// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/triplet_sparse_matrix.h" #include "gtest/gtest.h" #include "ceres/matrix_proto.h" #include "ceres/internal/scoped_ptr.h" namespace ceres { namespace internal { TEST(TripletSparseMatrix, DefaultConstructorReturnsEmptyObject) { TripletSparseMatrix m; EXPECT_EQ(m.num_rows(), 0); EXPECT_EQ(m.num_cols(), 0); EXPECT_EQ(m.num_nonzeros(), 0); EXPECT_EQ(m.max_num_nonzeros(), 0); } TEST(TripletSparseMatrix, SimpleConstructorAndBasicOperations) { // Build a matrix TripletSparseMatrix m(2, 5, 4); EXPECT_EQ(m.num_rows(), 2); EXPECT_EQ(m.num_cols(), 5); EXPECT_EQ(m.num_nonzeros(), 0); EXPECT_EQ(m.max_num_nonzeros(), 4); m.mutable_rows()[0] = 0; m.mutable_cols()[0] = 1; m.mutable_values()[0] = 2.5; m.mutable_rows()[1] = 1; m.mutable_cols()[1] = 4; m.mutable_values()[1] = 5.2; m.set_num_nonzeros(2); EXPECT_EQ(m.num_nonzeros(), 2); ASSERT_TRUE(m.AllTripletsWithinBounds()); // We should never be able resize and lose data EXPECT_DEATH_IF_SUPPORTED(m.Reserve(1), "Reallocation will cause data loss"); // We should be able to resize while preserving data m.Reserve(50); EXPECT_EQ(m.max_num_nonzeros(), 50); m.Reserve(3); EXPECT_EQ(m.max_num_nonzeros(), 50); // The space is already reserved. EXPECT_EQ(m.rows()[0], 0); EXPECT_EQ(m.rows()[1], 1); EXPECT_EQ(m.cols()[0], 1); EXPECT_EQ(m.cols()[1], 4); EXPECT_DOUBLE_EQ(m.values()[0], 2.5); EXPECT_DOUBLE_EQ(m.values()[1], 5.2); // Bounds check should fail m.mutable_rows()[0] = 10; EXPECT_FALSE(m.AllTripletsWithinBounds()); m.mutable_rows()[0] = 1; m.mutable_cols()[0] = 100; EXPECT_FALSE(m.AllTripletsWithinBounds()); // Remove all data and then resize the data store m.SetZero(); EXPECT_EQ(m.num_nonzeros(), 0); m.Reserve(1); } TEST(TripletSparseMatrix, CopyConstructor) { TripletSparseMatrix orig(2, 5, 4); orig.mutable_rows()[0] = 0; orig.mutable_cols()[0] = 1; orig.mutable_values()[0] = 2.5; orig.mutable_rows()[1] = 1; orig.mutable_cols()[1] = 4; orig.mutable_values()[1] = 5.2; orig.set_num_nonzeros(2); TripletSparseMatrix cpy(orig); EXPECT_EQ(cpy.num_rows(), 2); EXPECT_EQ(cpy.num_cols(), 5); ASSERT_EQ(cpy.num_nonzeros(), 2); EXPECT_EQ(cpy.max_num_nonzeros(), 4); EXPECT_EQ(cpy.rows()[0], 0); EXPECT_EQ(cpy.rows()[1], 1); EXPECT_EQ(cpy.cols()[0], 1); EXPECT_EQ(cpy.cols()[1], 4); EXPECT_DOUBLE_EQ(cpy.values()[0], 2.5); EXPECT_DOUBLE_EQ(cpy.values()[1], 5.2); } TEST(TripletSparseMatrix, AssignmentOperator) { TripletSparseMatrix orig(2, 5, 4); orig.mutable_rows()[0] = 0; orig.mutable_cols()[0] = 