/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef DALVIK_VM_COMPILER_CODEGEN_MIPS_MIPSLIR_H_
#define DALVIK_VM_COMPILER_CODEGEN_MIPS_MIPSLIR_H_
#include "Dalvik.h"
#include "compiler/CompilerInternals.h"
/*
* zero is always the value 0
* at is scratch for Jit (normally used as temp reg by assembler)
* v0, v1 are scratch for Jit (normally hold subroutine return values)
* a0-a3 are scratch for Jit (normally hold subroutine arguments)
* t0-t7 are scratch for Jit
* t8 is scratch for Jit
* t9 is scratch for Jit (normally used for function calls)
* s0 (rFP) is reserved [holds Dalvik frame pointer]
* s1 (rSELF) is reserved [holds current &Thread]
* s2 (rINST) is scratch for Jit
* s3 (rIBASE) is scratch for Jit
* s4-s7 are scratch for Jit
* k0, k1 are reserved for use by interrupt handlers
* gp is reserved for global pointer
* sp is reserved
* s8 is scratch for Jit
* ra is scratch for Jit (normally holds the return addr)
*
* Preserved across C calls: s0-s8
* Trashed across C calls: at, v0-v1, a0-a3, t0-t9, gp, ra
*
* Floating pointer registers
* NOTE: there are 32 fp registers (16 df pairs), but current Jit code
* only support 16 fp registers (8 df pairs).
* f0-f15
* df0-df7, where df0={f0,f1}, df1={f2,f3}, ... , df7={f14,f15}
*
* f0-f15 (df0-df7) trashed across C calls
*
* For mips32 code use:
* a0-a3 to hold operands
* v0-v1 to hold results
* t0-t9 for temps
*
* All jump/branch instructions have a delay slot after it.
*
*/
/* Offset to distingish FP regs */
#define FP_REG_OFFSET 32
/* Offset to distinguish DP FP regs */
#define FP_DOUBLE 64
/* Offset to distingish the extra regs */
#define EXTRA_REG_OFFSET 128
/* Reg types */
#define REGTYPE(x) (x & (FP_REG_OFFSET | FP_DOUBLE))
#define FPREG(x) ((x & FP_REG_OFFSET) == FP_REG_OFFSET)
#define EXTRAREG(x) ((x & EXTRA_REG_OFFSET) == EXTRA_REG_OFFSET)
#define LOWREG(x) ((x & 0x1f) == x)
#define DOUBLEREG(x) ((x & FP_DOUBLE) == FP_DOUBLE)
#define SINGLEREG(x) (FPREG(x) && !DOUBLEREG(x))
/*
* Note: the low register of a floating point pair is sufficient to
* create the name of a double, but require both names to be passed to
* allow for asserts to verify that the pair is consecutive if significant
* rework is done in this area. Also, it is a good reminder in the calling
* code that reg locations always describe doubles as a pair of singles.
*/
#define S2D(x,y) ((x) | FP_DOUBLE)
/* Mask to strip off fp flags */
#define FP_REG_MASK (FP_REG_OFFSET-1)
/* non-existent Dalvik register */
#define vNone (-1)
/* non-existant physical register */
#define rNone (-1)
#ifdef HAVE_LITTLE_ENDIAN
#define LOWORD_OFFSET 0
#define HIWORD_OFFSET 4
#define r_ARG0 r_A0
#define r_ARG1 r_A1
#define r_ARG2 r_A2
#define r_ARG3 r_A3
#define r_RESULT0 r_V0
#define r_RESULT1 r_V1
#else
#define LOWORD_OFFSET 4
#define HIWORD_OFFSET 0
#define r_ARG0 r_A1
#define r_ARG1 r_A0
#define r_ARG2 r_A3
#define r_ARG3 r_A2
#define r_RESULT0 r_V1
#define r_RESULT1 r_V0
#endif
/* These are the same for both big and little endian. */
#define r_FARG0 r_F12
#define r_FARG1 r_F13
#define r_FRESULT0 r_F0
#define r_FRESULT1 r_F1
/* RegisterLocation templates return values (r_V0, or r_V0/r_V1) */
#define LOC_C_RETURN {kLocPhysReg, 0, 0, r_V0, 0, -1}
#define LOC_C_RETURN_WIDE {kLocPhysReg, 1, 0, r_RESULT0, r_RESULT1, -1}
#define LOC_C_RETURN_ALT {kLocPhysReg, 0, 1, r_F0, 0, -1}
#define LOC_C_RETURN_WIDE_ALT {kLocPhysReg, 1, 1, r_FRESULT0, r_FRESULT1, -1}
/* RegisterLocation templates for interpState->retVal; */
#define LOC_DALVIK_RETURN_VAL {kLocRetval, 0, 0, 0, 0, -1}
#define LOC_DALVIK_RETURN_VAL_WIDE {kLocRetval, 1, 0, 0, 0, -1}
/*
* Data structure tracking the mapping between a Dalvik register (pair) and a
* native register (pair). The idea is to reuse the previously loaded value
* if possible, otherwise to keep the value in a native register as long as
* possible.
