/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
/*
* Hardware Composer Commit Points
*
* Synopsis
* hwcCommit [options] graphicFormat ...
* options:
* -s [width, height] - Starting dimension
* -v - Verbose
*
* graphic formats:
* RGBA8888 (reference frame default)
* RGBX8888
* RGB888
* RGB565
* BGRA8888
* RGBA5551
* RGBA4444
* YV12
*
* Description
* The Hardware Composer (HWC) Commit test is a benchmark that
* discovers the points at which the HWC will commit to rendering an
* overlay(s). Before rendering a set of overlays, the HWC is shown
* the list through a prepare call. During the prepare call the HWC
* is able to examine the list and specify which overlays it is able
* to handle. The overlays that it can't handle are typically composited
* by a higher level (e.g. Surface Flinger) and then the original list
* plus a composit of what HWC passed on are provided back to the HWC
* for rendering.
*
* Once an implementation of the HWC has been shipped, a regression would
* likely occur if a latter implementation started passing on conditions
* that it used to commit to. The primary purpose of this benchmark
* is the automated discovery of the commit points, where an implementation
* is on the edge between committing and not committing. These are commonly
* referred to as commit points. Between implementations changes to the
* commit points are allowed, as long as they improve what the HWC commits
* to. Once an implementation of the HWC is shipped, the commit points are
* not allowed to regress in future implementations.
*
* This benchmark takes a sampling and then adjusts until it finds a
* commit point. It doesn't exhaustively check all possible conditions,
* which do to the number of combinations would be impossible. Instead
* it starts its search from a starting dimension, that can be changed
* via the -s option. The search is also bounded by a set of search
* limits, that are hard-coded into a structure of constants named
* searchLimits. Results that happen to reach a searchLimit are prefixed
* with >=, so that it is known that the value could possibly be larger.
*
* Measurements are made for each of the graphic formats specified as
* positional parameters on the command-line. If no graphic formats
* are specified on the command line, then by default measurements are
* made and reported for each of the known graphic format.
*/
#include <algorithm>
#include <assert.h>
#include <cerrno>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <iomanip>
#include <istream>
#include <libgen.h>
#include <list>
#include <sched.h>
#include <sstream>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <vector>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <ui/FramebufferNativeWindow.h>
#include <ui/GraphicBuffer.h>
#include <ui/EGLUtils.h>
#define LOG_TAG "hwcCommitTest"
#include <utils/Log.h>
#include <testUtil.h>
#include <hardware/hwcomposer.h>
#include <glTestLib.h>
#include <hwc/hwcTestLib.h>
using namespace std;
using namespace android;
// Defaults
const HwcTestDim defaultStartDim = HwcTestDim(100, 100);
const bool defaultVerbose = false;
const uint32_t defaultFormat = HAL_PIXEL_FORMAT_RGBA_8888;
const int32_t defaultTransform = 0;
const uint32_t defaultBlend = HWC_BLENDING_NONE;
const ColorFract defaultColor(0.5, 0.5, 0.5);
const float defaultAlpha = 1.0; // Opaque
const HwcTestDim defaultSourceDim(1, 1);
const struct hwc_rect defaultSourceCrop = {0, 0, 1, 1};
const struct hwc_rect defaultDisplayFrame = {0, 0, 100, 100};
// Global Constants
const uint32_t printFieldWidth = 2;
const struct searchLimits {
uint32_t numOverlays;
HwcTestDim sourceCrop;
} searchLimits = {
10,
HwcTestDim(3000, 2000),
};
const struct transformType {
const char *desc;
uint32_t id;
} transformType[] = {
{"fliph", HWC_TRANSFORM_FLIP_H},
{"flipv", HWC_TRANSFORM_FLIP_V},
{"rot90", HWC_TRANSFORM_ROT_90},
{"rot180", HWC_TRANSFORM_ROT_180},
{"rot270", HWC_TRANSFORM_ROT_270},
};
const struct blendType {
const char *desc;
uint32_t id;
} blendType[] = {
{"none", HWC_BLENDING_NONE},
{"premult", HWC_BLENDING_PREMULT},
{"coverage", HWC_BLENDING_COVERAGE},
};
// Defines
#define MAXCMD 200
#define CMD_STOP_FRAMEWORK "stop 2>&1"
#define CMD_START_FRAMEWORK "start 2>&1"
// Macros
#define NUMA(a) (sizeof(a) / sizeof(a [0])) // Num elements in an array
// Local types
class Rectangle {
public:
Rectangle(uint32_t graphicFormat = defaultFormat,
