/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef DALVIK_VM_COMPILER_CODEGEN_MIPS_MIPSLIR_H_ #define DALVIK_VM_COMPILER_CODEGEN_MIPS_MIPSLIR_H_ #include "Dalvik.h" #include "compiler/CompilerInternals.h" /* * zero is always the value 0 * at is scratch for Jit (normally used as temp reg by assembler) * v0, v1 are scratch for Jit (normally hold subroutine return values) * a0-a3 are scratch for Jit (normally hold subroutine arguments) * t0-t7 are scratch for Jit * t8 is scratch for Jit * t9 is scratch for Jit (normally used for function calls) * s0 (rFP) is reserved [holds Dalvik frame pointer] * s1 (rSELF) is reserved [holds current &Thread] * s2 (rINST) is scratch for Jit * s3 (rIBASE) is scratch for Jit * s4-s7 are scratch for Jit * k0, k1 are reserved for use by interrupt handlers * gp is reserved for global pointer * sp is reserved * s8 is scratch for Jit * ra is scratch for Jit (normally holds the return addr) * * Preserved across C calls: s0-s8 * Trashed across C calls: at, v0-v1, a0-a3, t0-t9, gp, ra * * Floating pointer registers * NOTE: there are 32 fp registers (16 df pairs), but current Jit code * only support 16 fp registers (8 df pairs). * f0-f15 * df0-df7, where df0={f0,f1}, df1={f2,f3}, ... , df7={f14,f15} * * f0-f15 (df0-df7) trashed across C calls * * For mips32 code use: * a0-a3 to hold operands * v0-v1 to hold results * t0-t9 for temps * * All jump/branch instructions have a delay slot after it. * */ /* Offset to distingish FP regs */ #define FP_REG_OFFSET 32 /* Offset to distinguish DP FP regs */ #define FP_DOUBLE 64 /* Offset to distingish the extra regs */ #define EXTRA_REG_OFFSET 128 /* Reg types */ #define REGTYPE(x) (x & (FP_REG_OFFSET | FP_DOUBLE)) #define FPREG(x) ((x & FP_REG_OFFSET) == FP_REG_OFFSET) #define EXTRAREG(x) ((x & EXTRA_REG_OFFSET) == EXTRA_REG_OFFSET) #define LOWREG(x) ((x & 0x1f) == x) #define DOUBLEREG(x) ((x & FP_DOUBLE) == FP_DOUBLE) #define SINGLEREG(x) (FPREG(x) && !DOUBLEREG(x)) /* * Note: the low register of a floating point pair is sufficient to * create the name of a double, but require both names to be passed to * allow for asserts to verify that the pair is consecutive if significant * rework is done in this area. Also, it is a good reminder in the calling * code that reg locations always describe doubles as a pair of singles. */ #define S2D(x,y) ((x) | FP_DOUBLE) /* Mask to strip off fp flags */ #define FP_REG_MASK (FP_REG_OFFSET-1) /* non-existent Dalvik register */ #define vNone (-1) /* non-existant physical register */ #define rNone (-1) #ifdef HAVE_LITTLE_ENDIAN #define LOWORD_OFFSET 0 #define HIWORD_OFFSET 4 #define r_ARG0 r_A0 #define r_ARG1 r_A1 #define r_ARG2 r_A2 #define r_ARG3 r_A3 #define r_RESULT0 r_V0 #define r_RESULT1 r_V1 #else #define LOWORD_OFFSET 4 #define HIWORD_OFFSET 0 #define r_ARG0 r_A1 #define r_ARG1 r_A0 #define