*/
typedef struct RegisterInfo {
int reg; // Reg number
bool inUse; // Has it been allocated?
bool pair; // Part of a register pair?
int partner; // If pair, other reg of pair
bool live; // Is there an associated SSA name?
bool dirty; // If live, is it dirty?
int sReg; // Name of live value
struct LIR *defStart; // Starting inst in last def sequence
struct LIR *defEnd; // Ending inst in last def sequence
} RegisterInfo;
typedef struct RegisterPool {
BitVector *nullCheckedRegs; // Track which registers have been null-checked
int numCoreTemps;
RegisterInfo *coreTemps;
int nextCoreTemp;
int numFPTemps;
RegisterInfo *FPTemps;
int nextFPTemp;
} RegisterPool;
typedef enum ResourceEncodingPos {
kGPReg0 = 0,
kRegSP = 29,
kRegLR = 31,
kFPReg0 = 32, /* only 16 fp regs supported currently */
kFPRegEnd = 48,
kRegHI = kFPRegEnd,
kRegLO,
kRegPC,
kRegEnd = 51,
kCCode = kRegEnd,
kFPStatus, // FP status word
// The following four bits are for memory disambiguation
kDalvikReg, // 1 Dalvik Frame (can be fully disambiguated)
kLiteral, // 2 Literal pool (can be fully disambiguated)
kHeapRef, // 3 Somewhere on the heap (alias with any other heap)
kMustNotAlias, // 4 Guaranteed to be non-alias (eg *(r6+x))
} ResourceEncodingPos;
#define ENCODE_REG_LIST(N) ((u8) N)
#define ENCODE_REG_SP (1ULL << kRegSP)
#define ENCODE_REG_LR (1ULL << kRegLR)
#define ENCODE_REG_PC (1ULL << kRegPC)
#define ENCODE_CCODE (1ULL << kCCode)
#define ENCODE_FP_STATUS (1ULL << kFPStatus)
/* Abstract memory locations */
#define ENCODE_DALVIK_REG (1ULL << kDalvikReg)
#define ENCODE_LITERAL (1ULL << kLiteral)
#define ENCODE_HEAP_REF (1ULL << kHeapRef)
#define ENCODE_MUST_NOT_ALIAS (1ULL << kMustNotAlias)
#define ENCODE_ALL (~0ULL)
#define ENCODE_MEM (ENCODE_DALVIK_REG | ENCODE_LITERAL | \
ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS)
#define DECODE_ALIAS_INFO_REG(X) (X & 0xffff)
#define DECODE_ALIAS_INFO_WIDE(X) ((X & 0x80000000) ? 1 : 0)
typedef enum OpSize {
kWord,
kLong,
kSingle,
kDouble,
kUnsignedHalf,
kSignedHalf,
kUnsignedByte,
kSignedByte,
} OpSize;
typedef enum OpKind {
kOpMov,
kOpMvn,
kOpCmp,
kOpLsl,
kOpLsr,
kOpAsr,
kOpRor,
kOpNot,
kOpAnd,
kOpOr,
kOpXor,
kOpNeg,
kOpAdd,
kOpAdc,
kOpSub,
kOpSbc,
kOpRsub,
kOpMul,
kOpDiv,
kOpRem,
kOpBic,
kOpCmn,
kOpTst,
kOpBkpt,
kOpBlx,
kOpPush,
kOpPop,
kOp2Char,
kOp2Short,
kOp2Byte,
kOpCondBr,
kOpUncondBr,
} OpKind;
/*
* Annotate special-purpose core registers:
*
* rPC, rFP, and rSELF are for architecture-independent code to use.