1; orig.mutable_values()[0] = 2.5; orig.mutable_rows()[1] = 1; orig.mutable_cols()[1] = 4; orig.mutable_values()[1] = 5.2; orig.set_num_nonzeros(2); TripletSparseMatrix cpy(3, 50, 40); cpy.mutable_rows()[0] = 0; cpy.mutable_cols()[0] = 10; cpy.mutable_values()[0] = 10.22; cpy.mutable_rows()[1] = 2; cpy.mutable_cols()[1] = 23; cpy.mutable_values()[1] = 34.45; cpy.mutable_rows()[0] = 0; cpy.mutable_cols()[0] = 10; cpy.mutable_values()[0] = 10.22; cpy.mutable_rows()[1] = 0; cpy.mutable_cols()[1] = 3; cpy.mutable_values()[1] = 4.4; cpy.set_num_nonzeros(3); cpy = orig; EXPECT_EQ(cpy.num_rows(), 2); EXPECT_EQ(cpy.num_cols(), 5); ASSERT_EQ(cpy.num_nonzeros(), 2); EXPECT_EQ(cpy.max_num_nonzeros(), 4); EXPECT_EQ(cpy.rows()[0], 0); EXPECT_EQ(cpy.rows()[1], 1); EXPECT_EQ(cpy.cols()[0], 1); EXPECT_EQ(cpy.cols()[1], 4); EXPECT_DOUBLE_EQ(cpy.values()[0], 2.5); EXPECT_DOUBLE_EQ(cpy.values()[1], 5.2); } TEST(TripletSparseMatrix, AppendRows) { // Build one matrix. TripletSparseMatrix m(2, 5, 4); m.mutable_rows()[0] = 0; m.mutable_cols()[0] = 1; m.mutable_values()[0] = 2.5; m.mutable_rows()[1] = 1; m.mutable_cols()[1] = 4; m.mutable_values()[1] = 5.2; m.set_num_nonzeros(2); // Build another matrix. TripletSparseMatrix a(10, 5, 4); a.mutable_rows()[0] = 0; a.mutable_cols()[0] = 1; a.mutable_values()[0] = 3.5; a.mutable_rows()[1] = 1; a.mutable_cols()[1] = 4; a.mutable_values()[1] = 6.2; a.mutable_rows()[2] = 9; a.mutable_cols()[2] = 5; a.mutable_values()[2] = 1; a.set_num_nonzeros(3); // Glue the second matrix to the bottom of the first. m.AppendRows(a); EXPECT_EQ(m.num_rows(), 12); EXPECT_EQ(m.num_cols(), 5); ASSERT_EQ(m.num_nonzeros(), 5); EXPECT_EQ(m.values()[0], 2.5); EXPECT_EQ(m.values()[1], 5.2); EXPECT_EQ(m.values()[2], 3.5); EXPECT_EQ(m.values()[3], 6.2); EXPECT_EQ(m.values()[4], 1); EXPECT_EQ(m.rows()[0], 0); EXPECT_EQ(m.rows()[1], 1); EXPECT_EQ(m.rows()[2], 2); EXPECT_EQ(m.rows()[3], 3); EXPECT_EQ(m.rows()[4], 11); EXPECT_EQ(m.cols()[0], 1); EXPECT_EQ(m.cols()[1], 4); EXPECT_EQ(m.cols()[2], 1); EXPECT_EQ(m.cols()[3], 4); EXPECT_EQ(m.cols()[4], 5); } TEST(TripletSparseMatrix, AppendCols) { // Build one matrix. TripletSparseMatrix m(2, 5, 4); m.mutable_rows()[0] = 0; m.mutable_cols()[0] = 1; m.mutable_values()[0] = 2.5; m.mutable_rows()[1] = 1; m.mutable_cols()[1] = 4; m.mutable_values()[1] = 5.2; m.set_num_nonzeros(2); // Build another matrix. TripletSparseMatrix a(2, 15, 4); a.mutable_rows()[0] = 0; a.mutable_cols()[0] = 1; a.mutable_values()[0] = 