r_ARG2 r_A3 #define r_ARG3 r_A2 #define r_RESULT0 r_V1 #define r_RESULT1 r_V0 #endif /* These are the same for both big and little endian. */ #define r_FARG0 r_F12 #define r_FARG1 r_F13 #define r_FRESULT0 r_F0 #define r_FRESULT1 r_F1 /* RegisterLocation templates return values (r_V0, or r_V0/r_V1) */ #define LOC_C_RETURN {kLocPhysReg, 0, 0, r_V0, 0, -1} #define LOC_C_RETURN_WIDE {kLocPhysReg, 1, 0, r_RESULT0, r_RESULT1, -1} #define LOC_C_RETURN_ALT {kLocPhysReg, 0, 1, r_F0, 0, -1} #define LOC_C_RETURN_WIDE_ALT {kLocPhysReg, 1, 1, r_FRESULT0, r_FRESULT1, -1} /* RegisterLocation templates for interpState->retVal; */ #define LOC_DALVIK_RETURN_VAL {kLocRetval, 0, 0, 0, 0, -1} #define LOC_DALVIK_RETURN_VAL_WIDE {kLocRetval, 1, 0, 0, 0, -1} /* * Data structure tracking the mapping between a Dalvik register (pair) and a * native register (pair). The idea is to reuse the previously loaded value * if possible, otherwise to keep the value in a native register as long as * possible. */ typedef struct RegisterInfo { int reg; // Reg number bool inUse; // Has it been allocated? bool pair; // Part of a register pair? int partner; // If pair, other reg of pair bool live; // Is there an associated SSA name? bool dirty; // If live, is it dirty? int sReg; // Name of live value struct LIR *defStart; // Starting inst in last def sequence struct LIR *defEnd; // Ending inst in last def sequence } RegisterInfo; typedef struct RegisterPool { BitVector *nullCheckedRegs; // Track which registers have been null-checked int numCoreTemps; RegisterInfo *coreTemps; int nextCoreTemp; int numFPTemps; RegisterInfo *FPTemps; int nextFPTemp; } RegisterPool; typedef enum ResourceEncodingPos { kGPReg0 = 0, kRegSP = 29, kRegLR = 31, kFPReg0 = 32, /* only 16 fp regs supported currently */ kFPRegEnd = 48, kRegHI = kFPRegEnd, kRegLO, kRegPC, kRegEnd = 51, kCCode = kRegEnd, kFPStatus, // FP status word // The following four bits are for memory disambiguation kDalvikReg, // 1 Dalvik Frame (can be fully disambiguated) kLiteral, // 2 Literal pool (can be fully disambiguated) kHeapRef, // 3 Somewhere on the heap (alias with any other heap) kMustNotAlias, // 4 Guaranteed to be non-alias (eg *(r6+x)) } ResourceEncodingPos; #define ENCODE_REG_LIST(N) ((u8) N) #define ENCODE_REG_SP (1ULL << kRegSP) #define ENCODE_REG_LR (1ULL << kRegLR) #define ENCODE_REG_PC (1ULL << kRegPC) #define ENCODE_CCODE (1ULL << kCCode) #define ENCODE_FP_STATUS (1ULL << kFPStatus) /* Abstract memory locations */ #define ENCODE_DALVIK_REG (1ULL << kDalvikReg) #define ENCODE_LITERAL (1ULL << kLiteral) #define ENCODE_HEAP_REF (1ULL << kHeapRef) #define ENCODE_MUST_NOT_ALIAS (1ULL << kMustNotAlias) #define ENCODE_ALL (~0ULL) #define ENCODE_MEM (ENCODE_DALVIK_REG | ENCODE_LITERAL | \ ENCODE_HEAP_REF | ENCODE_MUST_NOT_ALIAS) #define DECODE_ALIAS_INFO_REG(X) (X & 0xffff) #define DECODE_ALIAS_INFO_WIDE(X) ((X & 0x80000000) ? 