/*
* Copyright (C) 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_HashMap_h
#define WTF_HashMap_h
#include "HashTable.h"
namespace WTF {
template<typename PairType> struct PairFirstExtractor;
template<typename KeyArg, typename MappedArg, typename HashArg = typename DefaultHash<KeyArg>::Hash,
typename KeyTraitsArg = HashTraits<KeyArg>, typename MappedTraitsArg = HashTraits<MappedArg> >
class HashMap {
WTF_MAKE_FAST_ALLOCATED;
private:
typedef KeyTraitsArg KeyTraits;
typedef MappedTraitsArg MappedTraits;
typedef PairHashTraits<KeyTraits, MappedTraits> ValueTraits;
public:
typedef typename KeyTraits::TraitType KeyType;
typedef typename MappedTraits::TraitType MappedType;
typedef typename ValueTraits::TraitType ValueType;
private:
typedef HashArg HashFunctions;
typedef HashTable<KeyType, ValueType, PairFirstExtractor<ValueType>,
HashFunctions, ValueTraits, KeyTraits> HashTableType;
public:
typedef HashTableIteratorAdapter<HashTableType, ValueType> iterator;
typedef HashTableConstIteratorAdapter<HashTableType, ValueType> const_iterator;
void swap(HashMap&);
int size() const;
int capacity() const;
bool isEmpty() const;
// iterators iterate over pairs of keys and values
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
iterator find(const KeyType&);
const_iterator find(const KeyType&) const;
bool contains(const KeyType&) const;
MappedType get(const KeyType&) const;
// replaces value but not key if key is already present
// return value is a pair of the iterator to the key location,
// and a boolean that's true if a new value was actually added
pair<iterator, bool> set(const KeyType&, const MappedType&);
// does nothing if key is already present
// return value is a pair of the iterator to the key location,
// and a boolean that's true if a new value was actually added
pair<iterator, bool> add(const KeyType&, const MappedType&);
void remove(const KeyType&);
void remove(iterator);
void clear();
MappedType take(const KeyType&); // efficient combination of get with remove
// An alternate version of find() that finds the object by hashing and comparing
// with some other type, to avoid the cost of type conversion. HashTranslator
// must have the following function members:
// static unsigned hash(const T&);
// static bool equal(const ValueType&, const T&);
template<typename T, typename HashTranslator> iterator find(const T&);
template<typename T, typename HashTranslator> const_iterator find(const T&) const;
template<typename T, typename HashTranslator> bool contains(const T&) const;
// An alternate version of add() that finds the object by hashing and comparing
// with some other type, to avoid the cost of type conversion if the object is already
// in the table. HashTranslator must have the following function members:
// static unsigned hash(const T&);
// static bool equal(const ValueType&, const T&);
// static translate(ValueType&, const T&, unsigned hashCode);
template<typename T, typename HashTranslator> pair<iterator, bool> add(const T&, const MappedType&);
void checkConsistency() const;
private:
pair<iterator, bool> inlineAdd(const KeyType&, const MappedType&);
HashTableType m_impl;
};
template<typename PairType> struct PairFirstExtractor {
static const typename PairType::first_type& extract(const PairType& p) { return p.first; }
};
template<typename ValueType, typename ValueTraits, typename HashFunctions>
struct HashMapTranslator {
typedef typename ValueType::first_type KeyType;
typedef typename ValueType::second_type MappedType;
static unsigned hash(const KeyType& key) { return HashFunctions::hash(key); }
static bool equal(const KeyType& a, const KeyType& b) { return HashFunctions::equal(a, b); }
static void translate(ValueType& location, const KeyType& key, const MappedType& mapped)
{
location.first = key;
location.second = mapped;
}
};
template<typename ValueType, typename ValueTraits, typename T, typename Translator>
struct HashMapTranslatorAdapter {
typedef typename ValueType::first_type KeyType;
typedef typename ValueType::second_type MappedType;
static unsigned hash(const T& key) { return Translator::hash(key); }
static bool equal(const KeyType& a, const T& b) { return Translator::equal(a, b); }
static void translate(ValueType& location, const T& key, const MappedType& mapped, unsigned hashCode)
{
Translator::translate(location.first, key, hashCode);
location.second = mapped;
}
};
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::swap(HashMap& other)
{
m_impl.swap(other.m_impl);
}
template<typename T, typename U, typename V, typename W, typename X>
