// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
#include "ceres/triplet_sparse_matrix.h"
#include "gtest/gtest.h"
#include "ceres/matrix_proto.h"
#include "ceres/internal/scoped_ptr.h"
namespace ceres {
namespace internal {
TEST(TripletSparseMatrix, DefaultConstructorReturnsEmptyObject) {
TripletSparseMatrix m;
EXPECT_EQ(m.num_rows(), 0);
EXPECT_EQ(m.num_cols(), 0);
EXPECT_EQ(m.num_nonzeros(), 0);
EXPECT_EQ(m.max_num_nonzeros(), 0);
}
TEST(TripletSparseMatrix, SimpleConstructorAndBasicOperations) {
// Build a matrix
TripletSparseMatrix m(2, 5, 4);
EXPECT_EQ(m.num_rows(), 2);
EXPECT_EQ(m.num_cols(), 5);
EXPECT_EQ(m.num_nonzeros(), 0);
EXPECT_EQ(m.max_num_nonzeros(), 4);
m.mutable_rows()[0] = 0;
m.mutable_cols()[0] = 1;
m.mutable_values()[0] = 2.5;
m.mutable_rows()[1] = 1;
m.mutable_cols()[1] = 4;
m.mutable_values()[1] = 5.2;
m.set_num_nonzeros(2);
EXPECT_EQ(m.num_nonzeros(), 2);
ASSERT_TRUE(m.AllTripletsWithinBounds());
// We should never be able resize and lose data
EXPECT_DEATH_IF_SUPPORTED(m.Reserve(1), "Reallocation will cause data loss");
// We should be able to resize while preserving data
m.Reserve(50);
EXPECT_EQ(m.max_num_nonzeros(), 50);
m.Reserve(3);
EXPECT_EQ(m.max_num_nonzeros(), 50); // The space is already reserved.
EXPECT_EQ(m.rows()[0], 0);
EXPECT_EQ(m.rows()[1], 1);
EXPECT_EQ(m.cols()[0], 1);
EXPECT_EQ(m.cols()[1], 4);
EXPECT_DOUBLE_EQ(m.values()[0], 2.5);
EXPECT_DOUBLE_EQ(m.values()[1], 5.2);
// Bounds check should fail
m.mutable_rows()[0] = 10;
EXPECT_FALSE(m.AllTripletsWithinBounds());
m.mutable_rows()[0] = 1;
m.mutable_cols()[0] = 100;
EXPECT_FALSE(m.AllTripletsWithinBounds());
// Remove all data and then resize the data store
m.SetZero();
EXPECT_EQ(m.num_nonzeros(), 0);
m.Reserve(1);
}
TEST(TripletSparseMatrix, CopyConstructor) {
TripletSparseMatrix orig(2, 5, 4);
orig.mutable_rows()[0] = 0;
orig.mutable_cols()[0] = 1;
orig.mutable_values()[0] = 2.5;
orig.mutable_rows()[1] = 1;
orig.mutable_cols()[1] = 4;
orig.mutable_values()[1] = 5.2;
orig.set_num_nonzeros(2);
TripletSparseMatrix cpy(orig);
EXPECT_EQ(cpy.num_rows(), 2);
EXPECT_EQ(cpy.num_cols(), 5);
ASSERT_EQ(cpy.num_nonzeros(), 2);
EXPECT_EQ(cpy.max_num_nonzeros(), 4);
EXPECT_EQ(cpy.rows()[0], 0);
EXPECT_EQ(cpy.rows()[1], 1);
EXPECT_EQ(cpy.cols()[0], 1);
EXPECT_EQ(cpy.cols()[1], 4);
EXPECT_DOUBLE_EQ(cpy.values()[0], 2.5);
EXPECT_DOUBLE_EQ(cpy.values()[1], 5.2);
}
TEST(TripletSparseMatrix, AssignmentOperator) {