1 : 0) typedef enum OpSize { kWord, kLong, kSingle, kDouble, kUnsignedHalf, kSignedHalf, kUnsignedByte, kSignedByte, } OpSize; typedef enum OpKind { kOpMov, kOpMvn, kOpCmp, kOpLsl, kOpLsr, kOpAsr, kOpRor, kOpNot, kOpAnd, kOpOr, kOpXor, kOpNeg, kOpAdd, kOpAdc, kOpSub, kOpSbc, kOpRsub, kOpMul, kOpDiv, kOpRem, kOpBic, kOpCmn, kOpTst, kOpBkpt, kOpBlx, kOpPush, kOpPop, kOp2Char, kOp2Short, kOp2Byte, kOpCondBr, kOpUncondBr, } OpKind; /* * Annotate special-purpose core registers: * * rPC, rFP, and rSELF are for architecture-independent code to use. */ typedef enum NativeRegisterPool { r_ZERO = 0, r_AT = 1, r_V0 = 2, r_V1 = 3, r_A0 = 4, r_A1 = 5, r_A2 = 6, r_A3 = 7, r_T0 = 8, r_T1 = 9, r_T2 = 10, r_T3 = 11, r_T4 = 12, r_T5 = 13, r_T6 = 14, r_T7 = 15, r_S0 = 16, r_S1 = 17, r_S2 = 18, r_S3 = 19, r_S4 = 20, r_S5 = 21, r_S6 = 22, r_S7 = 23, r_T8 = 24, r_T9 = 25, r_K0 = 26, r_K1 = 27, r_GP = 28, r_SP = 29, r_FP = 30, r_RA = 31, r_F0 = 0 + FP_REG_OFFSET, r_F1, r_F2, r_F3, r_F4, r_F5, r_F6, r_F7, r_F8, r_F9, r_F10, r_F11, r_F12, r_F13, r_F14, r_F15, #if 0 /* only 16 fp regs supported currently */ r_F16, r_F17, r_F18, r_F19, r_F20, r_F21, r_F22, r_F23, r_F24, r_F25, r_F26, r_F27, r_F28, r_F29, r_F30, r_F31, #endif r_DF0 = r_F0 + FP_DOUBLE, r_DF1 = r_F2 + FP_DOUBLE, r_DF2 = r_F4 + FP_DOUBLE, r_DF3 = r_F6 + FP_DOUBLE, r_DF4 = r_F8 + FP_DOUBLE, r_DF5 = r_F10 + FP_DOUBLE, r_DF6 = r_F12 + FP_DOUBLE, r_DF7 = r_F14 + FP_DOUBLE, #if 0 /* only 16 fp regs supported currently */ r_DF8 = r_F16 + FP_DOUBLE, r_DF9 = r_F18 + FP_DOUBLE, r_DF10 = r_F20 + FP_DOUBLE, r_DF11 = r_F22 + FP_DOUBLE, r_DF12 = r_F24 + FP_DOUBLE, r_DF13 = r_F26 + FP_DOUBLE, r_DF14 = r_F28 + FP_DOUBLE, r_DF15 = r_F30 + FP_DOUBLE, #endif r_HI = EXTRA_REG_OFFSET, r_LO, r_PC, } NativeRegisterPool; /* must match gp offset used mterp/mips files */ #define STACK_OFFSET_GP 84 /* MIPSTODO: properly remap arm regs (dPC, dFP, dGLUE) and remove these mappings */ #define r4PC r_S0 #define rFP r_S1 #define rSELF r_S2 #define rINST r_S4 /* Shift encodings */ typedef enum MipsShiftEncodings { kMipsLsl = 0x0, kMipsLsr = 0x1, kMipsAsr = 0x2, kMipsRor = 0x3 } MipsShiftEncodings; /* condition encodings */ typedef enum MipsConditionCode { kMipsCondEq = 0x0, /* 0000 */ kMipsCondNe = 0x1, /* 0001 */ kMipsCondCs = 0x2, /* 0010 */ kMipsCondCc = 0x3, /* 0011 */ kMipsCondMi = 0x4, /* 0100 */ kMipsCondPl = 0x5, /* 0101 */ kMipsCondVs = 0x6, /* 0110 */ kMipsCondVc = 0x7, /* 0111 */ kMipsCondHi = 0x8, /* 1000 */ kMipsCondLs = 0x9, /* 1001 */ kMipsCondGe = 0xa, /* 1010 */ kMipsCondLt = 0xb, /* 1011 */ kMipsCondGt = 0xc, /* 1100 */ kMipsCondLe = 0xd, /* 1101 */ kMipsCondAl = 0xe, /* 1110 */ kMipsCondNv = 0xf, /* 1111 */ } MipsConditionCode; #define isPseudoOpCode(opCode) ((int)(opCode) < 0) /* * The following enum defines the list