/* * Copyright (C) 2005, 2006, 2007, 2008 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #ifndef WTF_HashMap_h #define WTF_HashMap_h #include "HashTable.h" namespace WTF { template<typename PairType> struct PairFirstExtractor; template<typename KeyArg, typename MappedArg, typename HashArg = typename DefaultHash<KeyArg>::Hash, typename KeyTraitsArg = HashTraits<KeyArg>, typename MappedTraitsArg = HashTraits<MappedArg> > class HashMap { WTF_MAKE_FAST_ALLOCATED; private: typedef KeyTraitsArg KeyTraits; typedef MappedTraitsArg MappedTraits; typedef PairHashTraits<KeyTraits, MappedTraits> ValueTraits; public: typedef typename KeyTraits::TraitType KeyType; typedef typename MappedTraits::TraitType MappedType; typedef typename ValueTraits::TraitType ValueType; private: typedef HashArg HashFunctions; typedef HashTable<KeyType, ValueType, PairFirstExtractor<ValueType>, HashFunctions, ValueTraits, KeyTraits> HashTableType; public: typedef HashTableIteratorAdapter<HashTableType, ValueType> iterator; typedef HashTableConstIteratorAdapter<HashTableType, ValueType> const_iterator; void swap(HashMap&); int size() const; int capacity() const; bool isEmpty() const; // iterators iterate over pairs of keys and values iterator begin(); iterator end(); const_iterator begin() const; const_iterator end() const; iterator find(const KeyType&); const_iterator find(const KeyType&) const; bool contains(const KeyType&) const; MappedType get(const KeyType&) const; // replaces value but not key if key is already present // return value is a pair of the iterator to the key location, // and a boolean that's true if a new value was actually added pair<iterator, bool> set(const KeyType&, const MappedType&); // does nothing if key is already present // return value is a pair of the iterator to the key location, // and a boolean that's true if a new value was actually added pair<iterator, bool> add(const KeyType&, const MappedType&); void remove(const KeyType&); void remove(iterator); void clear(); MappedType take(const KeyType&); // efficient combination of get with remove // An alternate version of find() that finds the object by hashing and comparing // with some other type, to avoid the cost of type conversion. HashTranslator // must have the following function members: // static unsigned hash(const T&); // static bool equal(const ValueType&, const T&); template<typename T, typename HashTranslator> iterator find(const T&); template<typename T, typename HashTranslator> const_iterator find(const T&) const; template<typename T, typename HashTranslator> bool contains(const T&) const; // An alternate version of add() that finds the object by hashing and comparing // with some other type, to avoid the cost of type conversion if the object is already // in the table. HashTranslator must have the following function members: // static unsigned hash(const T&); // static bool equal(const ValueType&, const T&); // static translate(ValueType&, const T&, unsigned hashCode); template<typename T, typename HashTranslator> pair<iterator, bool> add(const T&, const MappedType&); void checkConsistency() const; private: pair<iterator, bool> inlineAdd(const KeyType&, const MappedType&); HashTableType m_impl; }; template<typename PairType> struct PairFirstExtractor { static const typename PairType::first_type& extract(const PairType& p) { return p.first; } }; template<typename ValueType, typename ValueTraits, typename HashFunctions> struct HashMapTranslator { typedef typename ValueType::first_type KeyType; typedef typename ValueType::second_type MappedType; static unsigned hash(const KeyType& key) { return HashFunctions::hash(key); } static bool equal(const KeyType& a, const KeyType& b) { return HashFunctions::equal(a, b); } static void translate(ValueType& location, const KeyType& key, const MappedType& mapped) { location.first = key; location.second = mapped; } }; template<typename ValueType, typename ValueTraits, typename T, typename Translator> struct HashMapTranslatorAdapter { typedef typename ValueType::first_type KeyType; typedef typename ValueType::second_type MappedType; static unsigned hash(const T& key) { return Translator::hash(key); } static bool equal(const KeyType& a, const T& b) { return Translator::equal(a, b); } static void translate(ValueType& location, const