/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "interpreter.h" #include <math.h> #include "base/logging.h" #include "class_linker-inl.h" #include "common_throws.h" #include "dex_file-inl.h" #include "dex_instruction-inl.h" #include "dex_instruction.h" #include "entrypoints/entrypoint_utils.h" #include "gc/accounting/card_table-inl.h" #include "invoke_arg_array_builder.h" #include "nth_caller_visitor.h" #include "mirror/art_field-inl.h" #include "mirror/art_method.h" #include "mirror/art_method-inl.h" #include "mirror/class.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "object_utils.h" #include "ScopedLocalRef.h" #include "scoped_thread_state_change.h" #include "thread.h" #include "well_known_classes.h" using ::art::mirror::ArtField; using ::art::mirror::ArtMethod; using ::art::mirror::Array; using ::art::mirror::BooleanArray; using ::art::mirror::ByteArray; using ::art::mirror::CharArray; using ::art::mirror::Class; using ::art::mirror::ClassLoader; using ::art::mirror::IntArray; using ::art::mirror::LongArray; using ::art::mirror::Object; using ::art::mirror::ObjectArray; using ::art::mirror::ShortArray; using ::art::mirror::String; using ::art::mirror::Throwable; namespace art { namespace interpreter { static const int32_t kMaxInt = std::numeric_limits<int32_t>::max(); static const int32_t kMinInt = std::numeric_limits<int32_t>::min(); static const int64_t kMaxLong = std::numeric_limits<int64_t>::max(); static const int64_t kMinLong = std::numeric_limits<int64_t>::min(); static void UnstartedRuntimeInvoke(Thread* self, MethodHelper& mh, const DexFile::CodeItem* code_item, ShadowFrame* shadow_frame, JValue* result, size_t arg_offset) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // In a runtime that's not started we intercept certain methods to avoid complicated dependency // problems in core libraries. std::string name(PrettyMethod(shadow_frame->GetMethod())); if (name == "java.lang.Class java.lang.Class.forName(java.lang.String)") { std::string descriptor(DotToDescriptor(shadow_frame->GetVRegReference(arg_offset)->AsString()->ToModifiedUtf8().c_str())); ClassLoader* class_loader = NULL; // shadow_frame.GetMethod()->GetDeclaringClass()->GetClassLoader(); Class* found = Runtime::Current()->GetClassLinker()->FindClass(descriptor.c_str(), class_loader); CHECK(found != NULL) << "Class.forName failed in un-started runtime for class: " << PrettyDescriptor(descriptor); result->SetL(found); } else if (name == "java.lang.Object java.lang.Class.newInstance()") { Class* klass = shadow_frame->GetVRegReference(arg_offset)->AsClass(); ArtMethod* c = klass->FindDeclaredDirectMethod("<init>", "()V"); CHECK(c != NULL); SirtRef<Object> obj(self, klass->AllocObject(self)); CHECK(obj.get() != NULL); EnterInterpreterFromInvoke(self, c, obj.get(), NULL, NULL); result->SetL(obj.get()); } else if (name == "java.lang.reflect.Field java.lang.Class.getDeclaredField(java.lang.String)") { // Special managed code cut-out to allow field lookup in a un-started runtime that'd fail // going the reflective Dex way. Class* klass = shadow_frame->GetVRegReference(arg_offset)->AsClass(); String* name = shadow_frame->GetVRegReference(arg_offset + 1)->AsString(); ArtField* found = NULL; FieldHelper fh; ObjectArray<ArtField>* fields = klass->GetIFields(); for (int32_t i = 0; i < fields->GetLength() && found == NULL; ++i) { ArtField* f = fields->Get(i); fh.ChangeField(f); if (name->Equals(fh.GetName())) { found = f; } } if (found == NULL) { fields = klass->GetSFields(); for (int32_t i = 0; i < fields->GetLength() && found == NULL; ++i) { ArtField* f = fields->Get(i); fh.ChangeField(f); if (name->Equals(fh.GetName())) { found = f; } } } CHECK(found != NULL) << "Failed to find field in Class.getDeclaredField in un-started runtime. name=" << name->ToModifiedUtf8() << " class=" << PrettyDescriptor(klass); // TODO: getDeclaredField calls GetType once the field is found to ensure a // NoClassDefFoundError is thrown if the field's type cannot be resolved. Class* jlr_Field = self->DecodeJObject(WellKnownClasses::java_lang_reflect_Field)->AsClass(); SirtRef<Object> field(self, jlr_Field->AllocObject(self)); CHECK(field.get() != NULL); ArtMethod* c = jlr_Field->FindDeclaredDirectMethod("<init>", "(Ljava/lang/reflect/ArtField;)V"); uint32_t args[1]; args[0] = reinterpret_cast<uint32_t>(found); EnterInterpreterFromInvoke(self, c, field.get(), args, NULL); result->SetL(field.get()); } else if (name == "void java.lang.System.arraycopy(java.lang.Object, int, java.lang.Object, int, int)" || name == "void java.lang.System.arraycopy(char[], int, char[], int, int)") { // Special case array copying without initializing System. Class* ctype = shadow_frame->GetVRegReference(arg_offset)->GetClass()->GetComponentType(); jint srcPos = shadow_frame->GetVReg(arg_offset + 1); jint dstPos = shadow_frame->GetVReg(arg_offset + 3); jint length = shadow_frame->GetVReg(arg_offset + 4); if (!ctype->IsPrimitive()) { ObjectArray<Object>* src = shadow_frame->GetVRegReference(arg_offset)->AsObjectArray<Object>(); ObjectArray<Object>* dst = shadow_frame->GetVRegReference(arg_offset + 2)->AsObjectArray<Object>(); for (jint i = 0; i < length; ++i) { dst->Set(dstPos + i, src->Get(srcPos + i)); } } else if (ctype->IsPrimitiveChar()) { CharArray* src = shadow_frame->GetVRegReference(arg_offset)->AsCharArray(); CharArray* dst = shadow_frame->GetVRegReference(arg_offset + 2)->AsCharArray(); for (jint i = 0; i < length; ++i) { dst->Set(dstPos + i, src->Get(srcPos + i)); } } else if (ctype->IsPrimitiveInt()) { IntArray* src = shadow_frame->GetVRegReference(arg_offset)->AsIntArray(); IntArray* dst = shadow_frame->GetVRegReference(arg_offset + 2)->AsIntArray(); for (jint i = 0; i < length; ++i) { dst->Set(dstPos + i, src->Get(srcPos + i)); } } else { UNIMPLEMENTED(FATAL) << "System.arraycopy of unexpected type: " << PrettyDescriptor(ctype); } } else { // Not special, continue with regular interpreter execution. artInterpreterToInterpreterBridge(self, mh, code_item, shadow_frame, result); } } // Hand select a number of methods to be run in a not yet started runtime without using JNI. static void UnstartedRuntimeJni(Thread* self, ArtMethod* method, Object* receiver, uint32_t* args, JValue* result) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { std::string name(PrettyMethod(method)); if (name == "java.lang.ClassLoader dalvik.system.VMStack.getCallingClassLoader()") { result->SetL(NULL); } else if (name == "java.lang.Class dalvik.system.VMStack.getStackClass2()") { NthCallerVisitor visitor(self, 3); visitor.WalkStack(); result->SetL(visitor.caller->GetDeclaringClass()); } else if (name == "double java.lang.Math.log(double)") { JValue value; value.SetJ((static_cast<uint64_t>(args[1]) << 32) | args[0]); result->SetD(log(value.GetD())); } else if (name == "java.lang.String java.lang.Class.getNameNative()") { result->SetL(receiver->AsClass()->ComputeName()); } else if (name == "int java.lang.Float.floatToRawIntBits(float)") { result->SetI(args[0]); } else if (name == "float java.lang.Float.intBitsToFloat(int)") { result->SetI(args[0]); } else if (name == "double java.lang.Math.exp(double)") { JValue value; value.SetJ((static_cast<uint64_t>(args[1]) << 32) | args[0]); result->SetD(exp(value.GetD())); } else if (name == "java.lang.Object java.lang.Object.internalClone()") { result->SetL(receiver->Clone(self)); } else if (name == "void java.lang.Object.notifyAll()") { receiver->NotifyAll(self); } else if (name == "int java.lang.String.compareTo(java.lang.String)") { String* rhs = reinterpret_cast<Object*>(args[0])->AsString(); CHECK(rhs != NULL); result->SetI(receiver->AsString()->CompareTo(rhs)); } else if (name == "java.lang.String java.lang.String.intern()") { result->SetL(receiver->AsString()->Intern()); } else if (name == "int java.lang.String.fastIndexOf(int, int)") { result->SetI(receiver->AsString()->FastIndexOf(args[0], args[1])); } else if (name == "java.lang.Object java.lang.reflect.Array.createMultiArray(java.lang.Class, int[])") { result->SetL(Array::CreateMultiArray(self, reinterpret_cast<Object*>(args[0])->AsClass(), reinterpret_cast<Object*>(args[1])->AsIntArray())); } else if (name == "java.lang.Object java.lang.Throwable.nativeFillInStackTrace()") { ScopedObjectAccessUnchecked soa(self); result->SetL(soa.Decode<Object*>(self->CreateInternalStackTrace(soa))); } else if (name == "boolean java.nio.ByteOrder.isLittleEndian()") { result->SetJ(JNI_TRUE); } else if (name == "boolean sun.misc.Unsafe.compareAndSwapInt(java.lang.Object, long, int, int)") { Object* obj = reinterpret_cast<Object*>(args[0]); jlong offset = (static_cast<uint64_t>(args[2]) << 32) | args[1]; jint expectedValue = args[3]; jint newValue = args[4]; byte* raw_addr = reinterpret_cast<byte*>(obj) + offset; volatile int32_t* address = reinterpret_cast<volatile int32_t*>(raw_addr); // Note: android_atomic_release_cas() returns 0 on success, not failure. int r = android_atomic_release_cas(expectedValue, newValue, address); result->SetZ(r == 0); } else if (name == "void sun.misc.Unsafe.putObject(java.lang.Object, long, java.lang.Object)") { Object* obj = reinterpret_cast<Object*>(args[0]); Object* newValue = reinterpret_cast<Object*>(args[3]); obj->SetFieldObject(MemberOffset((static_cast<uint64_t>(args[2]) << 32) | args[1]), newValue, false); } else { LOG(FATAL) << "Attempt to invoke native method in non-started runtime: " << name; } } static void InterpreterJni(Thread* self, ArtMethod* method, StringPiece shorty, Object* receiver, uint32_t* args, JValue* result) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // TODO: The following enters JNI code using a typedef-ed function rather than the JNI compiler, // it should be removed and JNI compiled stubs used instead. ScopedObjectAccessUnchecked soa(self); if (method->IsStatic()) { if (shorty == "L") { typedef jobject (fnptr)(JNIEnv*, jclass); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); jobject jresult; { ScopedThreadStateChange tsc(self, kNative); jresult = fn(soa.Env(), klass.get()); } result->SetL(soa.Decode<Object*>(jresult)); } else if (shorty == "V") { typedef void (fnptr)(JNIEnv*, jclass); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); fn(soa.Env(), klass.get()); } else if (shorty == "Z") { typedef jboolean (fnptr)(JNIEnv*, jclass); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); result->SetZ(fn(soa.Env(), klass.get())); } else if (shorty == "BI") { typedef jbyte (fnptr)(JNIEnv*, jclass, jint); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); result->SetB(fn(soa.Env(), klass.get(), args[0])); } else if (shorty == "II") { typedef jint (fnptr)(JNIEnv*, jclass, jint); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); result->SetI(fn(soa.Env(), klass.get(), args[0])); } else if (shorty == "LL") { typedef jobject (fnptr)(JNIEnv*, jclass, jobject); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedLocalRef<jobject> arg0(soa.Env(), soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[0]))); jobject jresult; { ScopedThreadStateChange tsc(self, kNative); jresult = fn(soa.Env(), klass.get(), arg0.get()); } result->SetL(soa.Decode<Object*>(jresult)); } else if (shorty == "IIZ") { typedef jint (fnptr)(JNIEnv*, jclass, jint, jboolean); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); result->SetI(fn(soa.Env(), klass.get(), args[0], args[1])); } else if (shorty == "ILI") { typedef jint (fnptr)(JNIEnv*, jclass, jobject, jint); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedLocalRef<jobject> arg0(soa.Env(), soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[0]))); ScopedThreadStateChange tsc(self, kNative); result->SetI(fn(soa.Env(), klass.get(), arg0.get(), args[1])); } else if (shorty == "SIZ") { typedef jshort (fnptr)(JNIEnv*, jclass, jint, jboolean); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); result->SetS(fn(soa.Env(), klass.get(), args[0], args[1])); } else if (shorty == "VIZ") { typedef void (fnptr)(JNIEnv*, jclass, jint, jboolean); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedThreadStateChange tsc(self, kNative); fn(soa.Env(), klass.get(), args[0], args[1]); } else if (shorty == "ZLL") { typedef jboolean (fnptr)(JNIEnv*, jclass, jobject, jobject); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedLocalRef<jobject> arg0(soa.Env(), soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[0]))); ScopedLocalRef<jobject> arg1(soa.Env(), soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[1]))); ScopedThreadStateChange tsc(self, kNative); result->SetZ(fn(soa.Env(), klass.get(), arg0.get(), arg1.get())); } else if (shorty == "ZILL") { typedef jboolean (fnptr)(JNIEnv*, jclass, jint, jobject, jobject); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedLocalRef<jobject> arg1(soa.Env(), soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[1]))); ScopedLocalRef<jobject> arg2(soa.Env(), soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[2]))); ScopedThreadStateChange tsc(self, kNative); result->SetZ(fn(soa.Env(), klass.get(), args[0], arg1.get(), arg2.get())); } else if (shorty == "VILII") { typedef void (fnptr)(JNIEnv*, jclass, jint, jobject, jint, jint); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedLocalRef<jobject> arg1(soa.Env(), soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[1]))); ScopedThreadStateChange tsc(self, kNative); fn(soa.Env(), klass.get(), args[0], arg1.get(), args[2], args[3]); } else if (shorty == "VLILII") { typedef void (fnptr)(JNIEnv*, jclass, jobject, jint, jobject, jint, jint); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jclass> klass(soa.Env(), soa.AddLocalReference<jclass>(method->GetDeclaringClass())); ScopedLocalRef<jobject> arg0(soa.Env(), soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[0]))); ScopedLocalRef<jobject> arg2(soa.Env(), soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[2]))); ScopedThreadStateChange tsc(self, kNative); fn(soa.Env(), klass.get(), arg0.get(), args[1], arg2.get(), args[3], args[4]); } else { LOG(FATAL) << "Do something with static native method: " << PrettyMethod(method) << " shorty: " << shorty; } } else { if (shorty == "L") { typedef jobject (fnptr)(JNIEnv*, jobject); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jobject> rcvr(soa.Env(), soa.AddLocalReference<jobject>(receiver)); jobject jresult; { ScopedThreadStateChange tsc(self, kNative); jresult = fn(soa.Env(), rcvr.get()); } result->SetL(soa.Decode<Object*>(jresult)); } else if (shorty == "V") { typedef void (fnptr)(JNIEnv*, jobject); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jobject> rcvr(soa.Env(), soa.AddLocalReference<jobject>(receiver)); ScopedThreadStateChange tsc(self, kNative); fn(soa.Env(), rcvr.get()); } else if (shorty == "LL") { typedef jobject (fnptr)(JNIEnv*, jobject, jobject); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jobject> rcvr(soa.Env(), soa.AddLocalReference<jobject>(receiver)); ScopedLocalRef<jobject> arg0(soa.Env(), soa.AddLocalReference<jobject>(reinterpret_cast<Object*>(args[0]))); jobject jresult; { ScopedThreadStateChange tsc(self, kNative); jresult = fn(soa.Env(), rcvr.get(), arg0.get()); } result->SetL(soa.Decode<Object*>(jresult)); ScopedThreadStateChange tsc(self, kNative); } else if (shorty == "III") { typedef jint (fnptr)(JNIEnv*, jobject, jint, jint); const fnptr* fn = reinterpret_cast<const fnptr*>(method->GetNativeMethod()); ScopedLocalRef<jobject> rcvr(soa.Env(), soa.AddLocalReference<jobject>(receiver)); ScopedThreadStateChange tsc(self, kNative); result->SetI(fn(soa.Env(), rcvr.get(), args[0], args[1])); } else { LOG(FATAL) << "Do something with native method: " << PrettyMethod(method) << " shorty: " << shorty; } } } static void DoMonitorEnter(Thread* self, Object* ref) NO_THREAD_SAFETY_ANALYSIS { ref->MonitorEnter(self); } static void DoMonitorExit(Thread* self, Object* ref) NO_THREAD_SAFETY_ANALYSIS { ref->MonitorExit(self); } // TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template // specialization. template<InvokeType type, bool is_range, bool do_access_check> static bool DoInvoke(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, JValue* result) NO_THREAD_SAFETY_ANALYSIS; template<InvokeType type, bool is_range, bool do_access_check> static bool DoInvoke(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, JValue* result) { bool do_assignability_check = do_access_check; uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); uint32_t vregC = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c(); Object* receiver = (type == kStatic) ? NULL : shadow_frame.GetVRegReference(vregC); ArtMethod* method = FindMethodFromCode(method_idx, receiver, shadow_frame.GetMethod(), self, do_access_check, type); if (UNLIKELY(method == NULL)) { CHECK(self->IsExceptionPending()); result->SetJ(0); return false; } else if (UNLIKELY(method->IsAbstract())) { ThrowAbstractMethodError(method); result->SetJ(0); return false; } MethodHelper mh(method); const DexFile::CodeItem* code_item = mh.GetCodeItem(); uint16_t num_regs; uint16_t num_ins; if (LIKELY(code_item != NULL)) { num_regs = code_item->registers_size_; num_ins = code_item->ins_size_; } else { DCHECK(method->IsNative() || method->IsProxyMethod()); num_regs = num_ins = ArtMethod::NumArgRegisters(mh.GetShorty()); if (!method->IsStatic()) { num_regs++; num_ins++; } } void* memory = alloca(ShadowFrame::ComputeSize(num_regs)); ShadowFrame* new_shadow_frame(ShadowFrame::Create(num_regs, &shadow_frame, method, 0, memory)); size_t cur_reg = num_regs - num_ins; if (receiver != NULL) { new_shadow_frame->SetVRegReference(cur_reg, receiver); ++cur_reg; } const DexFile::TypeList* params; if (do_assignability_check) { params = mh.GetParameterTypeList(); } size_t arg_offset = (receiver == NULL) ? 0 : 1; const char* shorty = mh.GetShorty(); uint32_t arg[5]; if (!is_range) { inst->GetArgs(arg); } for (size_t shorty_pos = 0; cur_reg < num_regs; ++shorty_pos, cur_reg++, arg_offset++) { DCHECK_LT(shorty_pos + 1, mh.GetShortyLength()); size_t arg_pos = is_range ? vregC + arg_offset : arg[arg_offset]; switch (shorty[shorty_pos + 1]) { case 'L': { Object* o = shadow_frame.GetVRegReference(arg_pos); if (do_assignability_check && o != NULL) { Class* arg_type = mh.GetClassFromTypeIdx(params->GetTypeItem(shorty_pos).type_idx_); if (arg_type == NULL) { CHECK(self->IsExceptionPending()); return false; } if (!o->VerifierInstanceOf(arg_type)) { // This should never happen. self->ThrowNewExceptionF(self->GetCurrentLocationForThrow(), "Ljava/lang/VirtualMachineError;", "Invoking %s with bad arg %d, type '%s' not instance of '%s'", mh.GetName(), shorty_pos, ClassHelper(o->GetClass()).GetDescriptor(), ClassHelper(arg_type).GetDescriptor()); return false; } } new_shadow_frame->SetVRegReference(cur_reg, o); break; } case 'J': case 'D': { uint64_t wide_value = (static_cast<uint64_t>(shadow_frame.GetVReg(arg_pos + 1)) << 32) | static_cast<uint32_t>(shadow_frame.GetVReg(arg_pos)); new_shadow_frame->SetVRegLong(cur_reg, wide_value); cur_reg++; arg_offset++; break; } default: new_shadow_frame->SetVReg(cur_reg, shadow_frame.GetVReg(arg_pos)); break; } } if (LIKELY(Runtime::Current()->IsStarted())) { (method->GetEntryPointFromInterpreter())(self, mh, code_item, new_shadow_frame, result); } else { UnstartedRuntimeInvoke(self, mh, code_item, new_shadow_frame, result, num_regs - num_ins); } return !self->IsExceptionPending(); } // TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template // specialization. template<bool is_range> static bool DoInvokeVirtualQuick(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, JValue* result) NO_THREAD_SAFETY_ANALYSIS; template<bool is_range> static bool DoInvokeVirtualQuick(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, JValue* result) { uint32_t vregC = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c(); Object* receiver = shadow_frame.GetVRegReference(vregC); if (UNLIKELY(receiver == NULL)) { // We lost the reference to the method index so we cannot get a more // precised exception message. ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); return false; } uint32_t vtable_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); // TODO: use ObjectArray<T>::GetWithoutChecks ? ArtMethod* method = receiver->GetClass()->GetVTable()->Get(vtable_idx); if (UNLIKELY(method == NULL)) { CHECK(self->IsExceptionPending()); result->SetJ(0); return false; } else if (UNLIKELY(method->IsAbstract())) { ThrowAbstractMethodError(method); result->SetJ(0); return false; } MethodHelper mh(method); const DexFile::CodeItem* code_item = mh.GetCodeItem(); uint16_t num_regs; uint16_t num_ins; if (code_item != NULL) { num_regs = code_item->registers_size_; num_ins = code_item->ins_size_; } else { DCHECK(method->IsNative() || method->IsProxyMethod()); num_regs = num_ins = ArtMethod::NumArgRegisters(mh.GetShorty()); if (!method->IsStatic()) { num_regs++; num_ins++; } } void* memory = alloca(ShadowFrame::ComputeSize(num_regs)); ShadowFrame* new_shadow_frame(ShadowFrame::Create(num_regs, &shadow_frame, method, 0, memory)); size_t cur_reg = num_regs - num_ins; if (receiver != NULL) { new_shadow_frame->SetVRegReference(cur_reg, receiver); ++cur_reg; } size_t arg_offset = (receiver == NULL) ? 0 : 1; const char* shorty = mh.GetShorty(); uint32_t arg[5]; if (!is_range) { inst->GetArgs(arg); } for (size_t shorty_pos = 0; cur_reg < num_regs; ++shorty_pos, cur_reg++, arg_offset++) { DCHECK_LT(shorty_pos + 1, mh.GetShortyLength()); size_t arg_pos = is_range ? vregC + arg_offset : arg[arg_offset]; switch (shorty[shorty_pos + 1]) { case 'L': { Object* o = shadow_frame.GetVRegReference(arg_pos); new_shadow_frame->SetVRegReference(cur_reg, o); break; } case 'J': case 'D': { uint64_t wide_value = (static_cast<uint64_t>(shadow_frame.GetVReg(arg_pos + 1)) << 32) | static_cast<uint32_t>(shadow_frame.GetVReg(arg_pos)); new_shadow_frame->SetVRegLong(cur_reg, wide_value); cur_reg++; arg_offset++; break; } default: new_shadow_frame->SetVReg(cur_reg, shadow_frame.GetVReg(arg_pos)); break; } } if (LIKELY(Runtime::Current()->IsStarted())) { (method->GetEntryPointFromInterpreter())(self, mh, code_item, new_shadow_frame, result); } else { UnstartedRuntimeInvoke(self, mh, code_item, new_shadow_frame, result, num_regs - num_ins); } return !self->IsExceptionPending(); } // We use template functions to optimize compiler inlining process. Otherwise, // some parts of the code (like a switch statement) which depend on a constant // parameter would not be inlined while it should be. These constant parameters // are now part of the template arguments. // Note these template functions are static and inlined so they should not be // part of the final object file. // TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template // specialization. template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check> static bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst) NO_THREAD_SAFETY_ANALYSIS ALWAYS_INLINE; template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check> static inline bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst) { bool is_static = (find_type == StaticObjectRead) || (find_type == StaticPrimitiveRead); uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c(); ArtField* f = FindFieldFromCode(field_idx, shadow_frame.GetMethod(), self, find_type, Primitive::FieldSize(field_type), do_access_check); if (UNLIKELY(f == NULL)) { CHECK(self->IsExceptionPending()); return false; } Object* obj; if (is_static) { obj = f->GetDeclaringClass(); } else { obj = shadow_frame.GetVRegReference(inst->VRegB_22c()); if (UNLIKELY(obj == NULL)) { ThrowNullPointerExceptionForFieldAccess(shadow_frame.GetCurrentLocationForThrow(), f, true); return false; } } uint32_t vregA = is_static ? inst->VRegA_21c() : inst->VRegA_22c(); switch (field_type) { case Primitive::kPrimBoolean: shadow_frame.SetVReg(vregA, f->GetBoolean(obj)); break; case Primitive::kPrimByte: shadow_frame.SetVReg(vregA, f->GetByte(obj)); break; case Primitive::kPrimChar: shadow_frame.SetVReg(vregA, f->GetChar(obj)); break; case Primitive::kPrimShort: shadow_frame.SetVReg(vregA, f->GetShort(obj)); break; case Primitive::kPrimInt: shadow_frame.SetVReg(vregA, f->GetInt(obj)); break; case Primitive::kPrimLong: shadow_frame.SetVRegLong(vregA, f->GetLong(obj)); break; case Primitive::kPrimNot: shadow_frame.SetVRegReference(vregA, f->GetObject(obj)); break; default: LOG(FATAL) << "Unreachable: " << field_type; } return true; } // TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template // specialization. template<Primitive::Type field_type> static bool DoIGetQuick(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst) NO_THREAD_SAFETY_ANALYSIS ALWAYS_INLINE; template<Primitive::Type field_type> static inline bool DoIGetQuick(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst) { Object* obj = shadow_frame.GetVRegReference(inst->VRegB_22c()); if (UNLIKELY(obj == NULL)) { // We lost the reference to the field index so we cannot get a more // precised exception message. ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); return false; } MemberOffset field_offset(inst->VRegC_22c()); const bool is_volatile = false; // iget-x-quick only on non volatile fields. const uint32_t vregA = inst->VRegA_22c(); switch (field_type) { case Primitive::kPrimInt: shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetField32(field_offset, is_volatile))); break; case Primitive::kPrimLong: shadow_frame.SetVRegLong(vregA, static_cast<int64_t>(obj->GetField64(field_offset, is_volatile))); break; case Primitive::kPrimNot: shadow_frame.SetVRegReference(vregA, obj->GetFieldObject<mirror::Object*>(field_offset, is_volatile)); break; default: LOG(FATAL) << "Unreachable: " << field_type; } return true; } // TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template // specialization. template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check> static bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame, const Instruction* inst) NO_THREAD_SAFETY_ANALYSIS ALWAYS_INLINE; template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check> static inline bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame, const Instruction* inst) { bool do_assignability_check = do_access_check; bool is_static = (find_type == StaticObjectWrite) || (find_type == StaticPrimitiveWrite); uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c(); ArtField* f = FindFieldFromCode(field_idx, shadow_frame.GetMethod(), self, find_type, Primitive::FieldSize(field_type), do_access_check); if (UNLIKELY(f == NULL)) { CHECK(self->IsExceptionPending()); return false; } Object* obj; if (is_static) { obj = f->GetDeclaringClass(); } else { obj = shadow_frame.GetVRegReference(inst->VRegB_22c()); if (UNLIKELY(obj == NULL)) { ThrowNullPointerExceptionForFieldAccess(shadow_frame.GetCurrentLocationForThrow(), f, false); return false; } } uint32_t vregA = is_static ? inst->VRegA_21c() : inst->VRegA_22c(); switch (field_type) { case Primitive::kPrimBoolean: f->SetBoolean(obj, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimByte: f->SetByte(obj, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimChar: f->SetChar(obj, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimShort: f->SetShort(obj, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimInt: f->SetInt(obj, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimLong: f->SetLong(obj, shadow_frame.GetVRegLong(vregA)); break; case Primitive::kPrimNot: { Object* reg = shadow_frame.GetVRegReference(vregA); if (do_assignability_check && reg != NULL) { Class* field_class = FieldHelper(f).GetType(); if (!reg->VerifierInstanceOf(field_class)) { // This should never happen. self->ThrowNewExceptionF(self->GetCurrentLocationForThrow(), "Ljava/lang/VirtualMachineError;", "Put '%s' that is not instance of field '%s' in '%s'", ClassHelper(reg->GetClass()).GetDescriptor(), ClassHelper(field_class).GetDescriptor(), ClassHelper(f->GetDeclaringClass()).GetDescriptor()); return false; } } f->SetObj(obj, reg); break; } default: LOG(FATAL) << "Unreachable: " << field_type; } return true; } // TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template // specialization. template<Primitive::Type field_type> static bool DoIPutQuick(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst) NO_THREAD_SAFETY_ANALYSIS ALWAYS_INLINE; template<Primitive::Type field_type> static inline bool DoIPutQuick(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst) { Object* obj = shadow_frame.GetVRegReference(inst->VRegB_22c()); if (UNLIKELY(obj == NULL)) { // We lost the reference to the field index so we cannot get a more // precised exception message. ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); return false; } MemberOffset field_offset(inst->VRegC_22c()); const bool is_volatile = false; // iput-x-quick only on non volatile fields. const uint32_t vregA = inst->VRegA_22c(); switch (field_type) { case Primitive::kPrimInt: obj->SetField32(field_offset, shadow_frame.GetVReg(vregA), is_volatile); break; case Primitive::kPrimLong: obj->SetField64(field_offset, shadow_frame.GetVRegLong(vregA), is_volatile); break; case Primitive::kPrimNot: obj->SetFieldObject(field_offset, shadow_frame.GetVRegReference(vregA), is_volatile); break; default: LOG(FATAL) << "Unreachable: " << field_type; } return true; } static inline String* ResolveString(Thread* self, MethodHelper& mh, uint32_t string_idx) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { Class* java_lang_string_class = String::GetJavaLangString(); if (UNLIKELY(!java_lang_string_class->IsInitialized())) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); if (UNLIKELY(!class_linker->EnsureInitialized(java_lang_string_class, true, true))) { DCHECK(self->IsExceptionPending()); return NULL; } } return mh.ResolveString(string_idx); } static inline bool DoIntDivide(ShadowFrame& shadow_frame, size_t result_reg, int32_t dividend, int32_t divisor) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinInt && divisor == -1)) { shadow_frame.SetVReg(result_reg, kMinInt); } else { shadow_frame.SetVReg(result_reg, dividend / divisor); } return true; } static inline bool DoIntRemainder(ShadowFrame& shadow_frame, size_t result_reg, int32_t dividend, int32_t divisor) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinInt && divisor == -1)) { shadow_frame.SetVReg(result_reg, 0); } else { shadow_frame.SetVReg(result_reg, dividend % divisor); } return true; } static inline bool DoLongDivide(ShadowFrame& shadow_frame, size_t result_reg, int64_t dividend, int64_t divisor) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinLong && divisor == -1)) { shadow_frame.SetVRegLong(result_reg, kMinLong); } else { shadow_frame.SetVRegLong(result_reg, dividend / divisor); } return true; } static inline bool DoLongRemainder(ShadowFrame& shadow_frame, size_t result_reg, int64_t dividend, int64_t divisor) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinLong && divisor == -1)) { shadow_frame.SetVRegLong(result_reg, 0); } else { shadow_frame.SetVRegLong(result_reg, dividend % divisor); } return true; } // TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template // specialization. // Returns true on success, otherwise throws an exception and returns false. template <bool is_range, bool do_access_check> static bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame, Thread* self, JValue* result) NO_THREAD_SAFETY_ANALYSIS ALWAYS_INLINE; template <bool is_range, bool do_access_check> static inline bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame, Thread* self, JValue* result) { DCHECK(inst->Opcode() == Instruction::FILLED_NEW_ARRAY || inst->Opcode() == Instruction::FILLED_NEW_ARRAY_RANGE); const int32_t length = is_range ? inst->VRegA_3rc() : inst->VRegA_35c(); if (!is_range) { // Checks FILLED_NEW_ARRAY's length does not exceed 5 arguments. CHECK_LE(length, 5); } if (UNLIKELY(length < 0)) { ThrowNegativeArraySizeException(length); return false; } uint16_t type_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c(); Class* arrayClass = ResolveVerifyAndClinit(type_idx, shadow_frame.GetMethod(), self, false, do_access_check); if (UNLIKELY(arrayClass == NULL)) { DCHECK(self->IsExceptionPending()); return false; } CHECK(arrayClass->IsArrayClass()); Class* componentClass = arrayClass->GetComponentType(); if (UNLIKELY(componentClass->IsPrimitive() && !componentClass->IsPrimitiveInt())) { if (componentClass->IsPrimitiveLong() || componentClass->IsPrimitiveDouble()) { ThrowRuntimeException("Bad filled array request for type %s", PrettyDescriptor(componentClass).c_str()); } else { self->ThrowNewExceptionF(shadow_frame.GetCurrentLocationForThrow(), "Ljava/lang/InternalError;", "Found type %s; filled-new-array not implemented for anything but \'int\'", PrettyDescriptor(componentClass).c_str()); } return false; } Object* newArray = Array::Alloc(self, arrayClass, length); if (UNLIKELY(newArray == NULL)) { DCHECK(self->IsExceptionPending()); return false; } if (is_range) { uint32_t vregC = inst->VRegC_3rc(); const bool is_primitive_int_component = componentClass->IsPrimitiveInt(); for (int32_t i = 0; i < length; ++i) { if (is_primitive_int_component) { newArray->AsIntArray()->Set(i, shadow_frame.GetVReg(vregC + i)); } else { newArray->AsObjectArray<Object>()->Set(i, shadow_frame.GetVRegReference(vregC + i)); } } } else { uint32_t arg[5]; inst->GetArgs(arg); const bool is_primitive_int_component = componentClass->IsPrimitiveInt(); for (int32_t i = 0; i < length; ++i) { if (is_primitive_int_component) { newArray->AsIntArray()->Set(i, shadow_frame.GetVReg(arg[i])); } else { newArray->AsObjectArray<Object>()->Set(i, shadow_frame.GetVRegReference(arg[i])); } } } result->SetL(newArray); return true; } static inline const Instruction* DoSparseSwitch(const Instruction* inst, const ShadowFrame& shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(inst->Opcode() == Instruction::SPARSE_SWITCH); const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t(); int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t()); DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature)); uint16_t size = switch_data[1]; DCHECK_GT(size, 0); const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]); DCHECK(IsAligned<4>(keys)); const int32_t* entries = keys + size; DCHECK(IsAligned<4>(entries)); int lo = 0; int hi = size - 1; while (lo <= hi) { int mid = (lo + hi) / 2; int32_t foundVal = keys[mid]; if (test_val < foundVal) { hi = mid - 1; } else if (test_val > foundVal) { lo = mid + 1; } else { return inst->RelativeAt(entries[mid]); } } return inst->Next_3xx(); } static inline const Instruction* FindNextInstructionFollowingException(Thread* self, ShadowFrame& shadow_frame, uint32_t dex_pc, const uint16_t* insns, SirtRef<Object>& this_object_ref, instrumentation::Instrumentation* instrumentation) ALWAYS_INLINE; static inline const Instruction* FindNextInstructionFollowingException(Thread* self, ShadowFrame& shadow_frame, uint32_t dex_pc, const uint16_t* insns, SirtRef<Object>& this_object_ref, instrumentation::Instrumentation* instrumentation) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { self->VerifyStack(); ThrowLocation throw_location; mirror::Throwable* exception = self->GetException(&throw_location); bool clear_exception; uint32_t found_dex_pc = shadow_frame.GetMethod()->FindCatchBlock(exception->GetClass(), dex_pc, &clear_exception); if (found_dex_pc == DexFile::kDexNoIndex) { instrumentation->MethodUnwindEvent(self, this_object_ref.get(), shadow_frame.GetMethod(), dex_pc); return NULL; } else { instrumentation->ExceptionCaughtEvent(self, throw_location, shadow_frame.GetMethod(), found_dex_pc, exception); if (clear_exception) { self->ClearException(); } return Instruction::At(insns + found_dex_pc); } } #define HANDLE_PENDING_EXCEPTION() \ CHECK(self->IsExceptionPending()); \ inst = FindNextInstructionFollowingException(self, shadow_frame, inst->GetDexPc(insns), insns, \ this_object_ref, instrumentation); \ if (inst == NULL) { \ return JValue(); /* Handled in caller. */ \ } #define POSSIBLY_HANDLE_PENDING_EXCEPTION(is_exception_pending, next_function) \ if (UNLIKELY(is_exception_pending)) { \ HANDLE_PENDING_EXCEPTION(); \ } else { \ inst = inst->next_function(); \ } static void UnexpectedOpcode(const Instruction* inst, MethodHelper& mh) __attribute__((cold, noreturn, noinline)); static void UnexpectedOpcode(const Instruction* inst, MethodHelper& mh) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { LOG(FATAL) << "Unexpected instruction: " << inst->DumpString(&mh.GetDexFile()); exit(0); // Unreachable, keep GCC happy. } // Code to run before each dex instruction. #define PREAMBLE() // TODO: should be SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) which is failing due to template // specialization. template<bool do_access_check> static JValue ExecuteImpl(Thread* self, MethodHelper& mh, const DexFile::CodeItem* code_item, ShadowFrame& shadow_frame, JValue result_register) NO_THREAD_SAFETY_ANALYSIS __attribute__((hot)); template<bool do_access_check> static JValue ExecuteImpl(Thread* self, MethodHelper& mh, const DexFile::CodeItem* code_item, ShadowFrame& shadow_frame, JValue result_register) { bool do_assignability_check = do_access_check; if (UNLIKELY(!shadow_frame.HasReferenceArray())) { LOG(FATAL) << "Invalid shadow frame for interpreter use"; return JValue(); } self->VerifyStack(); instrumentation::Instrumentation* const instrumentation = Runtime::Current()->GetInstrumentation(); // As the 'this' object won't change during the execution of current code, we // want to cache it in local variables. Nevertheless, in order to let the // garbage collector access it, we store it into sirt references. SirtRef<Object> this_object_ref(self, shadow_frame.GetThisObject(code_item->ins_size_)); uint32_t dex_pc = shadow_frame.GetDexPC(); if (LIKELY(dex_pc == 0)) { // We are entering the method as opposed to deoptimizing.. if (UNLIKELY(instrumentation->HasMethodEntryListeners())) { instrumentation->MethodEnterEvent(self, this_object_ref.get(), shadow_frame.GetMethod(), 0); } } const uint16_t* const insns = code_item->insns_; const Instruction* inst = Instruction::At(insns + dex_pc); while (true) { dex_pc = inst->GetDexPc(insns); shadow_frame.SetDexPC(dex_pc); if (UNLIKELY(self->TestAllFlags())) { CheckSuspend(self); } if (UNLIKELY(instrumentation->HasDexPcListeners())) { instrumentation->DexPcMovedEvent(self, this_object_ref.get(), shadow_frame.GetMethod(), dex_pc); } const bool kTracing = false; if (kTracing) { #define TRACE_LOG std::cerr TRACE_LOG << PrettyMethod(shadow_frame.GetMethod()) << StringPrintf("\n0x%x: ", dex_pc) << inst->DumpString(&mh.GetDexFile()) << "\n"; for (size_t i = 0; i < shadow_frame.NumberOfVRegs(); ++i) { uint32_t raw_value = shadow_frame.GetVReg(i); Object* ref_value = shadow_frame.GetVRegReference(i); TRACE_LOG << StringPrintf(" vreg%d=0x%08X", i, raw_value); if (ref_value != NULL) { if (ref_value->GetClass()->IsStringClass() && ref_value->AsString()->GetCharArray() != NULL) { TRACE_LOG << "/java.lang.String \"" << ref_value->AsString()->ToModifiedUtf8() << "\""; } else { TRACE_LOG << "/" << PrettyTypeOf(ref_value); } } } TRACE_LOG << "\n"; #undef TRACE_LOG } switch (inst->Opcode()) { case Instruction::NOP: PREAMBLE(); inst = inst->Next_1xx(); break; case Instruction::MOVE: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_12x(), shadow_frame.GetVReg(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::MOVE_FROM16: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22x(), shadow_frame.GetVReg(inst->VRegB_22x())); inst = inst->Next_2xx(); break; case Instruction::MOVE_16: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_32x(), shadow_frame.GetVReg(inst->VRegB_32x())); inst = inst->Next_3xx(); break; case Instruction::MOVE_WIDE: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_12x(), shadow_frame.GetVRegLong(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::MOVE_WIDE_FROM16: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_22x(), shadow_frame.GetVRegLong(inst->VRegB_22x())); inst = inst->Next_2xx(); break; case Instruction::MOVE_WIDE_16: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_32x(), shadow_frame.GetVRegLong(inst->VRegB_32x())); inst = inst->Next_3xx(); break; case Instruction::MOVE_OBJECT: PREAMBLE(); shadow_frame.SetVRegReference(inst->VRegA_12x(), shadow_frame.GetVRegReference(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::MOVE_OBJECT_FROM16: PREAMBLE(); shadow_frame.SetVRegReference(inst->VRegA_22x(), shadow_frame.GetVRegReference(inst->VRegB_22x())); inst = inst->Next_2xx(); break; case Instruction::MOVE_OBJECT_16: PREAMBLE(); shadow_frame.SetVRegReference(inst->VRegA_32x(), shadow_frame.GetVRegReference(inst->VRegB_32x())); inst = inst->Next_3xx(); break; case Instruction::MOVE_RESULT: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_11x(), result_register.GetI()); inst = inst->Next_1xx(); break; case Instruction::MOVE_RESULT_WIDE: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_11x(), result_register.GetJ()); inst = inst->Next_1xx(); break; case Instruction::MOVE_RESULT_OBJECT: PREAMBLE(); shadow_frame.SetVRegReference(inst->VRegA_11x(), result_register.GetL()); inst = inst->Next_1xx(); break; case Instruction::MOVE_EXCEPTION: { PREAMBLE(); Throwable* exception = self->GetException(NULL); self->ClearException(); shadow_frame.SetVRegReference(inst->VRegA_11x(), exception); inst = inst->Next_1xx(); break; } case Instruction::RETURN_VOID: { PREAMBLE(); JValue result; if (UNLIKELY(instrumentation->HasMethodExitListeners())) { instrumentation->MethodExitEvent(self, this_object_ref.get(), shadow_frame.GetMethod(), inst->GetDexPc(insns), result); } return result; } case Instruction::RETURN_VOID_BARRIER: { PREAMBLE(); ANDROID_MEMBAR_STORE(); JValue result; if (UNLIKELY(instrumentation->HasMethodExitListeners())) { instrumentation->MethodExitEvent(self, this_object_ref.get(), shadow_frame.GetMethod(), inst->GetDexPc(insns), result); } return result; } case Instruction::RETURN: { PREAMBLE(); JValue result; result.SetJ(0); result.SetI(shadow_frame.GetVReg(inst->VRegA_11x())); if (UNLIKELY(instrumentation->HasMethodExitListeners())) { instrumentation->MethodExitEvent(self, this_object_ref.get(), shadow_frame.GetMethod(), inst->GetDexPc(insns), result); } return result; } case Instruction::RETURN_WIDE: { PREAMBLE(); JValue result; result.SetJ(shadow_frame.GetVRegLong(inst->VRegA_11x())); if (UNLIKELY(instrumentation->HasMethodExitListeners())) { instrumentation->MethodExitEvent(self, this_object_ref.get(), shadow_frame.GetMethod(), inst->GetDexPc(insns), result); } return result; } case Instruction::RETURN_OBJECT: { PREAMBLE(); JValue result; Object* obj_result = shadow_frame.GetVRegReference(inst->VRegA_11x()); result.SetJ(0); result.SetL(obj_result); if (do_assignability_check && obj_result != NULL) { Class* return_type = MethodHelper(shadow_frame.GetMethod()).GetReturnType(); if (return_type == NULL) { // Return the pending exception. HANDLE_PENDING_EXCEPTION(); } if (!obj_result->VerifierInstanceOf(return_type)) { // This should never happen. self->ThrowNewExceptionF(self->GetCurrentLocationForThrow(), "Ljava/lang/VirtualMachineError;", "Returning '%s' that is not instance of return type '%s'", ClassHelper(obj_result->GetClass()).GetDescriptor(), ClassHelper(return_type).GetDescriptor()); HANDLE_PENDING_EXCEPTION(); } } if (UNLIKELY(instrumentation->HasMethodExitListeners())) { instrumentation->MethodExitEvent(self, this_object_ref.get(), shadow_frame.GetMethod(), inst->GetDexPc(insns), result); } return result; } case Instruction::CONST_4: { PREAMBLE(); uint4_t dst = inst->VRegA_11n(); int4_t val = inst->VRegB_11n(); shadow_frame.SetVReg(dst, val); if (val == 0) { shadow_frame.SetVRegReference(dst, NULL); } inst = inst->Next_1xx(); break; } case Instruction::CONST_16: { PREAMBLE(); uint8_t dst = inst->VRegA_21s(); int16_t val = inst->VRegB_21s(); shadow_frame.SetVReg(dst, val); if (val == 0) { shadow_frame.SetVRegReference(dst, NULL); } inst = inst->Next_2xx(); break; } case Instruction::CONST: { PREAMBLE(); uint8_t dst = inst->VRegA_31i(); int32_t val = inst->VRegB_31i(); shadow_frame.SetVReg(dst, val); if (val == 0) { shadow_frame.SetVRegReference(dst, NULL); } inst = inst->Next_3xx(); break; } case Instruction::CONST_HIGH16: { PREAMBLE(); uint8_t dst = inst->VRegA_21h(); int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16); shadow_frame.SetVReg(dst, val); if (val == 0) { shadow_frame.SetVRegReference(dst, NULL); } inst = inst->Next_2xx(); break; } case Instruction::CONST_WIDE_16: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_21s(), inst->VRegB_21s()); inst = inst->Next_2xx(); break; case Instruction::CONST_WIDE_32: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_31i(), inst->VRegB_31i()); inst = inst->Next_3xx(); break; case Instruction::CONST_WIDE: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_51l(), inst->VRegB_51l()); inst = inst->Next_51l(); break; case Instruction::CONST_WIDE_HIGH16: shadow_frame.SetVRegLong(inst->VRegA_21h(), static_cast<uint64_t>(inst->VRegB_21h()) << 48); inst = inst->Next_2xx(); break; case Instruction::CONST_STRING: { PREAMBLE(); String* s = ResolveString(self, mh, inst->VRegB_21c()); if (UNLIKELY(s == NULL)) { HANDLE_PENDING_EXCEPTION(); } else { shadow_frame.SetVRegReference(inst->VRegA_21c(), s); inst = inst->Next_2xx(); } break; } case Instruction::CONST_STRING_JUMBO: { PREAMBLE(); String* s = ResolveString(self, mh, inst->VRegB_31c()); if (UNLIKELY(s == NULL)) { HANDLE_PENDING_EXCEPTION(); } else { shadow_frame.SetVRegReference(inst->VRegA_31c(), s); inst = inst->Next_3xx(); } break; } case Instruction::CONST_CLASS: { PREAMBLE(); Class* c = ResolveVerifyAndClinit(inst->VRegB_21c(), shadow_frame.GetMethod(), self, false, do_access_check); if (UNLIKELY(c == NULL)) { HANDLE_PENDING_EXCEPTION(); } else { shadow_frame.SetVRegReference(inst->VRegA_21c(), c); inst = inst->Next_2xx(); } break; } case Instruction::MONITOR_ENTER: { PREAMBLE(); Object* obj = shadow_frame.GetVRegReference(inst->VRegA_11x()); if (UNLIKELY(obj == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); } else { DoMonitorEnter(self, obj); POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_1xx); } break; } case Instruction::MONITOR_EXIT: { PREAMBLE(); Object* obj = shadow_frame.GetVRegReference(inst->VRegA_11x()); if (UNLIKELY(obj == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); } else { DoMonitorExit(self, obj); POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_1xx); } break; } case Instruction::CHECK_CAST: { PREAMBLE(); Class* c = ResolveVerifyAndClinit(inst->VRegB_21c(), shadow_frame.GetMethod(), self, false, do_access_check); if (UNLIKELY(c == NULL)) { HANDLE_PENDING_EXCEPTION(); } else { Object* obj = shadow_frame.GetVRegReference(inst->VRegA_21c()); if (UNLIKELY(obj != NULL && !obj->InstanceOf(c))) { ThrowClassCastException(c, obj->GetClass()); HANDLE_PENDING_EXCEPTION(); } else { inst = inst->Next_2xx(); } } break; } case Instruction::INSTANCE_OF: { PREAMBLE(); Class* c = ResolveVerifyAndClinit(inst->VRegC_22c(), shadow_frame.GetMethod(), self, false, do_access_check); if (UNLIKELY(c == NULL)) { HANDLE_PENDING_EXCEPTION(); } else { Object* obj = shadow_frame.GetVRegReference(inst->VRegB_22c()); shadow_frame.SetVReg(inst->VRegA_22c(), (obj != NULL && obj->InstanceOf(c)) ? 