3.5; a.mutable_rows()[1] = 1; a.mutable_cols()[1] = 4; a.mutable_values()[1] = 6.2; a.mutable_rows()[2] = 0; a.mutable_cols()[2] = 10; a.mutable_values()[2] = 1; a.set_num_nonzeros(3); // Glue the second matrix to the left of the first. m.AppendCols(a); EXPECT_EQ(m.num_rows(), 2); EXPECT_EQ(m.num_cols(), 20); ASSERT_EQ(m.num_nonzeros(), 5); EXPECT_EQ(m.values()[0], 2.5); EXPECT_EQ(m.values()[1], 5.2); EXPECT_EQ(m.values()[2], 3.5); EXPECT_EQ(m.values()[3], 6.2); EXPECT_EQ(m.values()[4], 1); EXPECT_EQ(m.rows()[0], 0); EXPECT_EQ(m.rows()[1], 1); EXPECT_EQ(m.rows()[2], 0); EXPECT_EQ(m.rows()[3], 1); EXPECT_EQ(m.rows()[4], 0); EXPECT_EQ(m.cols()[0], 1); EXPECT_EQ(m.cols()[1], 4); EXPECT_EQ(m.cols()[2], 6); EXPECT_EQ(m.cols()[3], 9); EXPECT_EQ(m.cols()[4], 15); } TEST(TripletSparseMatrix, CreateDiagonalMatrix) { scoped_array<double> values(new double[10]); for (int i = 0; i < 10; ++i) values[i] = i; scoped_ptr<TripletSparseMatrix> m( TripletSparseMatrix::CreateSparseDiagonalMatrix(values.get(), 10)); EXPECT_EQ(m->num_rows(), 10); EXPECT_EQ(m->num_cols(), 10); ASSERT_EQ(m->num_nonzeros(), 10); for (int i = 0; i < 10 ; ++i) { EXPECT_EQ(m->rows()[i], i); EXPECT_EQ(m->cols()[i], i); EXPECT_EQ(m->values()[i], i); } } TEST(TripletSparseMatrix, Resize) { TripletSparseMatrix m(10, 20, 200); int nnz = 0; for (int i = 0; i < 10; ++i) { for (int j = 0; j < 20; ++j) { m.mutable_rows()[nnz] = i; m.mutable_cols()[nnz] = j; m.mutable_values()[nnz++] = i+j; } } m.set_num_nonzeros(nnz); m.Resize(5, 6); EXPECT_EQ(m.num_rows(), 5); EXPECT_EQ(m.num_cols(), 6); ASSERT_EQ(m.num_nonzeros(), 30); for (int i = 0; i < 30; ++i) { EXPECT_EQ(m.values()[i], m.rows()[i] + m.cols()[i]); } } #ifndef CERES_NO_PROTOCOL_BUFFERS TEST(TripletSparseMatrix, Serialization) { TripletSparseMatrix m(2, 5, 4); m.mutable_rows()[0] = 0; m.mutable_cols()[0] = 1; m.mutable_values()[0] = 2.5; m.mutable_rows()[1] = 1; m.mutable_cols()[1] = 4; m.mutable_values()[1] = 5.2; m.set_num_nonzeros(2); // Roundtrip through serialization and check for equality. SparseMatrixProto proto; m.ToProto(&proto); TripletSparseMatrix n(proto); ASSERT_EQ(n.num_rows(), 2); ASSERT_EQ(n.num_cols(), 5); // Note that max_num_nonzeros gets truncated; the serialization ASSERT_EQ(n.num_nonzeros(), 2); ASSERT_EQ(n.max_num_nonzeros(), 2); for (int i = 0; i < m.num_nonzeros(); ++i) { EXPECT_EQ(m.rows()[i], n.rows()[i]); EXPECT_EQ(m.cols()[i], n.cols()[i]); EXPECT_EQ(m.values()[i], n.values()[i]); } } #endif } // namespace internal } // namespace ceres