HwcTestDim dfDim = HwcTestDim(1, 1),
HwcTestDim sDim = HwcTestDim(1, 1));
void setSourceDim(HwcTestDim dim);
uint32_t format;
uint32_t transform;
int32_t blend;
ColorFract color;
float alpha;
HwcTestDim sourceDim;
struct hwc_rect sourceCrop;
struct hwc_rect displayFrame;
};
class Range {
public:
Range(void) : _l(0), _u(0) {}
Range(uint32_t lower, uint32_t upper) : _l(lower), _u(upper) {}
uint32_t lower(void) { return _l; }
uint32_t upper(void) { return _u; }
operator string();
private:
uint32_t _l; // lower
uint32_t _u; // upper
};
Range::operator string()
{
ostringstream out;
out << '[' << _l << ", " << _u << ']';
return out.str();
}
class Rational {
public:
Rational(void) : _n(0), _d(1) {}
Rational(uint32_t n, uint32_t d) : _n(n), _d(d) {}
uint32_t numerator(void) { return _n; }
uint32_t denominator(void) { return _d; }
void setNumerator(uint32_t numerator) { _n = numerator; }
bool operator==(const Rational& other) const;
bool operator!=(const Rational& other) const { return !(*this == other); }
bool operator<(const Rational& other) const;
bool operator>(const Rational& other) const {
return (!(*this == other) && !(*this < other));
}
static void double2Rational(double f, Range nRange, Range dRange,
Rational& lower, Rational& upper);
operator string() const;
operator double() const { return (double) _n / (double) _d; }
private:
uint32_t _n;
uint32_t _d;
};
// Globals
static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE |
GraphicBuffer::USAGE_SW_WRITE_RARELY;
static hwc_composer_device_t *hwcDevice;
static EGLDisplay dpy;
static EGLSurface surface;
static EGLint width, height;
static size_t maxHeadingLen;
static vector<string> formats;
// Measurements
struct meas {
uint32_t format;
uint32_t startDimOverlays;
uint32_t maxNonOverlapping;
uint32_t maxOverlapping;
list<uint32_t> transforms;
list<uint32_t> blends;
struct displayFrame {
uint32_t minWidth;
uint32_t minHeight;
HwcTestDim minDim;
uint32_t maxWidth;
uint32_t maxHeight;
HwcTestDim maxDim;
} df;
struct sourceCrop {
uint32_t minWidth;
uint32_t minHeight;
HwcTestDim minDim;
uint32_t maxWidth;
uint32_t maxHeight;
HwcTestDim maxDim;
Rational hScale;
HwcTestDim hScaleBestDf;
HwcTestDim hScaleBestSc;
Rational vScale;
HwcTestDim vScaleBestDf;
HwcTestDim vScaleBestSc;
} sc;
vector<uint32_t> overlapBlendNone;
vector<uint32_t> overlapBlendPremult;
vector<uint32_t> overlapBlendCoverage;
};
vector<meas> measurements;
// Function prototypes
uint32_t numOverlays(list<Rectangle>& rectList);
uint32_t maxOverlays(uint32_t format, bool allowOverlap);
list<uint32_t> supportedTransforms(uint32_t format);
list<uint32_t> supportedBlends(uint32_t format);
uint32_t dfMinWidth(uint32_t format);
uint32_t dfMinHeight(uint32_t format);
uint32_t dfMaxWidth(uint32_t format);
uint32_t dfMaxHeight(uint32_t format);
HwcTestDim dfMinDim(uint32_t format);
HwcTestDim dfMaxDim(uint32_t format);
uint32_t scMinWidth(uint32_t format, const HwcTestDim& dfDim);
uint32_t scMinHeight(uint32_t format, const HwcTestDim& dfDim);
uint32_t scMaxWidth(uint32_t format, const HwcTestDim& dfDim);
uint32_t scMaxHeight(uint32_t format, const HwcTestDim& dfDim);
HwcTestDim scMinDim(uint32_t format, const HwcTestDim& dfDim);
HwcTestDim scMaxDim(uint32_t format, const HwcTestDim& dfDim);
Rational scHScale(uint32_t format,
const HwcTestDim& dfMin, const HwcTestDim& dfMax,
const HwcTestDim& scMin, const HwcTestDim& scMax,
HwcTestDim& outBestDf, HwcTestDim& outBestSc);
Rational scVScale(uint32_t format,
const HwcTestDim& dfMin, const HwcTestDim& dfMax,
const HwcTestDim& scMin, const HwcTestDim& scMax,
HwcTestDim& outBestDf, HwcTestDim& outBestSc);
uint32_t numOverlapping(uint32_t backgroundFormat, uint32_t foregroundFormat,
uint32_t backgroundBlend, uint32_t foregroundBlend);
string transformList2str(const list<uint32_t>& transformList);
string blendList2str(const list<uint32_t>& blendList);
void init(void);
void printFormatHeadings(size_t indent);
void printOverlapLine(size_t indent, const string formatStr,
const vector<uint32_t>& results);
void printSyntax(const char *cmd);
// Command-line option settings
static bool verbose = defaultVerbose;
static HwcTestDim startDim = defaultStartDim;
/*
* Main
*
* Performs the following high-level sequence of operations:
*
* 1. Command-line parsing
*
* 2. Form a list of command-line specified graphic formats. If
* no formats are specified, then form a list of all known formats.