1 : 0); inst = inst->Next_2xx(); } break; } case Instruction::ARRAY_LENGTH: { PREAMBLE(); Object* array = shadow_frame.GetVRegReference(inst->VRegB_12x()); if (UNLIKELY(array == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); } else { shadow_frame.SetVReg(inst->VRegA_12x(), array->AsArray()->GetLength()); inst = inst->Next_1xx(); } break; } case Instruction::NEW_INSTANCE: { PREAMBLE(); Object* obj = AllocObjectFromCode(inst->VRegB_21c(), shadow_frame.GetMethod(), self, do_access_check); if (UNLIKELY(obj == NULL)) { HANDLE_PENDING_EXCEPTION(); } else { shadow_frame.SetVRegReference(inst->VRegA_21c(), obj); inst = inst->Next_2xx(); } break; } case Instruction::NEW_ARRAY: { PREAMBLE(); int32_t length = shadow_frame.GetVReg(inst->VRegB_22c()); Object* obj = AllocArrayFromCode(inst->VRegC_22c(), shadow_frame.GetMethod(), length, self, do_access_check); if (UNLIKELY(obj == NULL)) { HANDLE_PENDING_EXCEPTION(); } else { shadow_frame.SetVRegReference(inst->VRegA_22c(), obj); inst = inst->Next_2xx(); } break; } case Instruction::FILLED_NEW_ARRAY: { PREAMBLE(); bool success = DoFilledNewArray<false, do_access_check>(inst, shadow_frame, self, &result_register); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx); break; } case Instruction::FILLED_NEW_ARRAY_RANGE: { PREAMBLE(); bool success = DoFilledNewArray<true, do_access_check>(inst, shadow_frame, self, &result_register); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx); break; } case Instruction::FILL_ARRAY_DATA: { PREAMBLE(); Object* obj = shadow_frame.GetVRegReference(inst->VRegA_31t()); if (UNLIKELY(obj == NULL)) { ThrowNullPointerException(NULL, "null array in FILL_ARRAY_DATA"); HANDLE_PENDING_EXCEPTION(); break; } Array* array = obj->AsArray(); DCHECK(array->IsArrayInstance() && !array->IsObjectArray()); const uint16_t* payload_addr = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t(); const Instruction::ArrayDataPayload* payload = reinterpret_cast<const Instruction::ArrayDataPayload*>(payload_addr); if (UNLIKELY(static_cast<int32_t>(payload->element_count) > array->GetLength())) { self->ThrowNewExceptionF(shadow_frame.GetCurrentLocationForThrow(), "Ljava/lang/ArrayIndexOutOfBoundsException;", "failed FILL_ARRAY_DATA; length=%d, index=%d", array->GetLength(), payload->element_count); HANDLE_PENDING_EXCEPTION(); break; } uint32_t size_in_bytes = payload->element_count * payload->element_width; memcpy(array->GetRawData(payload->element_width), payload->data, size_in_bytes); inst = inst->Next_3xx(); break; } case Instruction::THROW: { PREAMBLE(); Object* exception = shadow_frame.GetVRegReference(inst->VRegA_11x()); if (UNLIKELY(exception == NULL)) { ThrowNullPointerException(NULL, "throw with null exception"); } else if (do_assignability_check && !exception->GetClass()->IsThrowableClass()) { // This should never happen. self->ThrowNewExceptionF(self->GetCurrentLocationForThrow(), "Ljava/lang/VirtualMachineError;", "Throwing '%s' that is not instance of Throwable", ClassHelper(exception->GetClass()).GetDescriptor()); } else { self->SetException(shadow_frame.GetCurrentLocationForThrow(), exception->AsThrowable()); } HANDLE_PENDING_EXCEPTION(); break; } case Instruction::GOTO: { PREAMBLE(); inst = inst->RelativeAt(inst->VRegA_10t()); break; } case Instruction::GOTO_16: { PREAMBLE(); inst = inst->RelativeAt(inst->VRegA_20t()); break; } case Instruction::GOTO_32: { PREAMBLE(); inst = inst->RelativeAt(inst->VRegA_30t()); break; } case Instruction::PACKED_SWITCH: { PREAMBLE(); const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t(); int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t()); DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature)); uint16_t size = switch_data[1]; DCHECK_GT(size, 0); const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]); DCHECK(IsAligned<4>(keys)); int32_t first_key = keys[0]; const int32_t* targets = reinterpret_cast<const int32_t*>(&switch_data[4]); DCHECK(IsAligned<4>(targets)); int32_t index = test_val - first_key; if (index >= 0 && index < size) { inst = inst->RelativeAt(targets[index]); } else { inst = inst->Next_3xx(); } break; } case Instruction::SPARSE_SWITCH: { PREAMBLE(); inst = DoSparseSwitch(inst, shadow_frame); break; } case Instruction::CMPL_FLOAT: { PREAMBLE(); float val1 = shadow_frame.GetVRegFloat(inst->VRegB_23x()); float val2 = shadow_frame.GetVRegFloat(inst->VRegC_23x()); int32_t result; if (val1 > val2) { result = 1; } else if (val1 == val2) { result = 0; } else { result = -1; } shadow_frame.SetVReg(inst->VRegA_23x(), result); inst = inst->Next_2xx(); break; } case Instruction::CMPG_FLOAT: { PREAMBLE(); float val1 = shadow_frame.GetVRegFloat(inst->VRegB_23x()); float val2 = shadow_frame.GetVRegFloat(inst->VRegC_23x()); int32_t result; if (val1 < val2) { result = -1; } else if (val1 == val2) { result = 0; } else { result = 1; } shadow_frame.SetVReg(inst->VRegA_23x(), result); inst = inst->Next_2xx(); break; } case Instruction::CMPL_DOUBLE: { PREAMBLE(); double val1 = shadow_frame.GetVRegDouble(inst->VRegB_23x()); double val2 = shadow_frame.GetVRegDouble(inst->VRegC_23x()); int32_t result; if (val1 > val2) { result = 1; } else if (val1 == val2) { result = 0; } else { result = -1; } shadow_frame.SetVReg(inst->VRegA_23x(), result); inst = inst->Next_2xx(); break; } case Instruction::CMPG_DOUBLE: { PREAMBLE(); double val1 = shadow_frame.GetVRegDouble(inst->VRegB_23x()); double val2 = shadow_frame.GetVRegDouble(inst->VRegC_23x()); int32_t result; if (val1 < val2) { result = -1; } else if (val1 == val2) { result = 0; } else { result = 1; } shadow_frame.SetVReg(inst->VRegA_23x(), result); inst = inst->Next_2xx(); break; } case Instruction::CMP_LONG: { PREAMBLE(); int64_t val1 = shadow_frame.GetVRegLong(inst->VRegB_23x()); int64_t val2 = shadow_frame.GetVRegLong(inst->VRegC_23x()); int32_t result; if (val1 > val2) { result = 1; } else if (val1 == val2) { result = 0; } else { result = -1; } shadow_frame.SetVReg(inst->VRegA_23x(), result); inst = inst->Next_2xx(); break; } case Instruction::IF_EQ: { PREAMBLE(); if (shadow_frame.GetVReg(inst->VRegA_22t()) == shadow_frame.GetVReg(inst->VRegB_22t())) { inst = inst->RelativeAt(inst->VRegC_22t()); } else { inst = inst->Next_2xx(); } break; } case Instruction::IF_NE: { PREAMBLE(); if (shadow_frame.GetVReg(inst->VRegA_22t()) != shadow_frame.GetVReg(inst->VRegB_22t())) { inst = inst->RelativeAt(inst->VRegC_22t()); } else { inst = inst->Next_2xx(); } break; } case Instruction::IF_LT: { PREAMBLE(); if (shadow_frame.GetVReg(inst->VRegA_22t()) < shadow_frame.GetVReg(inst->VRegB_22t())) { inst = inst->RelativeAt(inst->VRegC_22t()); } else { inst = inst->Next_2xx(); } break; } case Instruction::IF_GE: { PREAMBLE(); if (shadow_frame.GetVReg(inst->VRegA_22t()) >= shadow_frame.GetVReg(inst->VRegB_22t())) { inst = inst->RelativeAt(inst->VRegC_22t()); } else { inst = inst->Next_2xx(); } break; } case Instruction::IF_GT: { PREAMBLE(); if (shadow_frame.GetVReg(inst->VRegA_22t()) > shadow_frame.GetVReg(inst->VRegB_22t())) { inst = inst->RelativeAt(inst->VRegC_22t()); } else { inst = inst->Next_2xx(); } break; } case Instruction::IF_LE: { PREAMBLE(); if (shadow_frame.GetVReg(inst->VRegA_22t()) <= shadow_frame.GetVReg(inst->VRegB_22t())) { inst = inst->RelativeAt(inst->VRegC_22t()); } else { inst = inst->Next_2xx(); } break; } case Instruction::IF_EQZ: { PREAMBLE(); if (shadow_frame.GetVReg(inst->VRegA_21t()) == 0) { inst = inst->RelativeAt(inst->VRegB_21t()); } else { inst = inst->Next_2xx(); } break; } case Instruction::IF_NEZ: { PREAMBLE(); if (shadow_frame.GetVReg(inst->VRegA_21t()) != 0) { inst = inst->RelativeAt(inst->VRegB_21t()); } else { inst = inst->Next_2xx(); } break; } case Instruction::IF_LTZ: { PREAMBLE(); if (shadow_frame.GetVReg(inst->VRegA_21t()) < 0) { inst = inst->RelativeAt(inst->VRegB_21t()); } else { inst = inst->Next_2xx(); } break; } case Instruction::IF_GEZ: { PREAMBLE(); if (shadow_frame.GetVReg(inst->VRegA_21t()) >= 0) { inst = inst->RelativeAt(inst->VRegB_21t()); } else { inst = inst->Next_2xx(); } break; } case Instruction::IF_GTZ: { PREAMBLE(); if (shadow_frame.GetVReg(inst->VRegA_21t()) > 0) { inst = inst->RelativeAt(inst->VRegB_21t()); } else { inst = inst->Next_2xx(); } break; } case Instruction::IF_LEZ: { PREAMBLE(); if (shadow_frame.GetVReg(inst->VRegA_21t()) <= 0) { inst = inst->RelativeAt(inst->VRegB_21t()); } else { inst = inst->Next_2xx(); } break; } case Instruction::AGET_BOOLEAN: { PREAMBLE(); Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); break; } int32_t index = shadow_frame.GetVReg(inst->VRegC_23x()); BooleanArray* array = a->AsBooleanArray(); if (LIKELY(array->IsValidIndex(index))) { shadow_frame.SetVReg(inst->VRegA_23x(), array->GetData()[index]); inst = inst->Next_2xx(); } else { HANDLE_PENDING_EXCEPTION(); } break; } case Instruction::AGET_BYTE: { PREAMBLE(); Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); break; } int32_t index = shadow_frame.GetVReg(inst->VRegC_23x()); ByteArray* array = a->AsByteArray(); if (LIKELY(array->IsValidIndex(index))) { shadow_frame.SetVReg(inst->VRegA_23x(), array->GetData()[index]); inst = inst->Next_2xx(); } else { HANDLE_PENDING_EXCEPTION(); } break; } case Instruction::AGET_CHAR: { PREAMBLE(); Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); break; } int32_t index = shadow_frame.GetVReg(inst->VRegC_23x()); CharArray* array = a->AsCharArray(); if (LIKELY(array->IsValidIndex(index))) { shadow_frame.SetVReg(inst->VRegA_23x(), array->GetData()[index]); inst = inst->Next_2xx(); } else { HANDLE_PENDING_EXCEPTION(); } break; } case Instruction::AGET_SHORT: { PREAMBLE(); Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); break; } int32_t index = shadow_frame.GetVReg(inst->VRegC_23x()); ShortArray* array = a->AsShortArray(); if (LIKELY(array->IsValidIndex(index))) { shadow_frame.SetVReg(inst->VRegA_23x(), array->GetData()[index]); inst = inst->Next_2xx(); } else { HANDLE_PENDING_EXCEPTION(); } break; } case Instruction::AGET: { PREAMBLE(); Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); break; } int32_t index = shadow_frame.GetVReg(inst->VRegC_23x()); IntArray* array = a->AsIntArray(); if (LIKELY(array->IsValidIndex(index))) { shadow_frame.SetVReg(inst->VRegA_23x(), array->GetData()[index]); inst = inst->Next_2xx(); } else { HANDLE_PENDING_EXCEPTION(); } break; } case Instruction::AGET_WIDE: { PREAMBLE(); Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); break; } int32_t index = shadow_frame.GetVReg(inst->VRegC_23x()); LongArray* array = a->AsLongArray(); if (LIKELY(array->IsValidIndex(index))) { shadow_frame.SetVRegLong(inst->VRegA_23x(), array->GetData()[index]); inst = inst->Next_2xx(); } else { HANDLE_PENDING_EXCEPTION(); } break; } case Instruction::AGET_OBJECT: { PREAMBLE(); Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); break; } int32_t index = shadow_frame.GetVReg(inst->VRegC_23x()); ObjectArray<Object>* array = a->AsObjectArray<Object>(); if (LIKELY(array->IsValidIndex(index))) { shadow_frame.SetVRegReference(inst->VRegA_23x(), array->GetWithoutChecks(index)); inst = inst->Next_2xx(); } else { HANDLE_PENDING_EXCEPTION(); } break; } case Instruction::APUT_BOOLEAN: { PREAMBLE(); Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); break; } uint8_t val = shadow_frame.GetVReg(inst->VRegA_23x()); int32_t index = shadow_frame.GetVReg(inst->VRegC_23x()); BooleanArray* array = a->AsBooleanArray(); if (LIKELY(array->IsValidIndex(index))) { array->GetData()[index] = val; inst = inst->Next_2xx(); } else { HANDLE_PENDING_EXCEPTION(); } break; } case Instruction::APUT_BYTE: { PREAMBLE(); Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); break; } int8_t val = shadow_frame.GetVReg(inst->VRegA_23x()); int32_t index = shadow_frame.GetVReg(inst->VRegC_23x()); ByteArray* array = a->AsByteArray(); if (LIKELY(array->IsValidIndex(index))) { array->GetData()[index] = val; inst = inst->Next_2xx(); } else { HANDLE_PENDING_EXCEPTION(); } break; } case Instruction::APUT_CHAR: { PREAMBLE(); Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); break; } uint16_t val = shadow_frame.GetVReg(inst->VRegA_23x()); int32_t index = shadow_frame.GetVReg(inst->VRegC_23x()); CharArray* array = a->AsCharArray(); if (LIKELY(array->IsValidIndex(index))) { array->GetData()[index] = val; inst = inst->Next_2xx(); } else { HANDLE_PENDING_EXCEPTION(); } break; } case Instruction::APUT_SHORT: { PREAMBLE(); Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); break; } int16_t val = shadow_frame.GetVReg(inst->VRegA_23x()); int32_t index = shadow_frame.GetVReg(inst->VRegC_23x()); ShortArray* array = a->AsShortArray(); if (LIKELY(array->IsValidIndex(index))) { array->GetData()[index] = val; inst = inst->Next_2xx(); } else { HANDLE_PENDING_EXCEPTION(); } break; } case Instruction::APUT: { PREAMBLE(); Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); break; } int32_t