T& key, const MappedType& mapped, unsigned hashCode) { Translator::translate(location.first, key, hashCode); location.second = mapped; } }; template<typename T, typename U, typename V, typename W, typename X> inline void HashMap<T, U, V, W, X>::swap(HashMap& other) { m_impl.swap(other.m_impl); } template<typename T, typename U, typename V, typename W, typename X> inline int HashMap<T, U, V, W, X>::size() const { return m_impl.size(); } template<typename T, typename U, typename V, typename W, typename X> inline int HashMap<T, U, V, W, X>::capacity() const { return m_impl.capacity(); } template<typename T, typename U, typename V, typename W, typename X> inline bool HashMap<T, U, V, W, X>::isEmpty() const { return m_impl.isEmpty(); } template<typename T, typename U, typename V, typename W, typename X> inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::begin() { return m_impl.begin(); } template<typename T, typename U, typename V, typename W, typename X> inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::end() { return m_impl.end(); } template<typename T, typename U, typename V, typename W, typename X> inline typename HashMap<T, U, V, W, X>::const_iterator HashMap<T, U, V, W, X>::begin() const { return m_impl.begin(); } template<typename T, typename U, typename V, typename W, typename X> inline typename HashMap<T, U, V, W, X>::const_iterator HashMap<T, U, V, W, X>::end() const { return m_impl.end(); } template<typename T, typename U, typename V, typename W, typename X> inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::find(const KeyType& key) { return m_impl.find(key); } template<typename T, typename U, typename V, typename W, typename X> inline typename HashMap<T, U, V, W, X>::const_iterator HashMap<T, U, V, W, X>::find(const KeyType& key) const { return m_impl.find(key); } template<typename T, typename U, typename V, typename W, typename X> inline bool HashMap<T, U, V, W, X>::contains(const KeyType& key) const { return m_impl.contains(key); } template<typename T, typename U, typename V, typename W, typename X> template<typename TYPE, typename HashTranslator> inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::find(const TYPE& value) { typedef HashMapTranslatorAdapter<ValueType, ValueTraits, TYPE, HashTranslator> Adapter; return m_impl.template find<TYPE, Adapter>(value); } template<typename T, typename U, typename V, typename W, typename X> template<typename TYPE, typename HashTranslator> inline typename HashMap<T, U, V, W, X>::const_iterator HashMap<T, U, V, W, X>::find(const TYPE& value) const { typedef HashMapTranslatorAdapter<ValueType, ValueTraits, TYPE, HashTranslator> Adapter; return m_impl.template find<TYPE, Adapter>(value); } template<typename T, typename U, typename V, typename W, typename X> template<typename TYPE, typename HashTranslator> inline bool HashMap<T, U, V, W, X>::contains(const TYPE& value) const { typedef HashMapTranslatorAdapter<ValueType, ValueTraits, TYPE, HashTranslator> Adapter; return m_impl.template contains<TYPE, Adapter>(value); } template<typename T, typename U, typename V, typename W, typename X> inline pair<typename HashMap<T, U, V, W, X>::iterator, bool> HashMap<T, U, V, W, X>::inlineAdd(const KeyType& key, const MappedType& mapped) { typedef HashMapTranslator<ValueType, ValueTraits, HashFunctions> TranslatorType; return m_impl.template add<KeyType, MappedType, TranslatorType>(key, mapped); } template<typename T, typename U, typename V, typename W, typename X> pair<typename HashMap<T, U, V, W, X>::iterator, bool> HashMap<T, U, V, W, X>::set(const KeyType& key, const MappedType& mapped) { pair<iterator, bool> result = inlineAdd(key, mapped); if (!result.second) { // add call above didn't change anything, so set the mapped value result.first->second = mapped; } return result; } template<typename T, typename U, typename V, typename W, typename X> template<typename TYPE, typename HashTranslator> pair<typename HashMap<T, U, V, W, X>::iterator, bool> HashMap<T, U, V, W, X>::add(const TYPE& key, const MappedType& value) { typedef HashMapTranslatorAdapter<ValueType, ValueTraits, TYPE, HashTranslator> Adapter; return m_impl.template addPassingHashCode<TYPE, MappedType, Adapter>(key, value); } template<typename T, typename U, typename V, typename