TripletSparseMatrix orig(2, 5, 4);
orig.mutable_rows()[0] = 0;
orig.mutable_cols()[0] = 1;
orig.mutable_values()[0] = 2.5;
orig.mutable_rows()[1] = 1;
orig.mutable_cols()[1] = 4;
orig.mutable_values()[1] = 5.2;
orig.set_num_nonzeros(2);
TripletSparseMatrix cpy(3, 50, 40);
cpy.mutable_rows()[0] = 0;
cpy.mutable_cols()[0] = 10;
cpy.mutable_values()[0] = 10.22;
cpy.mutable_rows()[1] = 2;
cpy.mutable_cols()[1] = 23;
cpy.mutable_values()[1] = 34.45;
cpy.mutable_rows()[0] = 0;
cpy.mutable_cols()[0] = 10;
cpy.mutable_values()[0] = 10.22;
cpy.mutable_rows()[1] = 0;
cpy.mutable_cols()[1] = 3;
cpy.mutable_values()[1] = 4.4;
cpy.set_num_nonzeros(3);
cpy = orig;
EXPECT_EQ(cpy.num_rows(), 2);
EXPECT_EQ(cpy.num_cols(), 5);
ASSERT_EQ(cpy.num_nonzeros(), 2);
EXPECT_EQ(cpy.max_num_nonzeros(), 4);
EXPECT_EQ(cpy.rows()[0], 0);
EXPECT_EQ(cpy.rows()[1], 1);
EXPECT_EQ(cpy.cols()[0], 1);
EXPECT_EQ(cpy.cols()[1], 4);
EXPECT_DOUBLE_EQ(cpy.values()[0], 2.5);
EXPECT_DOUBLE_EQ(cpy.values()[1], 5.2);
}
TEST(TripletSparseMatrix, AppendRows) {
// Build one matrix.
TripletSparseMatrix m(2, 5, 4);
m.mutable_rows()[0] = 0;
m.mutable_cols()[0] = 1;
m.mutable_values()[0] = 2.5;
m.mutable_rows()[1] = 1;
m.mutable_cols()[1] = 4;
m.mutable_values()[1] = 5.2;
m.set_num_nonzeros(2);
// Build another matrix.
TripletSparseMatrix a(10, 5, 4);
a.mutable_rows()[0] = 0;
a.mutable_cols()[0] = 1;
a.mutable_values()[0] = 3.5;
a.mutable_rows()[1] = 1;
a.mutable_cols()[1] = 4;
a.mutable_values()[1] = 6.2;
a.mutable_rows()[2] = 9;
a.mutable_cols()[2] = 5;
a.mutable_values()[2] = 1;
a.set_num_nonzeros(3);
// Glue the second matrix to the bottom of the first.
m.AppendRows(a);
EXPECT_EQ(m.num_rows(), 12);
EXPECT_EQ(m.num_cols(), 5);
ASSERT_EQ(m.num_nonzeros(), 5);
EXPECT_EQ(m.values()[0], 2.5);
EXPECT_EQ(m.values()[1], 5.2);
EXPECT_EQ(m.values()[2], 3.5);
EXPECT_EQ(m.values()[3], 6.2);
EXPECT_EQ(m.values()[4], 1);
EXPECT_EQ(m.rows()[0], 0);
EXPECT_EQ(m.rows()[1], 1);
EXPECT_EQ(m.rows()[2], 2);
EXPECT_EQ(m.rows()[3], 3);
EXPECT_EQ(m.rows()[4], 11);
EXPECT_EQ(m.cols()[0], 1);
EXPECT_EQ(m.cols()[1], 4);
EXPECT_EQ(m.cols()[2], 1);
EXPECT_EQ(m.cols()[3], 4);
EXPECT_EQ(m.cols()[4], 5);
}
TEST(TripletSparseMatrix, AppendCols) {
// Build one matrix.
TripletSparseMatrix m(2, 5, 4);
m.mutable_rows()[0] = 0;
m.mutable_cols()[0] = 1;
m.mutable_values()[0] = 2.5;
m.mutable_rows()[1] = 1;
m.mutable_cols()[1] = 4;
m.mutable_values()[1] = 5.2;
m.set_num_nonzeros(2);
// Build another matrix.