val = shadow_frame.GetVReg(inst->VRegA_23x()); int32_t index = shadow_frame.GetVReg(inst->VRegC_23x()); IntArray* array = a->AsIntArray(); if (LIKELY(array->IsValidIndex(index))) { array->GetData()[index] = val; inst = inst->Next_2xx(); } else { HANDLE_PENDING_EXCEPTION(); } break; } case Instruction::APUT_WIDE: { PREAMBLE(); Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); break; } int64_t val = shadow_frame.GetVRegLong(inst->VRegA_23x()); int32_t index = shadow_frame.GetVReg(inst->VRegC_23x()); LongArray* array = a->AsLongArray(); if (LIKELY(array->IsValidIndex(index))) { array->GetData()[index] = val; inst = inst->Next_2xx(); } else { HANDLE_PENDING_EXCEPTION(); } break; } case Instruction::APUT_OBJECT: { PREAMBLE(); Object* a = shadow_frame.GetVRegReference(inst->VRegB_23x()); if (UNLIKELY(a == NULL)) { ThrowNullPointerExceptionFromDexPC(shadow_frame.GetCurrentLocationForThrow()); HANDLE_PENDING_EXCEPTION(); break; } int32_t index = shadow_frame.GetVReg(inst->VRegC_23x()); Object* val = shadow_frame.GetVRegReference(inst->VRegA_23x()); ObjectArray<Object>* array = a->AsObjectArray<Object>(); if (LIKELY(array->IsValidIndex(index) && array->CheckAssignable(val))) { array->SetWithoutChecks(index, val); inst = inst->Next_2xx(); } else { HANDLE_PENDING_EXCEPTION(); } break; } case Instruction::IGET_BOOLEAN: { PREAMBLE(); bool success = DoFieldGet<InstancePrimitiveRead, Primitive::kPrimBoolean, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IGET_BYTE: { PREAMBLE(); bool success = DoFieldGet<InstancePrimitiveRead, Primitive::kPrimByte, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IGET_CHAR: { PREAMBLE(); bool success = DoFieldGet<InstancePrimitiveRead, Primitive::kPrimChar, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IGET_SHORT: { PREAMBLE(); bool success = DoFieldGet<InstancePrimitiveRead, Primitive::kPrimShort, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IGET: { PREAMBLE(); bool success = DoFieldGet<InstancePrimitiveRead, Primitive::kPrimInt, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IGET_WIDE: { PREAMBLE(); bool success = DoFieldGet<InstancePrimitiveRead, Primitive::kPrimLong, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IGET_OBJECT: { PREAMBLE(); bool success = DoFieldGet<InstanceObjectRead, Primitive::kPrimNot, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IGET_QUICK: { PREAMBLE(); bool success = DoIGetQuick<Primitive::kPrimInt>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IGET_WIDE_QUICK: { PREAMBLE(); bool success = DoIGetQuick<Primitive::kPrimLong>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IGET_OBJECT_QUICK: { PREAMBLE(); bool success = DoIGetQuick<Primitive::kPrimNot>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::SGET_BOOLEAN: { PREAMBLE(); bool success = DoFieldGet<StaticPrimitiveRead, Primitive::kPrimBoolean, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::SGET_BYTE: { PREAMBLE(); bool success = DoFieldGet<StaticPrimitiveRead, Primitive::kPrimByte, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::SGET_CHAR: { PREAMBLE(); bool success = DoFieldGet<StaticPrimitiveRead, Primitive::kPrimChar, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::SGET_SHORT: { PREAMBLE(); bool success = DoFieldGet<StaticPrimitiveRead, Primitive::kPrimShort, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::SGET: { PREAMBLE(); bool success = DoFieldGet<StaticPrimitiveRead, Primitive::kPrimInt, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::SGET_WIDE: { PREAMBLE(); bool success = DoFieldGet<StaticPrimitiveRead, Primitive::kPrimLong, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::SGET_OBJECT: { PREAMBLE(); bool success = DoFieldGet<StaticObjectRead, Primitive::kPrimNot, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IPUT_BOOLEAN: { PREAMBLE(); bool success = DoFieldPut<InstancePrimitiveWrite, Primitive::kPrimBoolean, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IPUT_BYTE: { PREAMBLE(); bool success = DoFieldPut<InstancePrimitiveWrite, Primitive::kPrimByte, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IPUT_CHAR: { PREAMBLE(); bool success = DoFieldPut<InstancePrimitiveWrite, Primitive::kPrimChar, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IPUT_SHORT: { PREAMBLE(); bool success = DoFieldPut<InstancePrimitiveWrite, Primitive::kPrimShort, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IPUT: { PREAMBLE(); bool success = DoFieldPut<InstancePrimitiveWrite, Primitive::kPrimInt, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IPUT_WIDE: { PREAMBLE(); bool success = DoFieldPut<InstancePrimitiveWrite, Primitive::kPrimLong, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IPUT_OBJECT: { PREAMBLE(); bool success = DoFieldPut<InstanceObjectWrite, Primitive::kPrimNot, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IPUT_QUICK: { PREAMBLE(); bool success = DoIPutQuick<Primitive::kPrimInt>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IPUT_WIDE_QUICK: { PREAMBLE(); bool success = DoIPutQuick<Primitive::kPrimLong>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::IPUT_OBJECT_QUICK: { PREAMBLE(); bool success = DoIPutQuick<Primitive::kPrimNot>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::SPUT_BOOLEAN: { PREAMBLE(); bool success = DoFieldPut<StaticPrimitiveWrite, Primitive::kPrimBoolean, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::SPUT_BYTE: { PREAMBLE(); bool success = DoFieldPut<StaticPrimitiveWrite, Primitive::kPrimByte, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::SPUT_CHAR: { PREAMBLE(); bool success = DoFieldPut<StaticPrimitiveWrite, Primitive::kPrimChar, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::SPUT_SHORT: { PREAMBLE(); bool success = DoFieldPut<StaticPrimitiveWrite, Primitive::kPrimShort, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::SPUT: { PREAMBLE(); bool success = DoFieldPut<StaticPrimitiveWrite, Primitive::kPrimInt, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::SPUT_WIDE: { PREAMBLE(); bool success = DoFieldPut<StaticPrimitiveWrite, Primitive::kPrimLong, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::SPUT_OBJECT: { PREAMBLE(); bool success = DoFieldPut<StaticObjectWrite, Primitive::kPrimNot, do_access_check>(self, shadow_frame, inst); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::INVOKE_VIRTUAL: { PREAMBLE(); bool success = DoInvoke<kVirtual, false, do_access_check>(self, shadow_frame, inst, &result_register); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx); break; } case Instruction::INVOKE_VIRTUAL_RANGE: { PREAMBLE(); bool success = DoInvoke<kVirtual, true, do_access_check>(self, shadow_frame, inst, &result_register); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx); break; } case Instruction::INVOKE_SUPER: { PREAMBLE(); bool success = DoInvoke<kSuper, false, do_access_check>(self, shadow_frame, inst, &result_register); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx); break; } case Instruction::INVOKE_SUPER_RANGE: { PREAMBLE(); bool success = DoInvoke<kSuper, true, do_access_check>(self, shadow_frame, inst, &result_register); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx); break; } case Instruction::INVOKE_DIRECT: { PREAMBLE(); bool success = DoInvoke<kDirect, false, do_access_check>(self, shadow_frame, inst, &result_register); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx); break; } case Instruction::INVOKE_DIRECT_RANGE: { PREAMBLE(); bool success = DoInvoke<kDirect, true, do_access_check>(self, shadow_frame, inst, &result_register); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx); break; } case Instruction::INVOKE_INTERFACE: { PREAMBLE(); bool success = DoInvoke<kInterface, false, do_access_check>(self, shadow_frame, inst, &result_register); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx); break; } case Instruction::INVOKE_INTERFACE_RANGE: { PREAMBLE(); bool success = DoInvoke<kInterface, true, do_access_check>(self, shadow_frame, inst, &result_register); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx); break; } case Instruction::INVOKE_STATIC: { PREAMBLE(); bool success = DoInvoke<kStatic, false, do_access_check>(self, shadow_frame, inst, &result_register); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx); break; } case Instruction::INVOKE_STATIC_RANGE: { PREAMBLE(); bool success = DoInvoke<kStatic, true, do_access_check>(self, shadow_frame, inst, &result_register); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx); break; } case Instruction::INVOKE_VIRTUAL_QUICK: { PREAMBLE(); bool success = DoInvokeVirtualQuick<false>(self, shadow_frame, inst, &result_register); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx); break; } case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: { PREAMBLE(); bool success = DoInvokeVirtualQuick<true>(self, shadow_frame, inst, &result_register); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_3xx); break; } case Instruction::NEG_INT: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_12x(), -shadow_frame.GetVReg(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::NOT_INT: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_12x(), ~shadow_frame.GetVReg(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::NEG_LONG: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_12x(), -shadow_frame.GetVRegLong(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::NOT_LONG: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_12x(), ~shadow_frame.GetVRegLong(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::NEG_FLOAT: PREAMBLE(); shadow_frame.SetVRegFloat(inst->VRegA_12x(), -shadow_frame.GetVRegFloat(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::NEG_DOUBLE: PREAMBLE(); shadow_frame.SetVRegDouble(inst->VRegA_12x(), -shadow_frame.GetVRegDouble(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::INT_TO_LONG: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_12x(), shadow_frame.GetVReg(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::INT_TO_FLOAT: PREAMBLE(); shadow_frame.SetVRegFloat(inst->VRegA_12x(), shadow_frame.GetVReg(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::INT_TO_DOUBLE: PREAMBLE(); shadow_frame.SetVRegDouble(inst->VRegA_12x(), shadow_frame.GetVReg(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::LONG_TO_INT: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_12x(), shadow_frame.GetVRegLong(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::LONG_TO_FLOAT: PREAMBLE(); shadow_frame.SetVRegFloat(inst->VRegA_12x(), shadow_frame.GetVRegLong(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::LONG_TO_DOUBLE: PREAMBLE(); shadow_frame.SetVRegDouble(inst->VRegA_12x(), shadow_frame.GetVRegLong(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::FLOAT_TO_INT: { PREAMBLE(); float val = shadow_frame.GetVRegFloat(inst->VRegB_12x()); int32_t result; if (val != val) { result = 0; } else if (val > static_cast<float>(kMaxInt)) { result = kMaxInt; } else if (val < static_cast<float>(kMinInt)) { result = kMinInt; } else { result = val; } shadow_frame.SetVReg(inst->VRegA_12x(), result); inst = inst->Next_1xx(); break; } case Instruction::FLOAT_TO_LONG: { PREAMBLE(); float val = shadow_frame.GetVRegFloat(inst->VRegB_12x()); int64_t result; if (val != val) { result = 0; } else if (val > static_cast<float>(kMaxLong)) { result = kMaxLong; } else if (val < static_cast<float>(kMinLong)) { result = kMinLong; } else { result = val; } shadow_frame.SetVRegLong(inst->VRegA_12x(), result); inst = inst->Next_1xx(); break; } case Instruction::FLOAT_TO_DOUBLE: PREAMBLE(); shadow_frame.SetVRegDouble(inst->VRegA_12x(), shadow_frame.GetVRegFloat(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::DOUBLE_TO_INT: { PREAMBLE(); double val = shadow_frame.GetVRegDouble(inst->VRegB_12x()); int32_t result; if (val != val) { result = 0; } else if (val > static_cast<double>(kMaxInt)) { result = kMaxInt; } else if (val < static_cast<double>(kMinInt)) { result = kMinInt; } else { result = val; } shadow_frame.SetVReg(inst->VRegA_12x(), result); inst = inst->Next_1xx(); break; } case Instruction::DOUBLE_TO_LONG: { PREAMBLE(); double val = shadow_frame.GetVRegDouble(inst->VRegB_12x()); int64_t result; if (val != val) { result = 0; } else if (val > static_cast<double>(kMaxLong)) { result = kMaxLong; } else if (val < static_cast<double>(kMinLong)) { result = kMinLong; } else { result = val; } shadow_frame.SetVRegLong(inst->VRegA_12x(), result); inst = inst->Next_1xx(); break; } case Instruction::DOUBLE_TO_FLOAT: PREAMBLE(); shadow_frame.SetVRegFloat(inst->VRegA_12x(), shadow_frame.GetVRegDouble(inst->VRegB_12x())); inst = inst->Next_1xx(); break; case Instruction::INT_TO_BYTE: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_12x(), static_cast<int8_t>(shadow_frame.GetVReg(inst->VRegB_12x()))); inst = inst->Next_1xx(); break; case Instruction::INT_TO_CHAR: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_12x(), static_cast<uint16_t>(shadow_frame.GetVReg(inst->VRegB_12x()))); inst = inst->Next_1xx(); break; case Instruction::INT_TO_SHORT: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_12x(), static_cast<int16_t>(shadow_frame.GetVReg(inst->VRegB_12x()))); inst = inst->Next_1xx(); break; case Instruction::ADD_INT: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_23x(), shadow_frame.GetVReg(inst->VRegB_23x()) + shadow_frame.GetVReg(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::SUB_INT: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_23x(), shadow_frame.GetVReg(inst->VRegB_23x()) - shadow_frame.GetVReg(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::MUL_INT: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_23x(), shadow_frame.GetVReg(inst->VRegB_23x()) * shadow_frame.GetVReg(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::DIV_INT: { PREAMBLE(); bool success = DoIntDivide(shadow_frame, inst->VRegA_23x(), shadow_frame.GetVReg(inst->VRegB_23x()), shadow_frame.GetVReg(inst->VRegC_23x())); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::REM_INT: { PREAMBLE(); bool success = DoIntRemainder(shadow_frame, inst->VRegA_23x(), shadow_frame.GetVReg(inst->VRegB_23x()), shadow_frame.GetVReg(inst->VRegC_23x())); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::SHL_INT: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_23x(), shadow_frame.GetVReg(inst->VRegB_23x()) << (shadow_frame.GetVReg(inst->VRegC_23x()) & 0x1f)); inst = inst->Next_2xx(); break; case Instruction::SHR_INT: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_23x(), shadow_frame.GetVReg(inst->VRegB_23x()) >> (shadow_frame.GetVReg(inst->VRegC_23x()) & 0x1f)); inst = inst->Next_2xx(); break; case Instruction::USHR_INT: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_23x(), static_cast<uint32_t>(shadow_frame.GetVReg(inst->VRegB_23x())) >> (shadow_frame.GetVReg(inst->VRegC_23x()) & 0x1f)); inst = inst->Next_2xx(); break; case Instruction::AND_INT: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_23x(), shadow_frame.GetVReg(inst->VRegB_23x()) & shadow_frame.GetVReg(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::OR_INT: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_23x(), shadow_frame.GetVReg(inst->VRegB_23x()) | shadow_frame.GetVReg(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::XOR_INT: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_23x(), shadow_frame.GetVReg(inst->VRegB_23x()) ^ shadow_frame.GetVReg(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::ADD_LONG: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_23x(), shadow_frame.GetVRegLong(inst->VRegB_23x()) + shadow_frame.GetVRegLong(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::SUB_LONG: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_23x(), shadow_frame.GetVRegLong(inst->VRegB_23x()) - shadow_frame.GetVRegLong(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::MUL_LONG: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_23x(), shadow_frame.GetVRegLong(inst->VRegB_23x()) * shadow_frame.GetVRegLong(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::DIV_LONG: PREAMBLE(); DoLongDivide(shadow_frame, inst->VRegA_23x(), shadow_frame.GetVRegLong(inst->VRegB_23x()), shadow_frame.GetVRegLong(inst->VRegC_23x())); POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_2xx); break; case Instruction::REM_LONG: PREAMBLE(); DoLongRemainder(shadow_frame, inst->VRegA_23x(), shadow_frame.GetVRegLong(inst->VRegB_23x()), shadow_frame.GetVRegLong(inst->VRegC_23x())); POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_2xx); break; case Instruction::AND_LONG: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_23x(), shadow_frame.GetVRegLong(inst->VRegB_23x()) & shadow_frame.GetVRegLong(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::OR_LONG: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_23x(), shadow_frame.GetVRegLong(inst->VRegB_23x()) | shadow_frame.GetVRegLong(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::XOR_LONG: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_23x(), shadow_frame.GetVRegLong(inst->VRegB_23x()) ^ shadow_frame.GetVRegLong(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::SHL_LONG: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_23x(), shadow_frame.GetVRegLong(inst->VRegB_23x()) << (shadow_frame.GetVReg(inst->VRegC_23x()) & 0x3f)); inst = inst->Next_2xx(); break; case Instruction::SHR_LONG: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_23x(), shadow_frame.GetVRegLong(inst->VRegB_23x()) >> (shadow_frame.GetVReg(inst->VRegC_23x()) & 0x3f)); inst = inst->Next_2xx(); break; case Instruction::USHR_LONG: PREAMBLE(); shadow_frame.SetVRegLong(inst->VRegA_23x(), static_cast<uint64_t>(shadow_frame.GetVRegLong(inst->VRegB_23x())) >> (shadow_frame.GetVReg(inst->VRegC_23x()) & 0x3f)); inst = inst->Next_2xx(); break; case Instruction::ADD_FLOAT: PREAMBLE(); shadow_frame.SetVRegFloat(inst->VRegA_23x(), shadow_frame.GetVRegFloat(inst->VRegB_23x()) + shadow_frame.GetVRegFloat(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::SUB_FLOAT: PREAMBLE(); shadow_frame.SetVRegFloat(inst->VRegA_23x(), shadow_frame.GetVRegFloat(inst->VRegB_23x()) - shadow_frame.GetVRegFloat(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::MUL_FLOAT: PREAMBLE(); shadow_frame.SetVRegFloat(inst->VRegA_23x(), shadow_frame.GetVRegFloat(inst->VRegB_23x()) * shadow_frame.GetVRegFloat(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::DIV_FLOAT: PREAMBLE(); shadow_frame.SetVRegFloat(inst->VRegA_23x(), shadow_frame.GetVRegFloat(inst->VRegB_23x()) / shadow_frame.GetVRegFloat(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::REM_FLOAT: PREAMBLE(); shadow_frame.SetVRegFloat(inst->VRegA_23x(), fmodf(shadow_frame.GetVRegFloat(inst->VRegB_23x()), shadow_frame.GetVRegFloat(inst->VRegC_23x()))); inst = inst->Next_2xx(); break; case Instruction::ADD_DOUBLE: PREAMBLE(); shadow_frame.SetVRegDouble(inst->VRegA_23x(), shadow_frame.GetVRegDouble(inst->VRegB_23x()) + shadow_frame.GetVRegDouble(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::SUB_DOUBLE: PREAMBLE(); shadow_frame.SetVRegDouble(inst->VRegA_23x(), shadow_frame.GetVRegDouble(inst->VRegB_23x()) - shadow_frame.GetVRegDouble(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::MUL_DOUBLE: PREAMBLE(); shadow_frame.SetVRegDouble(inst->VRegA_23x(), shadow_frame.GetVRegDouble(inst->VRegB_23x()) * shadow_frame.GetVRegDouble(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::DIV_DOUBLE: PREAMBLE(); shadow_frame.SetVRegDouble(inst->VRegA_23x(), shadow_frame.GetVRegDouble(inst->VRegB_23x()) / shadow_frame.GetVRegDouble(inst->VRegC_23x())); inst = inst->Next_2xx(); break; case Instruction::REM_DOUBLE: PREAMBLE(); shadow_frame.SetVRegDouble(inst->VRegA_23x(), fmod(shadow_frame.GetVRegDouble(inst->VRegB_23x()), shadow_frame.GetVRegDouble(inst->VRegC_23x()))); inst = inst->Next_2xx(); break; case Instruction::ADD_INT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVReg(vregA, shadow_frame.GetVReg(vregA) + shadow_frame.GetVReg(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::SUB_INT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVReg(vregA, shadow_frame.GetVReg(vregA) - shadow_frame.GetVReg(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::MUL_INT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVReg(vregA, shadow_frame.GetVReg(vregA) * shadow_frame.GetVReg(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::DIV_INT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); bool success = DoIntDivide(shadow_frame, vregA, shadow_frame.GetVReg(vregA), shadow_frame.GetVReg(inst->VRegB_12x())); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_1xx); break; } case Instruction::REM_INT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); bool success = DoIntRemainder(shadow_frame, vregA, shadow_frame.GetVReg(vregA), shadow_frame.GetVReg(inst->VRegB_12x())); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_1xx); break; } case Instruction::SHL_INT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVReg(vregA, shadow_frame.GetVReg(vregA) << (shadow_frame.GetVReg(inst->VRegB_12x()) & 0x1f)); inst = inst->Next_1xx(); break; } case Instruction::SHR_INT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVReg(vregA, shadow_frame.GetVReg(vregA) >> (shadow_frame.GetVReg(inst->VRegB_12x()) & 0x1f)); inst = inst->Next_1xx(); break; } case Instruction::USHR_INT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVReg(vregA, static_cast<uint32_t>(shadow_frame.GetVReg(vregA)) >> (shadow_frame.GetVReg(inst->VRegB_12x()) & 0x1f)); inst = inst->Next_1xx(); break; } case Instruction::AND_INT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVReg(vregA, shadow_frame.GetVReg(vregA) & shadow_frame.GetVReg(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::OR_INT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVReg(vregA, shadow_frame.GetVReg(vregA) | shadow_frame.GetVReg(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::XOR_INT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVReg(vregA, shadow_frame.GetVReg(vregA) ^ shadow_frame.GetVReg(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::ADD_LONG_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegLong(vregA, shadow_frame.GetVRegLong(vregA) + shadow_frame.GetVRegLong(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::SUB_LONG_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegLong(vregA, shadow_frame.GetVRegLong(vregA) - shadow_frame.GetVRegLong(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::MUL_LONG_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegLong(vregA, shadow_frame.GetVRegLong(vregA) * shadow_frame.GetVRegLong(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::DIV_LONG_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); DoLongDivide(shadow_frame, vregA, shadow_frame.GetVRegLong(vregA), shadow_frame.GetVRegLong(inst->VRegB_12x())); POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_1xx); break; } case Instruction::REM_LONG_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); DoLongRemainder(shadow_frame, vregA, shadow_frame.GetVRegLong(vregA), shadow_frame.GetVRegLong(inst->VRegB_12x())); POSSIBLY_HANDLE_PENDING_EXCEPTION(self->IsExceptionPending(), Next_1xx); break; } case Instruction::AND_LONG_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegLong(vregA, shadow_frame.GetVRegLong(vregA) & shadow_frame.GetVRegLong(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::OR_LONG_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegLong(vregA, shadow_frame.GetVRegLong(vregA) | shadow_frame.GetVRegLong(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::XOR_LONG_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegLong(vregA, shadow_frame.GetVRegLong(vregA) ^ shadow_frame.GetVRegLong(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::SHL_LONG_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegLong(vregA, shadow_frame.GetVRegLong(vregA) << (shadow_frame.GetVReg(inst->VRegB_12x()) & 0x3f)); inst = inst->Next_1xx(); break; } case Instruction::SHR_LONG_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegLong(vregA, shadow_frame.GetVRegLong(vregA) >> (shadow_frame.GetVReg(inst->VRegB_12x()) & 