frame.SetVRegFloat(inst->VRegA_23x(),
shadow_frame.GetVRegFloat(inst->VRegB_23x()) *
shadow_frame.GetVRegFloat(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::DIV_FLOAT:
PREAMBLE();
shadow_frame.SetVRegFloat(inst->VRegA_23x(),
shadow_frame.GetVRegFloat(inst->VRegB_23x()) /
shadow_frame.GetVRegFloat(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::REM_FLOAT:
PREAMBLE();
shadow_frame.SetVRegFloat(inst->VRegA_23x(),
fmodf(shadow_frame.GetVRegFloat(inst->VRegB_23x()),
shadow_frame.GetVRegFloat(inst->VRegC_23x())));
inst = inst->Next_2xx();
break;
case Instruction::ADD_DOUBLE:
PREAMBLE();
shadow_frame.SetVRegDouble(inst->VRegA_23x(),
shadow_frame.GetVRegDouble(inst->VRegB_23x()) +
shadow_frame.GetVRegDouble(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::SUB_DOUBLE:
PREAMBLE();
shadow_frame.SetVRegDouble(inst->VRegA_23x(),
shadow_frame.GetVRegDouble(inst->VRegB_23x()) -
shadow_frame.GetVRegDouble(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::MUL_DOUBLE:
PREAMBLE();
shadow_frame.SetVRegDouble(inst->VRegA_23x(),
shadow_frame.GetVRegDouble(inst->VRegB_23x()) *
shadow_frame.GetVRegDouble(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::DIV_DOUBLE:
PREAMBLE();
shadow_frame.SetVRegDouble(inst->VRegA_23x(),
shadow_frame.GetVRegDouble(inst->VRegB_23x()) /
shadow_frame.GetVRegDouble(inst->VRegC_23x()));
inst = inst->Next_2xx();
break;
case Instruction::REM_DOUBLE:
PREAMBLE();
shadow_frame.SetVRegDouble(inst->VRegA_23x(),
fmod(shadow_frame.GetVRegDouble(inst->VRegB_23x()),
shadow_frame.GetVRegDouble(inst->VRegC_23x())));
inst = inst->Next_2xx();
break;
case Instruction::ADD_INT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVReg(vregA,
shadow_frame.GetVReg(vregA) +
shadow_frame.GetVReg(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::SUB_INT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVReg(vregA,
shadow_frame.GetVReg(vregA) -
shadow_frame.GetVReg(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::MUL_INT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVReg(vregA,
shadow_frame.GetVReg(vregA) *
shadow_frame.GetVReg(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::DIV_INT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
bool success = DoIntDivide(shadow_frame, vregA, shadow_frame.GetVReg(vregA),
shadow_frame.GetVReg(inst->VRegB_12x()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_1xx);
break;
}
case Instruction::REM_INT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
bool success = DoIntRemainder(shadow_frame, vregA, shadow_frame.GetVReg(vregA),
shadow_frame.GetVReg(inst->VRegB_12x()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_1xx);
break;
}
case Instruction::SHL_INT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVReg(vregA,
shadow_frame.GetVReg(vregA) <<
(shadow_frame.GetVReg(inst->VRegB_12x()) & 0x1f));
inst = inst->Next_1xx();
break;
}
case Instruction::SHR_INT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVReg(vregA,
shadow_frame.GetVReg(vregA) >>
(shadow_frame.GetVReg(inst->VRegB_12x()) & 0x1f));
inst = inst->Next_1xx();
break;
}
case Instruction::USHR_INT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVReg(vregA,
static_cast<uint32_t>(shadow_frame.GetVReg(vregA)) >>
(shadow_frame.GetVReg(inst->VRegB_12x()) & 0x1f));
inst = inst->Next_1xx();
break;
}
case Instruction::AND_INT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVReg(vregA,
shadow_frame.GetVReg(vregA) &
shadow_frame.GetVReg(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::OR_INT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVReg(vregA,
shadow_frame.GetVReg(vregA) |
shadow_frame.GetVReg(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::XOR_INT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVReg(vregA,
shadow_frame.GetVReg(vregA) ^
shadow_frame.GetVReg(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::ADD_LONG_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegLong(vregA,
shadow_frame.GetVRegLong(vregA) +
shadow_frame.GetVRegLong(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::SUB_LONG_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegLong(vregA,
shadow_frame.GetVRegLong(vregA) -
shadow_frame.GetVRegLong(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::MUL_LONG_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegLong(vregA,
shadow_frame.GetVRegLong(vregA) *
shadow_frame.GetVRegLong(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::DIV_LONG_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
DoLongDivide(shadow_frame, vregA, shadow_frame.GetVRegLong(vregA),