of supported Thumb instructions by the * assembler. Their corresponding snippet positions will be defined in * Assemble.c. */ typedef enum MipsOpCode { kMipsChainingCellBottom = -18, kMipsPseudoBarrier = -17, kMipsPseudoExtended = -16, kMipsPseudoSSARep = -15, kMipsPseudoEntryBlock = -14, kMipsPseudoExitBlock = -13, kMipsPseudoTargetLabel = -12, kMipsPseudoChainingCellBackwardBranch = -11, kMipsPseudoChainingCellHot = -10, kMipsPseudoChainingCellInvokePredicted = -9, kMipsPseudoChainingCellInvokeSingleton = -8, kMipsPseudoChainingCellNormal = -7, kMipsPseudoDalvikByteCodeBoundary = -6, kMipsPseudoPseudoAlign4 = -5, kMipsPseudoPCReconstructionCell = -4, kMipsPseudoPCReconstructionBlockLabel = -3, kMipsPseudoEHBlockLabel = -2, kMipsPseudoNormalBlockLabel = -1, kMipsFirst, kMips32BitData = kMipsFirst, /* data [31..0] */ kMipsAddiu, /* addiu t,s,imm16 [001001] s[25..21] t[20..16] imm16[15..0] */ kMipsAddu, /* add d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100001] */ kMipsAnd, /* and d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100100] */ kMipsAndi, /* andi t,s,imm16 [001100] s[25..21] t[20..16] imm16[15..0] */ kMipsB, /* b o [0001000000000000] o[15..0] */ kMipsBal, /* bal o [0000010000010001] o[15..0] */ /* NOTE: the code tests the range kMipsBeq thru kMipsBne, so adding an instruction in this range may require updates */ kMipsBeq, /* beq s,t,o [000100] s[25..21] t[20..16] o[15..0] */ kMipsBeqz, /* beqz s,o [000100] s[25..21] [00000] o[15..0] */ kMipsBgez, /* bgez s,o [000001] s[25..21] [00001] o[15..0] */ kMipsBgtz, /* bgtz s,o [000111] s[25..21] [00000] o[15..0] */ kMipsBlez, /* blez s,o [000110] s[25..21] [00000] o[15..0] */ kMipsBltz, /* bltz s,o [000001] s[25..21] [00000] o[15..0] */ kMipsBnez, /* bnez s,o [000101] s[25..21] [00000] o[15..0] */ kMipsBne, /* bne s,t,o [000101] s[25..21] t[20..16] o[15..0] */ kMipsDiv, /* div s,t [000000] s[25..21] t[20..16] [0000000000011010] */ #if __mips_isa_rev>=2 kMipsExt, /* ext t,s,p,z [011111] s[25..21] t[20..16] z[15..11] p[10..6] [000000] */ #endif kMipsJal, /* jal t [000011] t[25..0] */ kMipsJalr, /* jalr d,s [000000] s[25..21] [00000] d[15..11] hint[10..6] [001001] */ kMipsJr, /* jr s [000000] s[25..21] [0000000000] hint[10..6] [001000] */ kMipsLahi, /* lui t,imm16 [00111100000] t[20..16] imm16[15..0] load addr hi */ kMipsLalo, /* ori t,s,imm16 [001001] s[25..21] t[20..16] imm16[15..0] load addr lo */ kMipsLui, /* lui t,imm16 [00111100000] t[20..16] imm16[15..0] */ kMipsLb, /* lb t,o(b) [100000] b[25..21] t[20..16] o[15..0] */ kMipsLbu, /* lbu t,o(b) [100100] b[25..21] t[20..16] o[15..0] */ kMipsLh, /* lh t,o(b) [100001] b[25..21] t[20..16] o[15..0] */ kMipsLhu, /* lhu t,o(b) [100101] b[25..21] t[20..16] o[15..0] */ kMipsLw, /* lw t,o(b) [100011] b[25..21] t[20..16] o[15..0] */ kMipsMfhi, /* mfhi d [0000000000000000] d[15..11] [00000010000] */ kMipsMflo, /* mflo d [0000000000000000] d[15..11] [00000010010] */ kMipsMove, /* move d,s [000000] s[25..21] [00000] d[15..11] [00000100101] */ kMipsMovz, /* movz d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000001010] */ kMipsMul, /* mul d,s,t [011100] s[25..21] t[20..16] d[15..11] [00000000010] */ kMipsNop, /* nop [00000000000000000000000000000000] */ kMipsNor, /* nor d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100111] */ kMipsOr, /* or d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100101] */ kMipsOri, /* ori t,s,imm16 [001001] s[25..21] t[20..16] imm16[15..0] */ kMipsPref, /* pref h,o(b) [101011] b[25..21] h[20..16] o[15..0] */ kMipsSb, /* sb t,o(b) [101000] b[25..21] t[20..16] o[15..0] */ #if __mips_isa_rev>=2 kMipsSeb, /* seb d,t [01111100000] t[20..16] d[15..11] [10000100000] */ kMipsSeh, /* seh d,t [01111100000] t[20..16] d[15..11] [11000100000] */ #endif kMipsSh, /* sh t,o(b) [101001] b[25..21] t[20..16] o[15..0] */ kMipsSll, /* sll d,t,a [00000000000] t[20..16] d[15..11] a[10..6] [000000] */ kMipsSllv, /* sllv d,t,s [000000] s[25..21] t[20..16] d[15..11] [00000000100] */ kMipsSlt, /* slt d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000101010] */ kMipsSlti, /* slti t,s,imm16 [001010] s[25..21] t[20..16] imm16[15..0] */ kMipsSltu, /* sltu d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000101011] */ kMipsSra, /* sra d,s,imm5 [00000000000] t[20..16] d[15..11] imm5[10..6] [000011] */ kMipsSrav, /* srav d,t,s [000000] s[25..21] t[20..16] d[15..11] [00000000111] */ kMipsSrl, /* srl d,t,a [00000000000] t[20..16] d[20..16] a[10..6] [000010] */ kMipsSrlv, /* srlv d,t,s [000000] s[25..21] t[20..16] d[15..11] [00000000110] */ kMipsSubu, /* subu d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100011] */ kMipsSw, /* sw t,o(b) [101011] b[25..21] t[20..16] o[15..0] */ kMipsXor, /* xor d,s,t [000000] s[25..21] t[20..16] d[15..11] [00000100110] */ kMipsXori, /* xori t,s,imm16 [001110] s[25..21] t[20..16] imm16[15..0] */ #ifdef __mips_hard_float kMipsFadds, /* add.s d,s,t [01000110000] t[20..16] s[15..11] d[10..6] [000000] */ kMipsFsubs, /* sub.s d,s,t [01000110000] t[20..16] s[15..11] d[10..6] [000001] */ kMipsFmuls, /* mul.s d,s,t [01000110000] t[20..16] s[15..11] d[10..6] [000010] */ kMipsFdivs, /* div.s d,s,t [01000110000] t[20..16] s[15..11] d[10..6] [000011] */ kMipsFaddd, /* add.d d,s,t [01000110001] t[20..16] s[15..11] d[10..6] [000000] */ kMipsFsubd, /* sub.d d,s,t [01000110001] t[20..16] s[15..11] d[10..6] [000001] */ kMipsFmuld, /* mul.d d,s,t [01000110001] t[20..16] s[15..11] d[10..6] [000010] */ kMipsFdivd, /* div.d d,s,t [01000110001] t[20..16] s[15..11] d[10..6] [000011] */ kMipsFcvtsd, /* cvt.s.d d,s [01000110001] [00000] s[15..11] d[10..6] [100000] */ kMipsFcvtsw, /* cvt.s.w d,s [01000110100] [00000] s[15..11] d[10..6] [100000] */ kMipsFcvtds, /* cvt.d.s d,s [01000110000] [00000] s[15..11] d[10..6] [100001] */ kMipsFcvtdw, /* cvt.d.w d,s [01000110100] [00000] s[15..11] d[10..6] [100001] */ kMipsFcvtws, /* cvt.w.d d,s [01000110000] [00000] s[15..11] d[10..6] [100100] */ kMipsFcvtwd, /* cvt.w.d d,s [01000110001] [00000] s[15..11] d[10..6] [100100] */ kMipsFmovs, /* mov.s d,s [01000110000] [00000] s[15..11] d[10..6] [000110] */ kMipsFmovd, /* mov.d d,s [01000110001] [00000] s[15..11] d[10..6] [000110] */ kMipsFlwc1, /* lwc1 t,o(b) [110001] b[25..21] t[20..16] o[15..0] */ kMipsFldc1, /* ldc1 t,o(b) [110101] b[25..21] t[20..16] o[15..0] */ kMipsFswc1, /* swc1 t,o(b) [111001] b[25..21] t[20..16] o[15..0] */ kMipsFsdc1, /* sdc1 t,o(b) [111101] b[25..21] t[20..16] o[15..0] */ kMipsMfc1, /* mfc1 t,s [01000100000] t[20..16] s[15..11] [00000000000] */ kMipsMtc1, /* mtc1 t,s [01000100100] t[20..16] s[15..11] [00000000000] */ #endif kMipsUndefined, /* undefined [011001xxxxxxxxxxxxxxxx] */ kMipsLast } MipsOpCode; /* Bit flags describing the behavior of each native opcode */ typedef enum MipsOpFeatureFlags { kIsBranch = 0, kRegDef0, kRegDef1, kRegDefSP, kRegDefLR, kRegDefList0, kRegDefList1, kRegUse0, kRegUse1, kRegUse2, kRegUse3, kRegUseSP, kRegUsePC, kRegUseList0, kRegUseList1, kNoOperand, kIsUnaryOp, kIsBinaryOp, kIsTertiaryOp, kIsQuadOp, kIsIT, kSetsCCodes, kUsesCCodes, kMemLoad, kMemStore, } MipsOpFeatureFlags; #define IS_LOAD (1 << kMemLoad) #define IS_STORE (1 << kMemStore) #define IS_BRANCH (1 << kIsBranch) #define REG_DEF0 (1 << kRegDef0) #define REG_DEF1 (1 << kRegDef1) #define REG_DEF_SP (1 << kRegDefSP) #define REG_DEF_LR (1 << kRegDefLR) #define REG_DEF_LIST0 (1 << kRegDefList0) #define REG_DEF_LIST1 (1 << kRegDefList1) #define REG_USE0 (1 << kRegUse0) #define REG_USE1 (1 << kRegUse1) #define REG_USE2 (1 << kRegUse2) #define REG_USE3 (1 << kRegUse3) #define REG_USE_SP (1 << kRegUseSP) #define REG_USE_PC (1 << kRegUsePC) #define REG_USE_LIST0 (1 << kRegUseList0) #define REG_USE_LIST1 (1 << kRegUseList1) #define NO_OPERAND (1 << kNoOperand) #define IS_UNARY_OP (1 << kIsUnaryOp) #define IS_BINARY_OP (1 << kIsBinaryOp) #define IS_TERTIARY_OP (1 << kIsTertiaryOp) #define IS_QUAD_OP (1 << kIsQuadOp) #define IS_IT (1 << kIsIT) #define SETS_CCODES (1 << kSetsCCodes) #define USES_CCODES (1 << kUsesCCodes) /* Common combo register usage patterns */ #define REG_USE01 (REG_USE0 | REG_USE1) #define REG_USE02 (REG_USE0 | REG_USE2) #define REG_USE012 (REG_USE01 | REG_USE2) #define REG_USE12 (REG_USE1 | REG_USE2) #define REG_USE23 (REG_USE2 | REG_USE3) #define REG_DEF01 (REG_DEF0 | REG_DEF1) #define REG_DEF0_USE0 (REG_DEF0 | REG_USE0) #define REG_DEF0_USE1 (REG_DEF0 | REG_USE1) #define REG_DEF0_USE2 (REG_DEF0 | REG_USE2) #define REG_DEF0_USE01 (REG_DEF0 | REG_USE01) #define REG_DEF0_USE12 (REG_DEF0 | REG_USE12) #define