//===- X86PLT.cpp ---------------------------------------------------------===// // // The MCLinker Project // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "X86GOTPLT.h" #include "X86PLT.h" #include <new> #include <llvm/Support/ELF.h> #include <llvm/Support/Casting.h> #include <mcld/MC/MCLDOutput.h> #include <mcld/Support/MsgHandling.h> //===----------------------------------------------------------------------===// // PLT entry data //===----------------------------------------------------------------------===// namespace { const uint8_t x86_dyn_plt0[] = { 0xff, 0xb3, 0x04, 0, 0, 0, // pushl 0x4(%ebx) 0xff, 0xa3, 0x08, 0, 0, 0, // jmp *0x8(%ebx) 0x0f, 0x1f, 0x4, 0 // nopl 0(%eax) }; const uint8_t x86_dyn_plt1[] = { 0xff, 0xa3, 0, 0, 0, 0, // jmp *sym@GOT(%ebx) 0x68, 0, 0, 0, 0, // pushl $offset 0xe9, 0, 0, 0, 0 // jmp plt0 }; const uint8_t x86_exec_plt0[] = { 0xff, 0x35, 0, 0, 0, 0, // pushl .got + 4 0xff, 0x25, 0, 0, 0, 0, // jmp *(.got + 8) 0x0f, 0x1f, 0x4, 0 // nopl 0(%eax) }; const uint8_t x86_exec_plt1[] = { 0xff, 0x25, 0, 0, 0, 0, // jmp *(sym in .got) 0x68, 0, 0, 0, 0, // pushl $offset 0xe9, 0, 0, 0, 0 // jmp plt0 }; } namespace mcld { X86PLT0::X86PLT0(SectionData* pParent, unsigned int pSize) : PLTEntry(pSize, pParent) { } X86PLT1::X86PLT1(SectionData* pParent, unsigned int pSize) : PLTEntry(pSize, pParent) { } //===----------------------------------------------------------------------===// // X86PLT //===----------------------------------------------------------------------===// X86PLT::X86PLT(LDSection& pSection, SectionData& pSectionData, X86GOTPLT &pGOTPLT, const Output& pOutput) : PLT(pSection, pSectionData), m_GOTPLT(pGOTPLT), m_PLTEntryIterator(), m_Output(pOutput) { assert (Output::DynObj == pOutput.type() || Output::Exec == pOutput.type()); if (Output::DynObj == pOutput.type()) { m_PLT0 = x86_dyn_plt0; m_PLT1 = x86_dyn_plt1; m_PLT0Size = sizeof (x86_dyn_plt0); m_PLT1Size = sizeof (x86_dyn_plt1); } else { m_PLT0 = x86_exec_plt0; m_PLT1 = x86_exec_plt1; m_PLT0Size = sizeof (x86_exec_plt0); m_PLT1Size = sizeof (x86_exec_plt1); } X86PLT0* plt0_entry = new X86PLT0(&m_SectionData, m_PLT0Size); m_Section.setSize(m_Section.size() + plt0_entry->getEntrySize()); m_PLTEntryIterator = pSectionData.begin(); } X86PLT::~X86PLT() { } void X86PLT::reserveEntry(size_t pNum) { X86PLT1* plt1_entry = 0; for (size_t i = 0; i < pNum; ++i) { plt1_entry = new (std::nothrow) X86PLT1(&m_SectionData, m_PLT1Size); if (!plt1_entry) fatal(diag::fail_allocate_memory_plt); m_Section.setSize(m_Section.size() + plt1_entry->getEntrySize()); // reserve corresponding entry in .got.plt m_GOTPLT.reserveEntry(pNum); } } PLTEntry* X86PLT::getPLTEntry(const ResolveInfo& pSymbol, bool& pExist) { X86PLT1 *&PLTEntry = m_PLTEntryMap[&pSymbol]; pExist = 1; if (!PLTEntry) { pExist = 0; // This will skip PLT0. ++m_PLTEntryIterator; assert(m_PLTEntryIterator != m_SectionData.end() && "The number of PLT Entries and ResolveInfo doesn't match"); PLTEntry = llvm::cast<X86PLT1>(&(*m_PLTEntryIterator)); } return PLTEntry; } GOTEntry* X86PLT::getGOTPLTEntry(const ResolveInfo& pSymbol, bool& pExist) { return m_GOTPLT.getEntry(pSymbol, pExist); } X86PLT0* X86PLT::getPLT0() const { iterator first = m_SectionData.getFragmentList().begin(); assert(first != m_SectionData.getFragmentList().end() && "FragmentList is empty, getPLT0 failed!"); X86PLT0* plt0 = &(llvm::cast<X86PLT0>(*first)); return plt0; } // FIXME: It only works on little endian machine. void X86PLT::applyPLT0() { iterator first = m_SectionData.getFragmentList().begin(); assert(first != m_SectionData.getFragmentList().end() && "FragmentList is empty, applyPLT0 failed!"); X86PLT0* plt0 = &(llvm::cast<X86PLT0>(*first)); unsigned char* data = 0; data = static_cast<unsigned char*>(malloc(plt0->getEntrySize())); if (!data) fatal(diag::fail_allocate_memory_plt); memcpy(data, m_PLT0, plt0->getEntrySize()); if (m_PLT0 == x86_exec_plt0) { uint64_t got_base = m_GOTPLT.getSection().addr(); assert(got_base && ".got base address is NULL!"); uint32_t *offset = reinterpret_cast<uint32_t*>(data + 2); *offset = got_base + 4; offset = reinterpret_cast<uint32_t*>(data + 8); *offset = got_base + 8; } plt0->setContent(data); } // FIXME: It only works on little endian machine. void X86PLT::applyPLT1() { uint64_t plt_base = m_Section.addr(); assert(plt_base && ".plt base address is NULL!"); uint64_t got_base = m_GOTPLT.getSection().addr(); assert(got_base && ".got base address is NULL!"); X86PLT::iterator it = m_SectionData.begin(); X86PLT::iterator ie = m_SectionData.end(); assert(it != ie && "FragmentList is empty, applyPLT1 failed!"); uint64_t GOTEntrySize = m_GOTPLT.getEntrySize(); // Skip GOT0 uint64_t GOTEntryOffset = GOTEntrySize * X86GOTPLT0Num; //skip PLT0 uint64_t PLTEntryOffset = m_PLT0Size; ++it; X86PLT1* plt1 = 0; uint64_t PLTRelOffset = 0; while (it != ie) { plt1 = &(llvm::cast<X86PLT1>(*it)); unsigned char *data; data = static_cast<unsigned char*>(malloc(plt1->getEntrySize())); if (!data) fatal(diag::fail_allocate_memory_plt); memcpy(data, m_PLT1, plt1->getEntrySize()); uint32_t* offset; offset = reinterpret_cast<uint32_t*>(data + 2); if (m_Output.type() == Output::DynObj) { *offset = GOTEntryOffset; } else { // Exec *offset = got_base + GOTEntryOffset; } GOTEntryOffset += GOTEntrySize; offset = reinterpret_cast<uint32_t*>(data + 7); *offset = PLTRelOffset; PLTRelOffset += sizeof (llvm::ELF::Elf32_Rel); offset = reinterpret_cast<uint32_t*>(data + 12); *offset = -(PLTEntryOffset + 12 + 4); PLTEntryOffset += m_PLT1Size; plt1->setContent(data); ++it; } // apply .got.plt m_GOTPLT.applyAllGOTPLT(plt_base, m_PLT0Size, m_PLT1Size); } } // end namespace mcld