*/
typedef enum NativeRegisterPool {
r_ZERO = 0,
r_AT = 1,
r_V0 = 2,
r_V1 = 3,
r_A0 = 4,
r_A1 = 5,
r_A2 = 6,
r_A3 = 7,
r_T0 = 8,
r_T1 = 9,
r_T2 = 10,
r_T3 = 11,
r_T4 = 12,
r_T5 = 13,
r_T6 = 14,
r_T7 = 15,
r_S0 = 16,
r_S1 = 17,
r_S2 = 18,
r_S3 = 19,
r_S4 = 20,
r_S5 = 21,
r_S6 = 22,
r_S7 = 23,
r_T8 = 24,
r_T9 = 25,
r_K0 = 26,
r_K1 = 27,
r_GP = 28,
r_SP = 29,
r_FP = 30,
r_RA = 31,
r_F0 = 0 + FP_REG_OFFSET,
r_F1,
r_F2,
r_F3,
r_F4,
r_F5,
r_F6,
r_F7,
r_F8,
r_F9,
r_F10,
r_F11,
r_F12,
r_F13,
r_F14,
r_F15,
#if 0 /* only 16 fp regs supported currently */
r_F16,
r_F17,
r_F18,
r_F19,
r_F20,
r_F21,
r_F22,
r_F23,
r_F24,
r_F25,
r_F26,
r_F27,
r_F28,
r_F29,
r_F30,
r_F31,
#endif
r_DF0 = r_F0 + FP_DOUBLE,
r_DF1 = r_F2 + FP_DOUBLE,
r_DF2 = r_F4 + FP_DOUBLE,
r_DF3 = r_F6 + FP_DOUBLE,
r_DF4 = r_F8 + FP_DOUBLE,
r_DF5 = r_F10 + FP_DOUBLE,
r_DF6 = r_F12 + FP_DOUBLE,
r_DF7 = r_F14 + FP_DOUBLE,
#if 0 /* only 16 fp regs supported currently */
r_DF8 = r_F16 + FP_DOUBLE,
r_DF9 = r_F18 + FP_DOUBLE,
r_DF10 = r_F20 + FP_DOUBLE,
r_DF11 = r_F22 + FP_DOUBLE,
r_DF12 = r_F24 + FP_DOUBLE,
r_DF13 = r_F26 + FP_DOUBLE,
r_DF14 = r_F28 + FP_DOUBLE,
r_DF15 = r_F30 + FP_DOUBLE,
#endif
r_HI = EXTRA_REG_OFFSET,
r_LO,
r_PC,
} NativeRegisterPool;
/* must match gp offset used mterp/mips files */
#define STACK_OFFSET_GP 84
/* MIPSTODO: properly remap arm regs (dPC, dFP, dGLUE) and remove these mappings */
#define r4PC r_S0
#define rFP r_S1
#define rSELF r_S2
#define rINST r_S4
/* Shift encodings */
typedef enum MipsShiftEncodings {
kMipsLsl = 0x0,
kMipsLsr = 0x1,
kMipsAsr = 0x2,
kMipsRor = 0x3
} MipsShiftEncodings;
/* condition encodings */
typedef enum MipsConditionCode {
kMipsCondEq = 0x0, /* 0000 */
kMipsCondNe = 0x1, /* 0001 */
kMipsCondCs = 0x2, /* 0010 */
kMipsCondCc = 0x3, /* 0011 */
kMipsCondMi = 0x4, /* 0100 */
kMipsCondPl = 0x5, /* 0101 */
kMipsCondVs = 0x6, /* 0110 */
kMipsCondVc = 0x7, /* 0111 */
kMipsCondHi = 0x8, /* 1000 */
kMipsCondLs = 0x9, /* 1001 */
kMipsCondGe = 0xa, /* 1010 */
kMipsCondLt = 0xb, /* 1011 */
kMipsCondGt = 0xc, /* 1100 */
kMipsCondLe = 0xd, /* 1101 */
kMipsCondAl = 0xe, /* 1110 */
kMipsCondNv = 0xf, /* 1111 */
} MipsConditionCode;
#define isPseudoOpCode(opCode) ((int)(opCode) < 0)
/*
* The following enum defines the list of supported Thumb instructions by the
* assembler. Their corresponding snippet positions will be defined in
* Assemble.c.
