//===- X86PLT.cpp ---------------------------------------------------------===//
//
// The MCLinker Project
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "X86GOTPLT.h"
#include "X86PLT.h"
#include <new>
#include <llvm/Support/ELF.h>
#include <llvm/Support/Casting.h>
#include <mcld/MC/MCLDOutput.h>
#include <mcld/Support/MsgHandling.h>
//===----------------------------------------------------------------------===//
// PLT entry data
//===----------------------------------------------------------------------===//
namespace {
const uint8_t x86_dyn_plt0[] = {
0xff, 0xb3, 0x04, 0, 0, 0, // pushl 0x4(%ebx)
0xff, 0xa3, 0x08, 0, 0, 0, // jmp *0x8(%ebx)
0x0f, 0x1f, 0x4, 0 // nopl 0(%eax)
};
const uint8_t x86_dyn_plt1[] = {
0xff, 0xa3, 0, 0, 0, 0, // jmp *sym@GOT(%ebx)
0x68, 0, 0, 0, 0, // pushl $offset
0xe9, 0, 0, 0, 0 // jmp plt0
};
const uint8_t x86_exec_plt0[] = {
0xff, 0x35, 0, 0, 0, 0, // pushl .got + 4
0xff, 0x25, 0, 0, 0, 0, // jmp *(.got + 8)
0x0f, 0x1f, 0x4, 0 // nopl 0(%eax)
};
const uint8_t x86_exec_plt1[] = {
0xff, 0x25, 0, 0, 0, 0, // jmp *(sym in .got)
0x68, 0, 0, 0, 0, // pushl $offset
0xe9, 0, 0, 0, 0 // jmp plt0
};
}
namespace mcld {
X86PLT0::X86PLT0(SectionData* pParent, unsigned int pSize)
: PLTEntry(pSize, pParent) { }
X86PLT1::X86PLT1(SectionData* pParent, unsigned int pSize)
: PLTEntry(pSize, pParent) { }
//===----------------------------------------------------------------------===//
// X86PLT
//===----------------------------------------------------------------------===//
X86PLT::X86PLT(LDSection& pSection,
SectionData& pSectionData,
X86GOTPLT &pGOTPLT,
const Output& pOutput)
: PLT(pSection, pSectionData),
m_GOTPLT(pGOTPLT),
m_PLTEntryIterator(),
m_Output(pOutput)
{
assert (Output::DynObj == pOutput.type() || Output::Exec == pOutput.type());
if (Output::DynObj == pOutput.type()) {
m_PLT0 = x86_dyn_plt0;
m_PLT1 = x86_dyn_plt1;
m_PLT0Size = sizeof (x86_dyn_plt0);
m_PLT1Size = sizeof (x86_dyn_plt1);
}
else {
m_PLT0 = x86_exec_plt0;
m_PLT1 = x86_exec_plt1;
m_PLT0Size = sizeof (x86_exec_plt0);
m_PLT1Size = sizeof (x86_exec_plt1);
}
X86PLT0* plt0_entry = new X86PLT0(&m_SectionData, m_PLT0Size);
m_Section.setSize(m_Section.size() + plt0_entry->getEntrySize());
m_PLTEntryIterator = pSectionData.begin();
}
X86PLT::~X86PLT()
{
}
void X86PLT::reserveEntry(size_t pNum)
{
X86PLT1* plt1_entry = 0;
for (size_t i = 0; i < pNum; ++i) {
plt1_entry = new (std::nothrow) X86PLT1(&m_SectionData, m_PLT1Size);
if (!plt1_entry)
fatal(diag::fail_allocate_memory_plt);
m_Section.setSize(m_Section.size() + plt1_entry->getEntrySize());
// reserve corresponding entry in .got.plt
m_GOTPLT.reserveEntry(pNum);
}
}
PLTEntry* X86PLT::getPLTEntry(const ResolveInfo& pSymbol, bool& pExist)
{
X86PLT1 *&PLTEntry = m_PLTEntryMap[&pSymbol];
pExist = 1;
if (!PLTEntry) {
pExist = 0;
// This will skip PLT0.