inline int HashMap<T, U, V, W, X>::size() const
{
return m_impl.size();
}
template<typename T, typename U, typename V, typename W, typename X>
inline int HashMap<T, U, V, W, X>::capacity() const
{
return m_impl.capacity();
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<T, U, V, W, X>::isEmpty() const
{
return m_impl.isEmpty();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::begin()
{
return m_impl.begin();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::end()
{
return m_impl.end();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::const_iterator HashMap<T, U, V, W, X>::begin() const
{
return m_impl.begin();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::const_iterator HashMap<T, U, V, W, X>::end() const
{
return m_impl.end();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::find(const KeyType& key)
{
return m_impl.find(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::const_iterator HashMap<T, U, V, W, X>::find(const KeyType& key) const
{
return m_impl.find(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<T, U, V, W, X>::contains(const KeyType& key) const
{
return m_impl.contains(key);
}
template<typename T, typename U, typename V, typename W, typename X>
template<typename TYPE, typename HashTranslator>
inline typename HashMap<T, U, V, W, X>::iterator
HashMap<T, U, V, W, X>::find(const TYPE& value)
{
typedef HashMapTranslatorAdapter<ValueType, ValueTraits, TYPE, HashTranslator> Adapter;
return m_impl.template find<TYPE, Adapter>(value);
}
template<typename T, typename U, typename V, typename W, typename X>
template<typename TYPE, typename HashTranslator>
inline typename HashMap<T, U, V, W, X>::const_iterator
HashMap<T, U, V, W, X>::find(const TYPE& value) const
{
typedef HashMapTranslatorAdapter<ValueType, ValueTraits, TYPE, HashTranslator> Adapter;
return m_impl.template find<TYPE, Adapter>(value);
}
template<typename T, typename U, typename V, typename W, typename X>
template<typename TYPE, typename HashTranslator>
inline bool
HashMap<T, U, V, W, X>::contains(const TYPE& value) const
{
typedef HashMapTranslatorAdapter<ValueType, ValueTraits, TYPE, HashTranslator> Adapter;
return m_impl.template contains<TYPE, Adapter>(value);
}
template<typename T, typename U, typename V, typename W, typename X>
inline pair<typename HashMap<T, U, V, W, X>::iterator, bool>
HashMap<T, U, V, W, X>::inlineAdd(const KeyType& key, const MappedType& mapped)
{
typedef HashMapTranslator<ValueType, ValueTraits, HashFunctions> TranslatorType;
return m_impl.template add<KeyType, MappedType, TranslatorType>(key, mapped);
}
template<typename T, typename U, typename V, typename W, typename X>
pair<typename HashMap<T, U, V, W, X>::iterator, bool>
HashMap<T, U, V, W, X>::set(const KeyType& key, const MappedType& mapped)
{
pair<iterator, bool> result = inlineAdd(key, mapped);
if (!result.second) {
// add call above didn't change anything, so set the mapped value
result.first->second = mapped;
}
return result;
}
template<typename T, typename U, typename V, typename W, typename X>
template<typename TYPE, typename HashTranslator>
pair<typename HashMap<T, U, V, W, X>::iterator, bool>
HashMap<T, U, V, W, X>::add(const TYPE& key, const MappedType& value)
{
typedef HashMapTranslatorAdapter<ValueType, ValueTraits, TYPE, HashTranslator> Adapter;
return m_impl.template addPassingHashCode<TYPE, MappedType, Adapter>(key, value);
}
template<typename T, typename U, typename V, typename W, typename X>
pair<typename HashMap<T, U, V, W, X>::iterator, bool>
HashMap<T, U, V, W, X>::add(const KeyType& key, const MappedType& mapped)
{
return inlineAdd(key, mapped);
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
typename HashMap<T, U, V, W, MappedTraits>::MappedType
HashMap<T, U, V, W, MappedTraits>::get(const KeyType& key) const
{
ValueType* entry = const_cast<HashTableType&>(m_impl).lookup(key);
if (!entry)
return MappedTraits::emptyValue();
return entry->second;
}
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::remove(iterator it)
{
if (it.m_impl == m_impl.end())
return;
m_impl.internalCheckTableConsistency();
m_impl.removeWithoutEntryConsistencyCheck(it.m_impl);
}
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::remove(const KeyType& key)
{
remove(find(key));
}
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::clear()
{
m_impl.clear();
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
typename HashMap<T, U, V, W, MappedTraits>::MappedType
HashMap<T, U, V, W, MappedTraits>::take(const KeyType& key)
{
// This can probably be made more efficient to avoid ref/deref churn.