*/
typedef enum MipsOpCode {
kMipsChainingCellBottom = -18,
kMipsPseudoBarrier = -17,
kMipsPseudoExtended = -16,
kMipsPseudoSSARep = -15,
kMipsPseudoEntryBlock = -14,
kMipsPseudoExitBlock = -13,
kMipsPseudoTargetLabel = -12,
kMipsPseudoChainingCellBackwardBranch = -11,
kMipsPseudoChainingCellHot = -10,
kMipsPseudoChainingCellInvokePredicted = -9,
kMipsPseudoChainingCellInvokeSingleton = -8,
kMipsPseudoChainingCellNormal = -7,
kMipsPseudoDalvikByteCodeBoundary = -6,
kMipsPseudoPseudoAlign4 = -5,
kMipsPseudoPCReconstructionCell = -4,
kMipsPseudoPCReconstructionBlockLabel = -3,
kMipsPseudoEHBlockLabel = -2,
kMipsPseudoNormalBlockLabel = -1,
kMipsFirst,
kMips32BitData = kMipsFirst, /* data [31..0] */
kMipsAddiu, /* addiu t,s,imm16 [001001] s[25..21] t[20..16] imm16[15..0] */
kMipsAddu, /* add d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100001] */
kMipsAnd, /* and d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100100] */
kMipsAndi, /* andi t,s,imm16 [001100] s[25..21] t[20..16] imm16[15..0] */
kMipsB, /* b o [0001000000000000] o[15..0] */
kMipsBal, /* bal o [0000010000010001] o[15..0] */
/* NOTE: the code tests the range kMipsBeq thru kMipsBne, so
adding an instruction in this range may require updates */
kMipsBeq, /* beq s,t,o [000100] s[25..21] t[20..16] o[15..0] */
kMipsBeqz, /* beqz s,o [000100] s[25..21] [00000] o[15..0] */
kMipsBgez, /* bgez s,o [000001] s[25..21] [00001] o[15..0] */
kMipsBgtz, /* bgtz s,o [000111] s[25..21] [00000] o[15..0] */
kMipsBlez, /* blez s,o [000110] s[25..21] [00000] o[15..0] */
kMipsBltz, /* bltz s,o [000001] s[25..21] [00000] o[15..0] */
kMipsBnez, /* bnez s,o [000101] s[25..21] [00000] o[15..0] */
kMipsBne, /* bne s,t,o [000101] s[25..21] t[20..16] o[15..0] */
kMipsDiv, /* div s,t [000000] s[25..21] t[20..16] [0000000000011010] */
#if __mips_isa_rev>=2
kMipsExt, /* ext t,s,p,z [011111] s[25..21] t[20..16] z[15..11] p[10..6] [000000] */
#endif
kMipsJal, /* jal t [000011] t[25..0] */
kMipsJalr, /* jalr d,s [000000] s[25..21] [00000] d[15..11]
hint[10..6] [001001] */
kMipsJr, /* jr s [000000] s[25..21] [0000000000] hint[10..6] [001000] */
kMipsLahi, /* lui t,imm16 [00111100000] t[20..16] imm16[15..0] load addr hi */
kMipsLalo, /* ori t,s,imm16 [001001] s[25..21] t[20..16] imm16[15..0] load addr lo */
kMipsLui, /* lui t,imm16 [00111100000] t[20..16] imm16[15..0] */
kMipsLb, /* lb t,o(b) [100000] b[25..21] t[20..16] o[15..0] */
kMipsLbu, /* lbu t,o(b) [100100] b[25..21] t[20..16] o[15..0] */
kMipsLh, /* lh t,o(b) [100001] b[25..21] t[20..16] o[15..0] */
kMipsLhu, /* lhu t,o(b) [100101] b[25..21] t[20..16] o[15..0] */
kMipsLw, /* lw t,o(b) [100011] b[25..21] t[20..16] o[15..0] */
kMipsMfhi, /* mfhi d [0000000000000000] d[15..11] [00000010000] */
kMipsMflo, /* mflo d [0000000000000000] d[15..11] [00000010010] */