shadow_frame.GetVRegLong(inst->VRegB_12x()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_1xx);
break;
}
case Instruction::REM_LONG_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
DoLongRemainder(shadow_frame, vregA, shadow_frame.GetVRegLong(vregA),
shadow_frame.GetVRegLong(inst->VRegB_12x()));
POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_1xx);
break;
}
case Instruction::AND_LONG_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegLong(vregA,
shadow_frame.GetVRegLong(vregA) &
shadow_frame.GetVRegLong(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::OR_LONG_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegLong(vregA,
shadow_frame.GetVRegLong(vregA) |
shadow_frame.GetVRegLong(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::XOR_LONG_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegLong(vregA,
shadow_frame.GetVRegLong(vregA) ^
shadow_frame.GetVRegLong(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::SHL_LONG_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegLong(vregA,
shadow_frame.GetVRegLong(vregA) <<
(shadow_frame.GetVReg(inst->VRegB_12x()) & 0x3f));
inst = inst->Next_1xx();
break;
}
case Instruction::SHR_LONG_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegLong(vregA,
shadow_frame.GetVRegLong(vregA) >>
(shadow_frame.GetVReg(inst->VRegB_12x()) & 0x3f));
inst = inst->Next_1xx();
break;
}
case Instruction::USHR_LONG_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegLong(vregA,
static_cast<uint64_t>(shadow_frame.GetVRegLong(vregA)) >>
(shadow_frame.GetVReg(inst->VRegB_12x()) & 0x3f));
inst = inst->Next_1xx();
break;
}
case Instruction::ADD_FLOAT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegFloat(vregA,
shadow_frame.GetVRegFloat(vregA) +
shadow_frame.GetVRegFloat(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::SUB_FLOAT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegFloat(vregA,
shadow_frame.GetVRegFloat(vregA) -
shadow_frame.GetVRegFloat(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::MUL_FLOAT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegFloat(vregA,
shadow_frame.GetVRegFloat(vregA) *
shadow_frame.GetVRegFloat(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::DIV_FLOAT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegFloat(vregA,
shadow_frame.GetVRegFloat(vregA) /
shadow_frame.GetVRegFloat(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::REM_FLOAT_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegFloat(vregA,
fmodf(shadow_frame.GetVRegFloat(vregA),
shadow_frame.GetVRegFloat(inst->VRegB_12x())));
inst = inst->Next_1xx();
break;
}
case Instruction::ADD_DOUBLE_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegDouble(vregA,
shadow_frame.GetVRegDouble(vregA) +
shadow_frame.GetVRegDouble(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::SUB_DOUBLE_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegDouble(vregA,
shadow_frame.GetVRegDouble(vregA) -
shadow_frame.GetVRegDouble(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::MUL_DOUBLE_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegDouble(vregA,
shadow_frame.GetVRegDouble(vregA) *
shadow_frame.GetVRegDouble(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::DIV_DOUBLE_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegDouble(vregA,
shadow_frame.GetVRegDouble(vregA) /
shadow_frame.GetVRegDouble(inst->VRegB_12x()));
inst = inst->Next_1xx();
break;
}
case Instruction::REM_DOUBLE_2ADDR: {
PREAMBLE();
uint4_t vregA = inst->VRegA_12x();
shadow_frame.SetVRegDouble(vregA,
fmod(shadow_frame.GetVRegDouble(vregA),
shadow_frame.GetVRegDouble(inst->VRegB_12x())));
inst = inst->Next_1xx();
break;
}
case Instruction::ADD_INT_LIT16:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22s(),
shadow_frame.GetVReg(inst->VRegB_22s()) +
inst->VRegC_22s());
inst = inst->Next_2xx();
break;
case Instruction::RSUB_INT:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22s(),
inst->VRegC_22s() -
shadow_frame.GetVReg(inst->VRegB_22s()));
inst = inst->Next_2xx();
break;
case Instruction::MUL_INT_LIT16:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22s(),
shadow_frame.GetVReg(inst->VRegB_22s()) *
inst->VRegC_22s());
inst = inst->Next_2xx();
break;
case Instruction::DIV_INT_LIT16: {
PREAMBLE();
bool success = DoIntDivide(shadow_frame, inst->VRegA_22s(),
shadow_frame.GetVReg(inst->VRegB_22s()), inst->VRegC_22s());
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::REM_INT_LIT16: {
PREAMBLE();
bool success = DoIntRemainder(shadow_frame, inst->VRegA_22s(),
shadow_frame.GetVReg(inst->VRegB_22s()), inst->VRegC_22s());