++m_PLTEntryIterator;
assert(m_PLTEntryIterator != m_SectionData.end() &&
"The number of PLT Entries and ResolveInfo doesn't match");
PLTEntry = llvm::cast<X86PLT1>(&(*m_PLTEntryIterator));
}
return PLTEntry;
}
GOTEntry* X86PLT::getGOTPLTEntry(const ResolveInfo& pSymbol, bool& pExist)
{
return m_GOTPLT.getEntry(pSymbol, pExist);
}
X86PLT0* X86PLT::getPLT0() const {
iterator first = m_SectionData.getFragmentList().begin();
assert(first != m_SectionData.getFragmentList().end() &&
"FragmentList is empty, getPLT0 failed!");
X86PLT0* plt0 = &(llvm::cast<X86PLT0>(*first));
return plt0;
}
// FIXME: It only works on little endian machine.
void X86PLT::applyPLT0() {
iterator first = m_SectionData.getFragmentList().begin();
assert(first != m_SectionData.getFragmentList().end() &&
"FragmentList is empty, applyPLT0 failed!");
X86PLT0* plt0 = &(llvm::cast<X86PLT0>(*first));
unsigned char* data = 0;
data = static_cast<unsigned char*>(malloc(plt0->getEntrySize()));
if (!data)
fatal(diag::fail_allocate_memory_plt);
memcpy(data, m_PLT0, plt0->getEntrySize());
if (m_PLT0 == x86_exec_plt0) {
uint64_t got_base = m_GOTPLT.getSection().addr();
assert(got_base && ".got base address is NULL!");
uint32_t *offset = reinterpret_cast<uint32_t*>(data + 2);
*offset = got_base + 4;
offset = reinterpret_cast<uint32_t*>(data + 8);
*offset = got_base + 8;
}
plt0->setContent(data);
}
// FIXME: It only works on little endian machine.
void X86PLT::applyPLT1() {
uint64_t plt_base = m_Section.addr();
assert(plt_base && ".plt base address is NULL!");
uint64_t got_base = m_GOTPLT.getSection().addr();
assert(got_base && ".got base address is NULL!");
X86PLT::iterator it = m_SectionData.begin();
X86PLT::iterator ie = m_SectionData.end();
assert(it != ie && "FragmentList is empty, applyPLT1 failed!");
uint64_t GOTEntrySize = m_GOTPLT.getEntrySize();
// Skip GOT0
uint64_t GOTEntryOffset = GOTEntrySize * X86GOTPLT0Num;
//skip PLT0
uint64_t PLTEntryOffset = m_PLT0Size;
++it;
X86PLT1* plt1 = 0;
uint64_t PLTRelOffset = 0;
while (it != ie) {
plt1 = &(llvm::cast<X86PLT1>(*it));
unsigned char *data;
data = static_cast<unsigned char*>(malloc(plt1->getEntrySize()));
if (!data)
fatal(diag::fail_allocate_memory_plt);
memcpy(data, m_PLT1, plt1->getEntrySize());
uint32_t* offset;
offset = reinterpret_cast<uint32_t*>(data + 2);
if (m_Output.type() == Output::DynObj) {
*offset = GOTEntryOffset;
} else {
// Exec
*offset = got_base + GOTEntryOffset;
}
GOTEntryOffset += GOTEntrySize;
offset = reinterpret_cast<uint32_t*>(data + 7);
*offset = PLTRelOffset;
PLTRelOffset += sizeof (llvm::ELF::Elf32_Rel);
offset = reinterpret_cast<uint32_t*>(data + 12);
*offset = -(PLTEntryOffset + 12 + 4);
PLTEntryOffset += m_PLT1Size;
plt1->setContent(data);
++it;
}
// apply .got.plt
m_GOTPLT.applyAllGOTPLT(plt_base, m_PLT0Size, m_PLT1Size);
}
} // end namespace mcld