kMipsMove, /* move d,s [000000] s[25..21] [00000] d[15..11] [00000100101] */
kMipsMovz, /* movz d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000001010] */
kMipsMul, /* mul d,s,t [011100] s[25..21] t[20..16] d[15..11] [00000000010] */
kMipsNop, /* nop [00000000000000000000000000000000] */
kMipsNor, /* nor d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100111] */
kMipsOr, /* or d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100101] */
kMipsOri, /* ori t,s,imm16 [001001] s[25..21] t[20..16] imm16[15..0] */
kMipsPref, /* pref h,o(b) [101011] b[25..21] h[20..16] o[15..0] */
kMipsSb, /* sb t,o(b) [101000] b[25..21] t[20..16] o[15..0] */
#if __mips_isa_rev>=2
kMipsSeb, /* seb d,t [01111100000] t[20..16] d[15..11] [10000100000] */
kMipsSeh, /* seh d,t [01111100000] t[20..16] d[15..11] [11000100000] */
#endif
kMipsSh, /* sh t,o(b) [101001] b[25..21] t[20..16] o[15..0] */
kMipsSll, /* sll d,t,a [00000000000] t[20..16] d[15..11] a[10..6] [000000] */
kMipsSllv, /* sllv d,t,s [000000] s[25..21] t[20..16] d[15..11] [00000000100] */
kMipsSlt, /* slt d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000101010] */
kMipsSlti, /* slti t,s,imm16 [001010] s[25..21] t[20..16] imm16[15..0] */
kMipsSltu, /* sltu d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000101011] */
kMipsSra, /* sra d,s,imm5 [00000000000] t[20..16] d[15..11] imm5[10..6] [000011] */
kMipsSrav, /* srav d,t,s [000000] s[25..21] t[20..16] d[15..11] [00000000111] */
kMipsSrl, /* srl d,t,a [00000000000] t[20..16] d[20..16] a[10..6] [000010] */
kMipsSrlv, /* srlv d,t,s [000000] s[25..21] t[20..16] d[15..11] [00000000110] */
kMipsSubu, /* subu d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100011] */
kMipsSw, /* sw t,o(b) [101011] b[25..21] t[20..16] o[15..0] */
kMipsXor, /* xor d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100110] */
kMipsXori, /* xori t,s,imm16 [001110] s[25..21] t[20..16] imm16[15..0] */
#ifdef __mips_hard_float
kMipsFadds, /* add.s d,s,t [01000110000] t[20..16] s[15..11] d[10..6] [000000] */
kMipsFsubs, /* sub.s d,s,t [01000110000] t[20..16] s[15..11] d[10..6] [000001] */
kMipsFmuls, /* mul.s d,s,t [01000110000] t[20..16] s[15..11] d[10..6] [000010] */
kMipsFdivs, /* div.s d,s,t [01000110000] t[20..16] s[15..11] d[10..6] [000011] */
kMipsFaddd, /* add.d d,s,t [01000110001] t[20..16] s[15..11] d[10..6] [000000] */
kMipsFsubd, /* sub.d d,s,t [01000110001] t[20..16] s[15..11] d[10..6] [000001] */
kMipsFmuld, /* mul.d d,s,t [01000110001] t[20..16] s[15..11] d[10..6] [000010] */
kMipsFdivd, /* div.d d,s,t [01000110001] t[20..16] s[15..11] d[10..6] [000011] */
kMipsFcvtsd, /* cvt.s.d d,s [01000110001] [00000] s[15..11] d[10..6] [100000] */
kMipsFcvtsw, /* cvt.s.w d,s [01000110100] [00000] s[15..11] d[10..6] [100000] */
kMipsFcvtds, /* cvt.d.s d,s [01000110000] [00000] s[15..11] d[10..6] [100001] */
