C++程序  |  169行  |  5.51 KB

// Copyright 2008-2010 Google Inc. All Rights Reserved.
// Author: mschilder@google.com (Marius Schilder)

#include "rsa.h"
#include "sha.h"

// a[] -= mod
static void subM(RSAPublicKey key,
                 uint32_t* a) {
  int64_t A = 0;
  int i;
  for (i = 0; i < key->len; ++i) {
    A += (uint64_t)a[i] - key->n[i];
    a[i] = (uint32_t)A;
    A >>= 32;
  }
}

// return a[] >= mod
static int geM(RSAPublicKey key,
               const uint32_t* a) {
  int i;
  for (i = key->len; i;) {
    --i;
    if (a[i] < key->n[i]) return 0;
    if (a[i] > key->n[i]) return 1;
  }
  return 1;  // equal
}

// montgomery c[] += a * b[] / R % mod
static void montMulAdd(RSAPublicKey key,
                       uint32_t* c,
                       const uint32_t a,
                       const uint32_t* b) {
  uint64_t A = (uint64_t)a * b[0] + c[0];
  uint32_t d0 = (uint32_t)A * key->n0inv;
  uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A;
  int i;

  for (i = 1; i < key->len; ++i) {
    A = (A >> 32) + (uint64_t)a * b[i] + c[i];
    B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A;
    c[i - 1] = (uint32_t)B;
  }

  A = (A >> 32) + (B >> 32);

  c[i - 1] = (uint32_t)A;

  if (A >> 32) {
    subM(key, c);
  }
}

// montgomery c[] = a[] * b[] / R % mod
static void montMul(RSAPublicKey key,
                    uint32_t* c,
                    const uint32_t* a,
                    const uint32_t* b) {
  int i;
  for (i = 0; i < key->len; ++i) {
    c[i] = 0;
  }
  for (i = 0; i < key->len; ++i) {
    montMulAdd(key, c, a[i], b);
  }
}

// In-place public exponentiation.
// Input and output big-endian byte array in inout.
static void modpowF4(RSAPublicKey key,
                 uint8_t* inout) {
  uint32_t a[RSANUMWORDS];
  uint32_t aR[RSANUMWORDS];
  uint32_t aaR[RSANUMWORDS];
  uint32_t* aaa = aaR;  // Re-use location.
  int i;

  // Convert from big endian byte array to little endian word array.
  for (i = 0; i < key->len; ++i) {
    uint32_t tmp =
      (inout[((key->len - 1 - i) * 4) + 0] << 24) |
      (inout[((key->len - 1 - i) * 4) + 1] << 16) |
      (inout[((key->len - 1 - i) * 4) + 2] << 8) |
      (inout[((key->len - 1 - i) * 4) + 3] << 0);
    a[i] = tmp;
  }

  montMul(key, aR, a, key->rr);  // aR = a * RR / R mod M
  for (i = 0; i < 16; i += 2) {
    montMul(key, aaR, aR, aR);  // aaR = aR * aR / R mod M
    montMul(key, aR, aaR, aaR);  // aR = aaR * aaR / R mod M
  }
  montMul(key, aaa, aR, a);  // aaa = aR * a / R mod M

  // Make sure aaa < mod; aaa is at most 1x mod too large.
  if (geM(key, aaa)) {
    subM(key, aaa);
  }

  // Convert to bigendian byte array
  for (i = key->len - 1; i >= 0; --i) {
    uint32_t tmp = aaa[i];
    *inout++ = tmp >> 24;
    *inout++ = tmp >> 16;
    *inout++ = tmp >> 8;
    *inout++ = tmp >> 0;
  }
}

// Expected PKCS1.5 signature padding bytes, for a keytool RSA signature.
// Has the 0-length optional parameter encoded in the ASN1 (as opposed to the
// other flavor which omits the optional parameter entirely). This code does not
// accept signatures without the optional parameter.
/*
static const uint8_t padding[RSANUMBYTES] = {
0x00,0x01,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0x00,0x30,0x21,0x30,0x09,0x06,0x05,0x2b,0x0e,0x03,0x02,0x1a,0x05,0x00,0x04,0x14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
};
*/

// SHA-1 of PKCS1.5 signature padding for 2048 bit, as above.
// At the location of the bytes of the hash all 00 are hashed.
static const uint8_t kExpectedPadShaRsa2048[SHA_DIGEST_SIZE] = {
  0xdc, 0xbd, 0xbe, 0x42, 0xd5, 0xf5, 0xa7, 0x2e, 0x6e, 0xfc,
  0xf5, 0x5d, 0xaf, 0x9d, 0xea, 0x68, 0x7c, 0xfb, 0xf1, 0x67
};

// Verify a 2048 bit RSA PKCS1.5 signature against an expected SHA-1 hash.
// Returns 0 on failure, 1 on success.
int RSA_verify(RSAPublicKey key,
               const uint8_t* signature,
               const int len,
               const uint8_t* sha) {
  uint8_t buf[RSANUMBYTES];
  int i;

  if (key->len != RSANUMWORDS) {
    return 0;  // Wrong key passed in.
  }

  if (len != sizeof(buf)) {
    return 0;  // Wrong input length.
  }

  for (i = 0; i < len; ++i) {  // Copy input to local workspace.
    buf[i] = signature[i];
  }

  modpowF4(key, buf);  // In-place exponentiation.

  // Xor sha portion, so it all becomes 00 iff equal.
  for (i = len - SHA_DIGEST_SIZE; i < len; ++i) {
    buf[i] ^= *sha++;
  }

  // Hash resulting buf, in-place.
  SHA(buf, len, buf);

  // Compare against expected hash value.
  for (i = 0; i < SHA_DIGEST_SIZE; ++i) {
    if (buf[i] != kExpectedPadShaRsa2048[i]) {
      return 0;
    }
  }

  return 1;  // All checked out OK.
}