TripletSparseMatrix a(2, 15, 4);
a.mutable_rows()[0] = 0;
a.mutable_cols()[0] = 1;
a.mutable_values()[0] = 3.5;
a.mutable_rows()[1] = 1;
a.mutable_cols()[1] = 4;
a.mutable_values()[1] = 6.2;
a.mutable_rows()[2] = 0;
a.mutable_cols()[2] = 10;
a.mutable_values()[2] = 1;
a.set_num_nonzeros(3);
// Glue the second matrix to the left of the first.
m.AppendCols(a);
EXPECT_EQ(m.num_rows(), 2);
EXPECT_EQ(m.num_cols(), 20);
ASSERT_EQ(m.num_nonzeros(), 5);
EXPECT_EQ(m.values()[0], 2.5);
EXPECT_EQ(m.values()[1], 5.2);
EXPECT_EQ(m.values()[2], 3.5);
EXPECT_EQ(m.values()[3], 6.2);
EXPECT_EQ(m.values()[4], 1);
EXPECT_EQ(m.rows()[0], 0);
EXPECT_EQ(m.rows()[1], 1);
EXPECT_EQ(m.rows()[2], 0);
EXPECT_EQ(m.rows()[3], 1);
EXPECT_EQ(m.rows()[4], 0);
EXPECT_EQ(m.cols()[0], 1);
EXPECT_EQ(m.cols()[1], 4);
EXPECT_EQ(m.cols()[2], 6);
EXPECT_EQ(m.cols()[3], 9);
EXPECT_EQ(m.cols()[4], 15);
}
TEST(TripletSparseMatrix, CreateDiagonalMatrix) {
scoped_array<double> values(new double[10]);
for (int i = 0; i < 10; ++i)
values[i] = i;
scoped_ptr<TripletSparseMatrix> m(
TripletSparseMatrix::CreateSparseDiagonalMatrix(values.get(), 10));
EXPECT_EQ(m->num_rows(), 10);
EXPECT_EQ(m->num_cols(), 10);
ASSERT_EQ(m->num_nonzeros(), 10);
for (int i = 0; i < 10 ; ++i) {
EXPECT_EQ(m->rows()[i], i);
EXPECT_EQ(m->cols()[i], i);
EXPECT_EQ(m->values()[i], i);
}
}
TEST(TripletSparseMatrix, Resize) {
TripletSparseMatrix m(10, 20, 200);
int nnz = 0;
for (int i = 0; i < 10; ++i) {
for (int j = 0; j < 20; ++j) {
m.mutable_rows()[nnz] = i;
m.mutable_cols()[nnz] = j;
m.mutable_values()[nnz++] = i+j;
}
}
m.set_num_nonzeros(nnz);
m.Resize(5, 6);
EXPECT_EQ(m.num_rows(), 5);
EXPECT_EQ(m.num_cols(), 6);
ASSERT_EQ(m.num_nonzeros(), 30);
for (int i = 0; i < 30; ++i) {
EXPECT_EQ(m.values()[i], m.rows()[i] + m.cols()[i]);
}
}
#ifndef CERES_NO_PROTOCOL_BUFFERS
TEST(TripletSparseMatrix, Serialization) {
TripletSparseMatrix m(2, 5, 4);
m.mutable_rows()[0] = 0;
m.mutable_cols()[0] = 1;
m.mutable_values()[0] = 2.5;
m.mutable_rows()[1] = 1;
m.mutable_cols()[1] = 4;
m.mutable_values()[1] = 5.2;
m.set_num_nonzeros(2);
// Roundtrip through serialization and check for equality.
SparseMatrixProto proto;
m.ToProto(&proto);
TripletSparseMatrix n(proto);
ASSERT_EQ(n.num_rows(), 2);
ASSERT_EQ(n.num_cols(), 5);
// Note that max_num_nonzeros gets truncated; the serialization
ASSERT_EQ(n.num_nonzeros(), 2);
ASSERT_EQ(n.max_num_nonzeros(), 2);
for (int i = 0; i < m.num_nonzeros(); ++i) {
EXPECT_EQ(m.rows()[i], n.rows()[i]);
EXPECT_EQ(m.cols()[i], n.cols()[i]);
EXPECT_EQ(m.values()[i], n.values()[i]);
}
}
#endif
} // namespace internal
} // namespace ceres