kMipsFcvtdw, /* cvt.d.w d,s [01000110100] [00000] s[15..11] d[10..6] [100001] */
kMipsFcvtws, /* cvt.w.d d,s [01000110000] [00000] s[15..11] d[10..6] [100100] */
kMipsFcvtwd, /* cvt.w.d d,s [01000110001] [00000] s[15..11] d[10..6] [100100] */
kMipsFmovs, /* mov.s d,s [01000110000] [00000] s[15..11] d[10..6] [000110] */
kMipsFmovd, /* mov.d d,s [01000110001] [00000] s[15..11] d[10..6] [000110] */
kMipsFlwc1, /* lwc1 t,o(b) [110001] b[25..21] t[20..16] o[15..0] */
kMipsFldc1, /* ldc1 t,o(b) [110101] b[25..21] t[20..16] o[15..0] */
kMipsFswc1, /* swc1 t,o(b) [111001] b[25..21] t[20..16] o[15..0] */
kMipsFsdc1, /* sdc1 t,o(b) [111101] b[25..21] t[20..16] o[15..0] */
kMipsMfc1, /* mfc1 t,s [01000100000] t[20..16] s[15..11] [00000000000] */
kMipsMtc1, /* mtc1 t,s [01000100100] t[20..16] s[15..11] [00000000000] */
#endif
kMipsUndefined, /* undefined [011001xxxxxxxxxxxxxxxx] */
kMipsLast
} MipsOpCode;
/* Bit flags describing the behavior of each native opcode */
typedef enum MipsOpFeatureFlags {
kIsBranch = 0,
kRegDef0,
kRegDef1,
kRegDefSP,
kRegDefLR,
kRegDefList0,
kRegDefList1,
kRegUse0,
kRegUse1,
kRegUse2,
kRegUse3,
kRegUseSP,
kRegUsePC,
kRegUseList0,
kRegUseList1,
kNoOperand,
kIsUnaryOp,
kIsBinaryOp,
kIsTertiaryOp,
kIsQuadOp,
kIsIT,
kSetsCCodes,
kUsesCCodes,
kMemLoad,
kMemStore,
} MipsOpFeatureFlags;
#define IS_LOAD (1 << kMemLoad)
#define IS_STORE (1 << kMemStore)
#define IS_BRANCH (1 << kIsBranch)
#define REG_DEF0 (1 << kRegDef0)
#define REG_DEF1 (1 << kRegDef1)
#define REG_DEF_SP (1 << kRegDefSP)
#define REG_DEF_LR (1 << kRegDefLR)
#define REG_DEF_LIST0 (1 << kRegDefList0)
#define REG_DEF_LIST1 (1 << kRegDefList1)
#define REG_USE0 (1 << kRegUse0)
#define REG_USE1 (1 << kRegUse1)
#define REG_USE2 (1 << kRegUse2)
#define REG_USE3 (1 << kRegUse3)
#define REG_USE_SP (1 << kRegUseSP)
#define REG_USE_PC (1 << kRegUsePC)
#define REG_USE_LIST0 (1 << kRegUseList0)
#define REG_USE_LIST1 (1 << kRegUseList1)
#define NO_OPERAND (1 << kNoOperand)
#define IS_UNARY_OP (1 << kIsUnaryOp)
#define IS_BINARY_OP (1 << kIsBinaryOp)
#define IS_TERTIARY_OP (1 << kIsTertiaryOp)
#define IS_QUAD_OP (1 << kIsQuadOp)
#define IS_IT (1 << kIsIT)
#define SETS_CCODES (1 << kSetsCCodes)
#define USES_CCODES (1 << kUsesCCodes)
/* Common combo register usage patterns */
#define REG_USE01 (REG_USE0 | REG_USE1)
#define REG_USE02 (REG_USE0 | REG_USE2)
#define REG_USE012 (REG_USE01 | REG_USE2)
#define REG_USE12 (REG_USE1 | REG_USE2)
#define REG_USE23 (REG_USE2 | REG_USE3)
#define REG_DEF01 (REG_DEF0 | REG_DEF1)
#define REG_DEF0_USE0 (REG_DEF0 | REG_USE0)
#define REG_DEF0_USE1 (REG_DEF0 | REG_USE1)
#define REG_DEF0_USE2 (REG_DEF0 | REG_USE2)
#define REG_DEF0_USE01 (REG_DEF0 | REG_USE01)
#define REG_DEF0_USE12 (REG_DEF0 | REG_USE12)
#define REG_DEF01_USE2 (REG_DEF0 | REG_DEF1 | REG_USE2)
