// Copyright 2008-2010 Google Inc. All Rights Reserved. // Author: mschilder@google.com (Marius Schilder) #include "rsa.h" #include "sha.h" // a[] -= mod static void subM(RSAPublicKey key, uint32_t* a) { int64_t A = 0; int i; for (i = 0; i < key->len; ++i) { A += (uint64_t)a[i] - key->n[i]; a[i] = (uint32_t)A; A >>= 32; } } // return a[] >= mod static int geM(RSAPublicKey key, const uint32_t* a) { int i; for (i = key->len; i;) { --i; if (a[i] < key->n[i]) return 0; if (a[i] > key->n[i]) return 1; } return 1; // equal } // montgomery c[] += a * b[] / R % mod static void montMulAdd(RSAPublicKey key, uint32_t* c, const uint32_t a, const uint32_t* b) { uint64_t A = (uint64_t)a * b[0] + c[0]; uint32_t d0 = (uint32_t)A * key->n0inv; uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A; int i; for (i = 1; i < key->len; ++i) { A = (A >> 32) + (uint64_t)a * b[i] + c[i]; B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A; c[i - 1] = (uint32_t)B; } A = (A >> 32) + (B >> 32); c[i - 1] = (uint32_t)A; if (A >> 32) { subM(key, c); } } // montgomery c[] = a[] * b[] / R % mod static void montMul(RSAPublicKey key, uint32_t* c, const uint32_t* a, const uint32_t* b) { int i; for (i = 0; i < key->len; ++i) { c[i] = 0; } for (i = 0; i < key->len; ++i) { montMulAdd(key, c, a[i], b); } } // In-place public exponentiation. // Input and output big-endian byte array in inout. static void modpowF4(RSAPublicKey key, uint8_t* inout) { uint32_t a[RSANUMWORDS]; uint32_t aR[RSANUMWORDS]; uint32_t aaR[RSANUMWORDS]; uint32_t* aaa = aaR; // Re-use location. int i; // Convert from big endian byte array to little endian word array. for (i = 0; i < key->len; ++i) { uint32_t tmp = (inout[((key->len - 1 - i) * 4) + 0] << 24) | (inout[((key->len - 1 - i) * 4) + 1] << 16) | (inout[((key->len - 1 - i) * 4) + 2] << 8) | (inout[((key->len - 1 - i) * 4) + 3] << 0); a[i] = tmp; } montMul(key, aR, a, key->rr); // aR = a * RR / R mod M for (i = 0; i < 16; i += 2) { montMul(key, aaR, aR, aR); // aaR = aR * aR / R mod M montMul(key, aR, aaR, aaR); // aR = aaR * aaR / R mod M } montMul(key, aaa, aR, a); // aaa = aR * a / R mod M // Make sure aaa < mod; aaa is at most 1x mod too large. if (geM(key, aaa)) { subM(key, aaa); } // Convert to bigendian byte array for (i = key->len - 1; i >= 0; --i) { uint32_t tmp = aaa[i]; *inout++ = tmp >> 24; *inout++ = tmp >> 16; *inout++ = tmp >> 8; *inout++ = tmp >> 0; } } // Expected PKCS1.5 signature padding bytes, for a keytool RSA signature. // Has the 0-length optional parameter encoded in the ASN1 (as opposed to the // other flavor which omits the optional parameter entirely). This code does not // accept signatures without the optional parameter. /* static const uint8_t padding[RSANUMBYTES] = { 0x00,0x01,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0x00,0x30,0x21,0x30,0x09,0x06,0x05,0x2b,0x0e,0x03,0x02,0x1a,0x05,0x00,0x04,0x14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; */ // SHA-1 of PKCS1.5 signature padding for 2048 bit, as above. // At the location of the bytes of the hash all 00 are hashed. static const uint8_t kExpectedPadShaRsa2048[SHA_DIGEST_SIZE] = { 0xdc, 0xbd, 0xbe, 0x42, 0xd5, 0xf5, 0xa7, 0x2e, 0x6e, 0xfc, 0xf5, 0x5d, 0xaf, 0x9d, 0xea, 0x68, 0x7c, 0xfb, 0xf1, 0x67 }; // Verify a 2048 bit RSA PKCS1.5 signature against an expected SHA-1 hash. // Returns 0 on failure, 1 on success. int RSA_verify(RSAPublicKey key, const uint8_t* signature, const int len, const uint8_t* sha) { uint8_t buf[RSANUMBYTES]; int i; if (key->len != RSANUMWORDS) { return 0; // Wrong key passed in. } if (len != sizeof(buf)) { return 0; // Wrong input length. } for (i = 0; i < len; ++i) { // Copy input to local workspace. buf[i] = signature[i]; } modpowF4(key, buf); // In-place exponentiation. // Xor sha portion, so it all becomes 00 iff equal. for (i = len - SHA_DIGEST_SIZE; i < len; ++i) { buf[i] ^= *sha++; } // Hash resulting buf, in-place. SHA(buf, len, buf); // Compare against expected hash value. for (i = 0; i < SHA_DIGEST_SIZE; ++i) { if (buf[i] != kExpectedPadShaRsa2048[i]) { return 0; } } return 1; // All checked out OK. }