iterator it = find(key);
if (it == end())
return MappedTraits::emptyValue();
typename HashMap<T, U, V, W, MappedTraits>::MappedType result = it->second;
remove(it);
return result;
}
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::checkConsistency() const
{
m_impl.checkTableConsistency();
}
template<typename T, typename U, typename V, typename W, typename X>
bool operator==(const HashMap<T, U, V, W, X>& a, const HashMap<T, U, V, W, X>& b)
{
if (a.size() != b.size())
return false;
typedef typename HashMap<T, U, V, W, X>::const_iterator const_iterator;
const_iterator end = a.end();
const_iterator notFound = b.end();
for (const_iterator it = a.begin(); it != end; ++it) {
const_iterator bPos = b.find(it->first);
if (bPos == notFound || it->second != bPos->second)
return false;
}
return true;
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool operator!=(const HashMap<T, U, V, W, X>& a, const HashMap<T, U, V, W, X>& b)
{
return !(a == b);
}
template<typename MappedType, typename HashTableType>
void deleteAllPairSeconds(HashTableType& collection)
{
typedef typename HashTableType::const_iterator iterator;
iterator end = collection.end();
for (iterator it = collection.begin(); it != end; ++it)
delete it->second;
}
template<typename T, typename U, typename V, typename W, typename X>
inline void deleteAllValues(const HashMap<T, U, V, W, X>& collection)
{
deleteAllPairSeconds<typename HashMap<T, U, V, W, X>::MappedType>(collection);
}
template<typename KeyType, typename HashTableType>
void deleteAllPairFirsts(HashTableType& collection)
{
typedef typename HashTableType::const_iterator iterator;
iterator end = collection.end();
for (iterator it = collection.begin(); it != end; ++it)
delete it->first;
}
template<typename T, typename U, typename V, typename W, typename X>
inline void deleteAllKeys(const HashMap<T, U, V, W, X>& collection)
{
deleteAllPairFirsts<typename HashMap<T, U, V, W, X>::KeyType>(collection);
}
template<typename T, typename U, typename V, typename W, typename X, typename Y>
inline void copyKeysToVector(const HashMap<T, U, V, W, X>& collection, Y& vector)
{
typedef typename HashMap<T, U, V, W, X>::const_iterator::Keys iterator;
vector.resize(collection.size());
iterator it = collection.begin().keys();
iterator end = collection.end().keys();
for (unsigned i = 0; it != end; ++it, ++i)
vector[i] = *it;
}
template<typename T, typename U, typename V, typename W, typename X, typename Y>
inline void copyValuesToVector(const HashMap<T, U, V, W, X>& collection, Y& vector)
{
typedef typename HashMap<T, U, V, W, X>::const_iterator::Values iterator;
vector.resize(collection.size());
iterator it = collection.begin().values();
iterator end = collection.end().values();
for (unsigned i = 0; it != end; ++it, ++i)
vector[i] = *it;
}
} // namespace WTF
using WTF::HashMap;
#include "RefPtrHashMap.h"
#endif /* WTF_HashMap_h */