W, typename X> pair<typename HashMap<T, U, V, W, X>::iterator, bool> HashMap<T, U, V, W, X>::add(const KeyType& key, const MappedType& mapped) { return inlineAdd(key, mapped); } template<typename T, typename U, typename V, typename W, typename MappedTraits> typename HashMap<T, U, V, W, MappedTraits>::MappedType HashMap<T, U, V, W, MappedTraits>::get(const KeyType& key) const { ValueType* entry = const_cast<HashTableType&>(m_impl).lookup(key); if (!entry) return MappedTraits::emptyValue(); return entry->second; } template<typename T, typename U, typename V, typename W, typename X> inline void HashMap<T, U, V, W, X>::remove(iterator it) { if (it.m_impl == m_impl.end()) return; m_impl.internalCheckTableConsistency(); m_impl.removeWithoutEntryConsistencyCheck(it.m_impl); } template<typename T, typename U, typename V, typename W, typename X> inline void HashMap<T, U, V, W, X>::remove(const KeyType& key) { remove(find(key)); } template<typename T, typename U, typename V, typename W, typename X> inline void HashMap<T, U, V, W, X>::clear() { m_impl.clear(); } template<typename T, typename U, typename V, typename W, typename MappedTraits> typename HashMap<T, U, V, W, MappedTraits>::MappedType HashMap<T, U, V, W, MappedTraits>::take(const KeyType& key) { // This can probably be made more efficient to avoid ref/deref churn. iterator it = find(key); if (it == end()) return MappedTraits::emptyValue(); typename HashMap<T, U, V, W, MappedTraits>::MappedType result = it->second; remove(it); return result; } template<typename T, typename U, typename V, typename W, typename X> inline void HashMap<T, U, V, W, X>::checkConsistency() const { m_impl.checkTableConsistency(); } template<typename T, typename U, typename V, typename W, typename X> bool operator==(const HashMap<T, U, V, W, X>& a, const HashMap<T, U, V, W, X>& b) { if (a.size() != b.size()) return false; typedef typename HashMap<T, U, V, W, X>::const_iterator const_iterator; const_iterator end = a.end(); const_iterator notFound = b.end(); for (const_iterator it = a.begin(); it != end; ++it) { const_iterator bPos = b.find(it->first); if (bPos == notFound || it->second != bPos->second) return false; } return true; } template<typename T, typename U, typename V, typename W, typename X> inline bool operator!=(const HashMap<T, U, V, W, X>& a, const HashMap<T, U, V, W, X>& b) { return !(a == b); } template<typename MappedType, typename HashTableType> void deleteAllPairSeconds(HashTableType& collection) { typedef typename HashTableType::const_iterator iterator; iterator end = collection.end(); for (iterator it = collection.begin(); it != end; ++it) delete it->second; } template<typename T, typename U, typename V, typename W, typename X> inline void deleteAllValues(const HashMap<T, U, V, W, X>& collection) { deleteAllPairSeconds<typename HashMap<T, U, V, W, X>::MappedType>(collection); } template<typename KeyType, typename HashTableType> void deleteAllPairFirsts(HashTableType& collection) { typedef typename HashTableType::const_iterator iterator; iterator end = collection.end(); for (iterator it = collection.begin(); it != end; ++it) delete it->first; } template<typename T, typename U, typename V, typename W, typename X> inline void deleteAllKeys(const HashMap<T, U, V, W, X>& collection) { deleteAllPairFirsts<typename HashMap<T, U, V, W, X>::KeyType>(collection); } template<typename T, typename U, typename V, typename W, typename X, typename Y> inline void copyKeysToVector(const HashMap<T, U, V, W, X>& collection, Y& vector) { typedef typename HashMap<T, U, V, W, X>::const_iterator::Keys iterator; vector.resize(collection.size()); iterator it = collection.begin().keys(); iterator end = collection.end().keys(); for (unsigned i = 0; it != end; ++it, ++i) vector[i] = *it; } template<typename T, typename U, typename V, typename W, typename X, typename Y> inline void copyValuesToVector(const HashMap<T, U, V, W, X>& collection, Y& vector) { typedef typename HashMap<T, U, V, W, X>::const_iterator::Values iterator; vector.resize(collection.size()); iterator it = collection.begin().values(); iterator end = collection.end().values(); for (unsigned i = 0; it != end; ++it, ++i) vector[i] = *it; } } // namespace WTF using WTF::HashMap; #include "RefPtrHashMap.h" #endif /* WTF_HashMap_h */