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::AND_INT_LIT16:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22s(),
shadow_frame.GetVReg(inst->VRegB_22s()) &
inst->VRegC_22s());
inst = inst->Next_2xx();
break;
case Instruction::OR_INT_LIT16:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22s(),
shadow_frame.GetVReg(inst->VRegB_22s()) |
inst->VRegC_22s());
inst = inst->Next_2xx();
break;
case Instruction::XOR_INT_LIT16:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22s(),
shadow_frame.GetVReg(inst->VRegB_22s()) ^
inst->VRegC_22s());
inst = inst->Next_2xx();
break;
case Instruction::ADD_INT_LIT8:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22b(),
shadow_frame.GetVReg(inst->VRegB_22b()) +
inst->VRegC_22b());
inst = inst->Next_2xx();
break;
case Instruction::RSUB_INT_LIT8:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22b(),
inst->VRegC_22b() -
shadow_frame.GetVReg(inst->VRegB_22b()));
inst = inst->Next_2xx();
break;
case Instruction::MUL_INT_LIT8:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22b(),
shadow_frame.GetVReg(inst->VRegB_22b()) *
inst->VRegC_22b());
inst = inst->Next_2xx();
break;
case Instruction::DIV_INT_LIT8: {
PREAMBLE();
bool success = DoIntDivide(shadow_frame, inst->VRegA_22b(),
shadow_frame.GetVReg(inst->VRegB_22b()), inst->VRegC_22b());
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::REM_INT_LIT8: {
PREAMBLE();
bool success = DoIntRemainder(shadow_frame, inst->VRegA_22b(),
shadow_frame.GetVReg(inst->VRegB_22b()), inst->VRegC_22b());
POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx);
break;
}
case Instruction::AND_INT_LIT8:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22b(),
shadow_frame.GetVReg(inst->VRegB_22b()) &
inst->VRegC_22b());
inst = inst->Next_2xx();
break;
case Instruction::OR_INT_LIT8:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22b(),
shadow_frame.GetVReg(inst->VRegB_22b()) |
inst->VRegC_22b());
inst = inst->Next_2xx();
break;
case Instruction::XOR_INT_LIT8:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22b(),
shadow_frame.GetVReg(inst->VRegB_22b()) ^
inst->VRegC_22b());
inst = inst->Next_2xx();
break;
case Instruction::SHL_INT_LIT8:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22b(),
shadow_frame.GetVReg(inst->VRegB_22b()) <<
(inst->VRegC_22b() & 0x1f));
inst = inst->Next_2xx();
break;
case Instruction::SHR_INT_LIT8:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22b(),
shadow_frame.GetVReg(inst->VRegB_22b()) >>
(inst->VRegC_22b() & 0x1f));
inst = inst->Next_2xx();
break;
case Instruction::USHR_INT_LIT8:
PREAMBLE();
shadow_frame.SetVReg(inst->VRegA_22b(),
static_cast<uint32_t>(shadow_frame.GetVReg(inst->VRegB_22b())) >>
(inst->VRegC_22b() & 0x1f));
inst = inst->Next_2xx();
break;
case Instruction::UNUSED_3E ... Instruction::UNUSED_43:
case Instruction::UNUSED_EB ... Instruction::UNUSED_FF:
case Instruction::UNUSED_79:
case Instruction::UNUSED_7A:
UnexpectedOpcode(inst, mh);
}
}
} // NOLINT(readability/fn_size)
static JValue Execute(Thread* self, MethodHelper& mh, const DexFile::CodeItem* code_item,
ShadowFrame& shadow_frame, JValue result_register)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static inline JValue Execute(Thread* self, MethodHelper& mh, const DexFile::CodeItem* code_item,
ShadowFrame& shadow_frame, JValue result_register) {
DCHECK(shadow_frame.GetMethod() == mh.GetMethod() ||
shadow_frame.GetMethod()->GetDeclaringClass()->IsProxyClass());
DCHECK(!shadow_frame.GetMethod()->IsAbstract());
DCHECK(!shadow_frame.GetMethod()->IsNative());
if (shadow_frame.GetMethod()->IsPreverified()) {
// Enter the "without access check" interpreter.
return ExecuteImpl<false>(self, mh, code_item, shadow_frame, result_register);
} else {
// Enter the "with access check" interpreter.
return ExecuteImpl<true>(self, mh, code_item, shadow_frame, result_register);
}
}
void EnterInterpreterFromInvoke(Thread* self, ArtMethod* method, Object* receiver,
uint32_t* args, JValue* result) {
DCHECK_EQ(self, Thread::Current());
if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEnd())) {
ThrowStackOverflowError(self);
return;
}
MethodHelper mh(method);
const DexFile::CodeItem* code_item = mh.GetCodeItem();
uint16_t num_regs;
uint16_t num_ins;
if (code_item != NULL) {
num_regs = code_item->registers_size_;
num_ins = code_item->ins_size_;
} else if (method->IsAbstract()) {
ThrowAbstractMethodError(method);
return;
} else {
DCHECK(method->IsNative());
num_regs = num_ins = ArtMethod::NumArgRegisters(mh.GetShorty());
if (!method->IsStatic()) {
num_regs++;
num_ins++;
}
}
// Set up shadow frame with matching number of reference slots to vregs.