/* Instruction assembly fieldLoc kind */
typedef enum MipsEncodingKind {
kFmtUnused,
kFmtBitBlt, /* Bit string using end/start */
kFmtDfp, /* Double FP reg */
kFmtSfp, /* Single FP reg */
} MipsEncodingKind;
/* Struct used to define the snippet positions for each Thumb opcode */
typedef struct MipsEncodingMap {
u4 skeleton;
struct {
MipsEncodingKind kind;
int end; /* end for kFmtBitBlt, 1-bit slice end for FP regs */
int start; /* start for kFmtBitBlt, 4-bit slice end for FP regs */
} fieldLoc[4];
MipsOpCode opcode;
int flags;
const char *name;
const char* fmt;
int size;
} MipsEncodingMap;
/* Keys for target-specific scheduling and other optimization hints */
typedef enum MipsTargetOptHints {
kMaxHoistDistance,
} MipsTargetOptHints;
extern MipsEncodingMap EncodingMap[kMipsLast];
/*
* Each instance of this struct holds a pseudo or real LIR instruction:
* - pseudo ones (eg labels and marks) and will be discarded by the assembler.
* - real ones will be assembled into Thumb instructions.
*
* Machine resources are encoded into a 64-bit vector, where the encodings are
* as following:
* - [ 0..15]: general purpose registers including PC, SP, and LR
* - [16..47]: floating-point registers where d0 is expanded to s[01] and s0
* starts at bit 16
* - [48]: IT block
* - [49]: integer condition code
* - [50]: floatint-point status word
*/
typedef struct MipsLIR {
LIR generic;
MipsOpCode opcode;
int operands[4]; // [0..3] = [dest, src1, src2, extra]
struct {
bool isNop:1; // LIR is optimized away
bool insertWrapper:1; // insert branch to emulate memory accesses
unsigned int age:4; // default is 0, set lazily by the optimizer
unsigned int size:3; // bytes (2 for thumb, 2/4 for thumb2)
unsigned int unused:23;
} flags;
int aliasInfo; // For Dalvik register access & litpool disambiguation
u8 useMask; // Resource mask for use
u8 defMask; // Resource mask for def
} MipsLIR;
/* Init values when a predicted chain is initially assembled */
/* E7FE is branch to self */
#define PREDICTED_CHAIN_BX_PAIR_INIT 0xe7fe
#define PREDICTED_CHAIN_DELAY_SLOT_INIT 0
#define PREDICTED_CHAIN_CLAZZ_INIT 0
#define PREDICTED_CHAIN_METHOD_INIT 0
#define PREDICTED_CHAIN_COUNTER_INIT 0
/* Utility macros to traverse the LIR/MipsLIR list */
#define NEXT_LIR(lir) ((MipsLIR *) lir->generic.next)
#define PREV_LIR(lir) ((MipsLIR *) lir->generic.prev)
#define NEXT_LIR_LVALUE(lir) (lir)->generic.next
#define PREV_LIR_LVALUE(lir) (lir)->generic.prev
#define CHAIN_CELL_OFFSET_TAG 0xcdabcdabL
#define IS_UIMM16(v) ((0 <= (v)) && ((v) <= 65535))
#define IS_SIMM16(v) ((-32768 <= (v)) && ((v) <= 32766))
#define IS_SIMM16_2WORD(v) ((-32764 <= (v)) && ((v) <= 32763)) /* 2 offsets must fit */
#define CHAIN_CELL_NORMAL_SIZE 16
#define CHAIN_CELL_PREDICTED_SIZE 20
#endif // DALVIK_VM_COMPILER_CODEGEN_MIPS_MIPSLIR_H_