0x3f)); inst = inst->Next_1xx(); break; } case Instruction::USHR_LONG_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegLong(vregA, static_cast<uint64_t>(shadow_frame.GetVRegLong(vregA)) >> (shadow_frame.GetVReg(inst->VRegB_12x()) & 0x3f)); inst = inst->Next_1xx(); break; } case Instruction::ADD_FLOAT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegFloat(vregA, shadow_frame.GetVRegFloat(vregA) + shadow_frame.GetVRegFloat(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::SUB_FLOAT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegFloat(vregA, shadow_frame.GetVRegFloat(vregA) - shadow_frame.GetVRegFloat(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::MUL_FLOAT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegFloat(vregA, shadow_frame.GetVRegFloat(vregA) * shadow_frame.GetVRegFloat(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::DIV_FLOAT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegFloat(vregA, shadow_frame.GetVRegFloat(vregA) / shadow_frame.GetVRegFloat(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::REM_FLOAT_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegFloat(vregA, fmodf(shadow_frame.GetVRegFloat(vregA), shadow_frame.GetVRegFloat(inst->VRegB_12x()))); inst = inst->Next_1xx(); break; } case Instruction::ADD_DOUBLE_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegDouble(vregA, shadow_frame.GetVRegDouble(vregA) + shadow_frame.GetVRegDouble(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::SUB_DOUBLE_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegDouble(vregA, shadow_frame.GetVRegDouble(vregA) - shadow_frame.GetVRegDouble(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::MUL_DOUBLE_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegDouble(vregA, shadow_frame.GetVRegDouble(vregA) * shadow_frame.GetVRegDouble(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::DIV_DOUBLE_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegDouble(vregA, shadow_frame.GetVRegDouble(vregA) / shadow_frame.GetVRegDouble(inst->VRegB_12x())); inst = inst->Next_1xx(); break; } case Instruction::REM_DOUBLE_2ADDR: { PREAMBLE(); uint4_t vregA = inst->VRegA_12x(); shadow_frame.SetVRegDouble(vregA, fmod(shadow_frame.GetVRegDouble(vregA), shadow_frame.GetVRegDouble(inst->VRegB_12x()))); inst = inst->Next_1xx(); break; } case Instruction::ADD_INT_LIT16: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22s(), shadow_frame.GetVReg(inst->VRegB_22s()) + inst->VRegC_22s()); inst = inst->Next_2xx(); break; case Instruction::RSUB_INT: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22s(), inst->VRegC_22s() - shadow_frame.GetVReg(inst->VRegB_22s())); inst = inst->Next_2xx(); break; case Instruction::MUL_INT_LIT16: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22s(), shadow_frame.GetVReg(inst->VRegB_22s()) * inst->VRegC_22s()); inst = inst->Next_2xx(); break; case Instruction::DIV_INT_LIT16: { PREAMBLE(); bool success = DoIntDivide(shadow_frame, inst->VRegA_22s(), shadow_frame.GetVReg(inst->VRegB_22s()), inst->VRegC_22s()); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::REM_INT_LIT16: { PREAMBLE(); bool success = DoIntRemainder(shadow_frame, inst->VRegA_22s(), shadow_frame.GetVReg(inst->VRegB_22s()), inst->VRegC_22s()); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::AND_INT_LIT16: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22s(), shadow_frame.GetVReg(inst->VRegB_22s()) & inst->VRegC_22s()); inst = inst->Next_2xx(); break; case Instruction::OR_INT_LIT16: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22s(), shadow_frame.GetVReg(inst->VRegB_22s()) | inst->VRegC_22s()); inst = inst->Next_2xx(); break; case Instruction::XOR_INT_LIT16: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22s(), shadow_frame.GetVReg(inst->VRegB_22s()) ^ inst->VRegC_22s()); inst = inst->Next_2xx(); break; case Instruction::ADD_INT_LIT8: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22b(), shadow_frame.GetVReg(inst->VRegB_22b()) + inst->VRegC_22b()); inst = inst->Next_2xx(); break; case Instruction::RSUB_INT_LIT8: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22b(), inst->VRegC_22b() - shadow_frame.GetVReg(inst->VRegB_22b())); inst = inst->Next_2xx(); break; case Instruction::MUL_INT_LIT8: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22b(), shadow_frame.GetVReg(inst->VRegB_22b()) * inst->VRegC_22b()); inst = inst->Next_2xx(); break; case Instruction::DIV_INT_LIT8: { PREAMBLE(); bool success = DoIntDivide(shadow_frame, inst->VRegA_22b(), shadow_frame.GetVReg(inst->VRegB_22b()), inst->VRegC_22b()); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::REM_INT_LIT8: { PREAMBLE(); bool success = DoIntRemainder(shadow_frame, inst->VRegA_22b(), shadow_frame.GetVReg(inst->VRegB_22b()), inst->VRegC_22b()); POSSIBLY_HANDLE_PENDING_EXCEPTION(!success, Next_2xx); break; } case Instruction::AND_INT_LIT8: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22b(), shadow_frame.GetVReg(inst->VRegB_22b()) & inst->VRegC_22b()); inst = inst->Next_2xx(); break; case Instruction::OR_INT_LIT8: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22b(), shadow_frame.GetVReg(inst->VRegB_22b()) | inst->VRegC_22b()); inst = inst->Next_2xx(); break; case Instruction::XOR_INT_LIT8: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22b(), shadow_frame.GetVReg(inst->VRegB_22b()) ^ inst->VRegC_22b()); inst = inst->Next_2xx(); break; case Instruction::SHL_INT_LIT8: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22b(), shadow_frame.GetVReg(inst->VRegB_22b()) << (inst->VRegC_22b() & 0x1f)); inst = inst->Next_2xx(); break; case Instruction::SHR_INT_LIT8: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22b(), shadow_frame.GetVReg(inst->VRegB_22b()) >> (inst->VRegC_22b() & 0x1f)); inst = inst->Next_2xx(); break; case Instruction::USHR_INT_LIT8: PREAMBLE(); shadow_frame.SetVReg(inst->VRegA_22b(), static_cast<uint32_t>(shadow_frame.GetVReg(inst->VRegB_22b())) >> (inst->VRegC_22b() & 0x1f)); inst = inst->Next_2xx(); break; case Instruction::UNUSED_3E ... Instruction::UNUSED_43: case Instruction::UNUSED_EB ... Instruction::UNUSED_FF: case Instruction::UNUSED_79: case Instruction::UNUSED_7A: UnexpectedOpcode(inst, mh); } } } // NOLINT(readability/fn_size) static JValue Execute(Thread* self, MethodHelper& mh, const DexFile::CodeItem* code_item, ShadowFrame& shadow_frame, JValue result_register) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); static inline JValue Execute(Thread* self, MethodHelper& mh, const DexFile::CodeItem* code_item, ShadowFrame& shadow_frame, JValue result_register) { DCHECK(shadow_frame.GetMethod() == mh.GetMethod() || shadow_frame.GetMethod()->GetDeclaringClass()->IsProxyClass()); DCHECK(!shadow_frame.GetMethod()->IsAbstract()); DCHECK(!shadow_frame.GetMethod()->IsNative()); if (shadow_frame.GetMethod()->IsPreverified()) { // Enter the "without access check" interpreter. return ExecuteImpl<false>(self, mh, code_item, shadow_frame, result_register); } else { // Enter the "with access check" interpreter. return ExecuteImpl<true>(self, mh, code_item, shadow_frame, result_register); } } void EnterInterpreterFromInvoke(Thread* self, ArtMethod* method, Object* receiver, uint32_t* args, JValue* result) { DCHECK_EQ(self, Thread::Current()); if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEnd())) { ThrowStackOverflowError(self); return; } MethodHelper mh(method); const DexFile::CodeItem* code_item = mh.GetCodeItem(); uint16_t num_regs; uint16_t num_ins; if (code_item != NULL) { num_regs = code_item->registers_size_; num_ins = code_item->ins_size_; } else if (method->IsAbstract()) { ThrowAbstractMethodError(method); return; } else { DCHECK(method->IsNative()); num_regs = num_ins = ArtMethod::NumArgRegisters(mh.GetShorty()); if (!method->IsStatic()) { num_regs++; num_ins++; } } // Set up shadow frame with matching number of reference slots to vregs. ShadowFrame* last_shadow_frame = self->GetManagedStack()->GetTopShadowFrame(); void* memory = alloca(ShadowFrame::ComputeSize(num_regs)); ShadowFrame* shadow_frame(ShadowFrame::Create(num_regs, last_shadow_frame, method, 0, memory)); self->PushShadowFrame(shadow_frame); size_t cur_reg = num_regs - num_ins; if (!method->IsStatic()) { CHECK(receiver != NULL); shadow_frame->SetVRegReference(cur_reg, receiver); ++cur_reg; } else if (UNLIKELY(!method->GetDeclaringClass()->IsInitializing())) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); if (UNLIKELY(!class_linker->EnsureInitialized(method->GetDeclaringClass(), true, true))) { CHECK(self->IsExceptionPending()); self->PopShadowFrame(); return; } CHECK(method->GetDeclaringClass()->IsInitializing()); } const char* shorty = mh.GetShorty(); for (size_t shorty_pos = 0, arg_pos = 0; cur_reg < num_regs; ++shorty_pos, ++arg_pos, cur_reg++) { DCHECK_LT(shorty_pos + 1, mh.GetShortyLength()); switch (shorty[shorty_pos + 1]) { case 'L': { Object* o = reinterpret_cast<Object*>(args[arg_pos]); shadow_frame->SetVRegReference(cur_reg, o); break; } case 'J': case 'D': { uint64_t wide_value = (static_cast<uint64_t>(args[arg_pos + 1]) << 32) | args[arg_pos]; shadow_frame->SetVRegLong(cur_reg, wide_value); cur_reg++; arg_pos++; break; } default: shadow_frame->SetVReg(cur_reg, args[arg_pos]); break; } } if (LIKELY(!method->IsNative())) { JValue r = Execute(self, mh, code_item, *shadow_frame, JValue()); if (result != NULL) { *result = r; } } else { // We don't expect to be asked to interpret native code (which is entered via a JNI compiler // generated stub) except during testing and image writing. if (!Runtime::Current()->IsStarted()) { UnstartedRuntimeJni(self, method, receiver, args, result); } else { InterpreterJni(self, method, shorty, receiver, args, result); } } self->PopShadowFrame(); } void EnterInterpreterFromDeoptimize(Thread* self, ShadowFrame* shadow_frame, JValue* ret_val) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { JValue value; value.SetJ(ret_val->GetJ()); // Set value to last known result in case the shadow frame chain is empty. MethodHelper mh; while (shadow_frame != NULL) { self->SetTopOfShadowStack(shadow_frame); mh.ChangeMethod(shadow_frame->GetMethod()); const DexFile::CodeItem* code_item = mh.GetCodeItem(); value = Execute(self, mh, code_item, *shadow_frame, value); ShadowFrame* old_frame = shadow_frame; shadow_frame = shadow_frame->GetLink(); delete old_frame; } ret_val->SetJ(value.GetJ()); } JValue EnterInterpreterFromStub(Thread* self, MethodHelper& mh, const DexFile::CodeItem* code_item, ShadowFrame& shadow_frame) { DCHECK_EQ(self, Thread::Current()); if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEnd())) { ThrowStackOverflowError(self); return JValue(); } return Execute(self, mh, code_item, shadow_frame, JValue()); } extern "C" void artInterpreterToInterpreterBridge(Thread* self, MethodHelper& mh, const DexFile::CodeItem* code_item, ShadowFrame* shadow_frame, JValue* result) { if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEnd())) { ThrowStackOverflowError(self); return; } ArtMethod* method = shadow_frame->GetMethod(); if (method->IsStatic() && !method->GetDeclaringClass()->IsInitializing()) { if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(method->GetDeclaringClass(), true, true)) { DCHECK(Thread::Current()->IsExceptionPending()); return; } CHECK(method->GetDeclaringClass()->IsInitializing()); } self->PushShadowFrame(shadow_frame); if (LIKELY(!method->IsNative())) { result->SetJ(Execute(self, mh, code_item, *shadow_frame, JValue()).GetJ()); } else { // We don't expect to be asked to interpret native code (which is entered via a JNI compiler // generated stub) except during testing and image writing. CHECK(!Runtime::Current()->IsStarted()); Object* receiver = method->IsStatic() ? NULL : shadow_frame->GetVRegReference(0); uint32_t* args = shadow_frame->GetVRegArgs(method->IsStatic() ? 0 : 1); UnstartedRuntimeJni(self, method, receiver, args, result); } self->PopShadowFrame(); return; } } // namespace interpreter } // namespace art