ShadowFrame* last_shadow_frame = self->GetManagedStack()->GetTopShadowFrame();
void* memory = alloca(ShadowFrame::ComputeSize(num_regs));
ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, last_shadow_frame, method, 0, memory));
self->PushShadowFrame(shadow_frame);
size_t cur_reg = num_regs - num_ins;
if (!method->IsStatic()) {
CHECK(receiver != NULL);
shadow_frame->SetVRegReference(cur_reg, receiver);
++cur_reg;
} else if (UNLIKELY(!method->GetDeclaringClass()->IsInitializing())) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
if (UNLIKELY(!class_linker->EnsureInitialized(method->GetDeclaringClass(),
true, true))) {
CHECK(self->IsExceptionPending());
self->PopShadowFrame();
return;
}
CHECK(method->GetDeclaringClass()->IsInitializing());
}
const char* shorty = mh.GetShorty();
for (size_t shorty_pos = 0, arg_pos = 0; cur_reg < num_regs; ++shorty_pos, ++arg_pos, cur_reg++) {
DCHECK_LT(shorty_pos + 1, mh.GetShortyLength());
switch (shorty[shorty_pos + 1]) {
case 'L': {
Object* o = reinterpret_cast<Object*>(args[arg_pos]);
shadow_frame->SetVRegReference(cur_reg, o);
break;
}
case 'J': case 'D': {
uint64_t wide_value = (static_cast<uint64_t>(args[arg_pos + 1]) << 32) | args[arg_pos];
shadow_frame->SetVRegLong(cur_reg, wide_value);
cur_reg++;
arg_pos++;
break;
}
default:
shadow_frame->SetVReg(cur_reg, args[arg_pos]);
break;
}
}
if (LIKELY(!method->IsNative())) {
JValue r = Execute(self, mh, code_item, *shadow_frame, JValue());
if (result != NULL) {
*result = r;
}
} else {
// We don't expect to be asked to interpret native code (which is entered via a JNI compiler
// generated stub) except during testing and image writing.
if (!Runtime::Current()->IsStarted()) {
UnstartedRuntimeJni(self, method, receiver, args, result);
} else {
InterpreterJni(self, method, shorty, receiver, args, result);
}
}
self->PopShadowFrame();
}
void EnterInterpreterFromDeoptimize(Thread* self, ShadowFrame* shadow_frame, JValue* ret_val)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
JValue value;
value.SetJ(ret_val->GetJ()); // Set value to last known result in case the shadow frame chain is empty.
MethodHelper mh;
while (shadow_frame != NULL) {
self->SetTopOfShadowStack(shadow_frame);
mh.ChangeMethod(shadow_frame->GetMethod());
const DexFile::CodeItem* code_item = mh.GetCodeItem();
value = Execute(self, mh, code_item, *shadow_frame, value);
ShadowFrame* old_frame = shadow_frame;
shadow_frame = shadow_frame->GetLink();
delete old_frame;
}
ret_val->SetJ(value.GetJ());
}
JValue EnterInterpreterFromStub(Thread* self, MethodHelper& mh, const DexFile::CodeItem* code_item,
ShadowFrame& shadow_frame) {
DCHECK_EQ(self, Thread::Current());
if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEnd())) {
ThrowStackOverflowError(self);
return JValue();
}
return Execute(self, mh, code_item, shadow_frame, JValue());
}
extern "C" void artInterpreterToInterpreterBridge(Thread* self, MethodHelper& mh,
const DexFile::CodeItem* code_item,
ShadowFrame* shadow_frame, JValue* result) {
if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEnd())) {
ThrowStackOverflowError(self);
return;
}
ArtMethod* method = shadow_frame->GetMethod();
if (method->IsStatic() && !method->GetDeclaringClass()->IsInitializing()) {
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(method->GetDeclaringClass(),
true, true)) {
DCHECK(Thread::Current()->IsExceptionPending());
return;
}
CHECK(method->GetDeclaringClass()->IsInitializing());
}
self->PushShadowFrame(shadow_frame);
if (LIKELY(!method->IsNative())) {
result->SetJ(Execute(self, mh, code_item, *shadow_frame, JValue()).GetJ());
} else {
// We don't expect to be asked to interpret native code (which is entered via a JNI compiler
// generated stub) except during testing and image writing.
CHECK(!Runtime::Current()->IsStarted());
Object* receiver = method->IsStatic() ? NULL : shadow_frame->GetVRegReference(0);
uint32_t* args = shadow_frame->GetVRegArgs(method->IsStatic() ? 0 : 1);
UnstartedRuntimeJni(self, method, receiver, args, result);
}
self->PopShadowFrame();
return;
}
} // namespace interpreter
} // namespace art