REG_DEF01_USE2 (REG_DEF0 | REG_DEF1 | REG_USE2) /* Instruction assembly fieldLoc kind */ typedef enum MipsEncodingKind { kFmtUnused, kFmtBitBlt, /* Bit string using end/start */ kFmtDfp, /* Double FP reg */ kFmtSfp, /* Single FP reg */ } MipsEncodingKind; /* Struct used to define the snippet positions for each Thumb opcode */ typedef struct MipsEncodingMap { u4 skeleton; struct { MipsEncodingKind kind; int end; /* end for kFmtBitBlt, 1-bit slice end for FP regs */ int start; /* start for kFmtBitBlt, 4-bit slice end for FP regs */ } fieldLoc[4]; MipsOpCode opcode; int flags; const char *name; const char* fmt; int size; } MipsEncodingMap; /* Keys for target-specific scheduling and other optimization hints */ typedef enum MipsTargetOptHints { kMaxHoistDistance, } MipsTargetOptHints; extern MipsEncodingMap EncodingMap[kMipsLast]; /* * Each instance of this struct holds a pseudo or real LIR instruction: * - pseudo ones (eg labels and marks) and will be discarded by the assembler. * - real ones will be assembled into Thumb instructions. * * Machine resources are encoded into a 64-bit vector, where the encodings are * as following: * - [ 0..15]: general purpose registers including PC, SP, and LR * - [16..47]: floating-point registers where d0 is expanded to s[01] and s0 * starts at bit 16 * - [48]: IT block * - [49]: integer condition code * - [50]: floatint-point status word */ typedef struct MipsLIR { LIR generic; MipsOpCode opcode; int operands[4]; // [0..3] = [dest, src1, src2, extra] struct { bool isNop:1; // LIR is optimized away bool insertWrapper:1; // insert branch to emulate memory accesses unsigned int age:4; // default is 0, set lazily by the optimizer unsigned int size:3; // bytes (2 for thumb, 2/4 for thumb2) unsigned int unused:23; } flags; int aliasInfo; // For Dalvik register access & litpool disambiguation u8 useMask; // Resource mask for use u8 defMask; // Resource mask for def } MipsLIR; /* Init values when a predicted chain is initially assembled */ /* E7FE is branch to self */ #define PREDICTED_CHAIN_BX_PAIR_INIT 0xe7fe #define PREDICTED_CHAIN_DELAY_SLOT_INIT 0 #define PREDICTED_CHAIN_CLAZZ_INIT 0 #define PREDICTED_CHAIN_METHOD_INIT 0 #define PREDICTED_CHAIN_COUNTER_INIT 0 /* Utility macros to traverse the LIR/MipsLIR list */ #define NEXT_LIR(lir) ((MipsLIR *) lir->generic.next) #define PREV_LIR(lir) ((MipsLIR *) lir->generic.prev) #define NEXT_LIR_LVALUE(lir) (lir)->generic.next #define PREV_LIR_LVALUE(lir) (lir)->generic.prev #define CHAIN_CELL_OFFSET_TAG 0xcdabcdabL #define IS_UIMM16(v) ((0 <= (v)) && ((v) <= 65535)) #define IS_SIMM16(v) ((-32768 <= (v)) && ((v) <= 32766)) #define IS_SIMM16_2WORD(v) ((-32764 <= (v)) && ((v) <= 32763)) /* 2 offsets must fit */ #define CHAIN_CELL_NORMAL_SIZE 16 #define CHAIN_CELL_PREDICTED_SIZE 20 #endif // DALVIK_VM_COMPILER_CODEGEN_MIPS_MIPSLIR_H_