*
* 3. Stop framework
* Only one user at a time is allowed to use the HWC. Surface
* Flinger uses the HWC and is part of the framework. Need to
* stop the framework so that Surface Flinger will stop using
* the HWC.
*
* 4. Initialization
*
* 5. For each graphic format in the previously formed list perform
* measurements on that format and report the results.
*
* 6. Start framework
*/
int
main(int argc, char *argv[])
{
int rv, opt;
char *chptr;
bool error;
string str;
char cmd[MAXCMD];
list<Rectangle> rectList;
testSetLogCatTag(LOG_TAG);
// Parse command line arguments
while ((opt = getopt(argc, argv, "s:v?h")) != -1) {
switch (opt) {
case 's': // Start Dimension
// Use arguments until next starts with a dash
// or current ends with a > or ]
str = optarg;
while (optind < argc) {
if (*argv[optind] == '-') { break; }
char endChar = (str.length() > 1) ? str[str.length() - 1] : 0;
if ((endChar == '>') || (endChar == ']')) { break; }
str += " " + string(argv[optind++]);
}
{
istringstream in(str);
startDim = hwcTestParseDim(in, error);
// Any parse error or characters not used by parser
if (error
|| (((unsigned int) in.tellg() != in.str().length())
&& (in.tellg() != (streampos) -1))) {
testPrintE("Invalid command-line specified start "
"dimension of: %s", str.c_str());
exit(8);
}
}
break;
case 'v': // Verbose
verbose = true;
break;
case 'h': // Help
case '?':
default:
printSyntax(basename(argv[0]));
exit(((optopt == 0) || (optopt == '?')) ? 0 : 11);
}
}
// Positional parameters
// Positional parameters provide the names of graphic formats that
// measurements are to be made on. Measurements are made on all
// known graphic formats when no positional parameters are provided.
if (optind == argc) {
// No command-line specified graphic formats
// Add all graphic formats to the list of formats to be measured
for (unsigned int n1 = 0; n1 < NUMA(hwcTestGraphicFormat); n1++) {
formats.push_back(hwcTestGraphicFormat[n1].desc);
}
} else {
// Add names of command-line specified graphic formats to the
// list of formats to be tested
for (; argv[optind] != NULL; optind++) {
formats.push_back(argv[optind]);
}
}
// Determine length of longest specified graphic format.
// This value is used for output formating
for (vector<string>::iterator it = formats.begin();
it != formats.end(); ++it) {
maxHeadingLen = max(maxHeadingLen, it->length());
}
// Stop framework
rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK);
if (rv >= (signed) sizeof(cmd) - 1) {
testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK);
exit(14);
}
testExecCmd(cmd);
testDelay(1.0); // TODO - needs means to query whether asynchronous stop
// framework operation has completed. For now, just wait
// a long time.
testPrintI("startDim: %s", ((string) startDim).c_str());
init();
// For each of the graphic formats
for (vector<string>::iterator itFormat = formats.begin();
itFormat != formats.end(); ++itFormat) {
// Locate hwcTestLib structure that describes this format
const struct hwcTestGraphicFormat *format;
format = hwcTestGraphicFormatLookup((*itFormat).c_str());
if (format == NULL) {
testPrintE("Unknown graphic format of: %s", (*itFormat).c_str());
exit(1);
}
// Display format header
testPrintI("format: %s", format->desc);
// Create area to hold the measurements
struct meas meas;
struct meas *measPtr;
meas.format = format->format;
measurements.push_back(meas);
measPtr = &measurements[measurements.size() - 1];
// Start dimension num overlays
Rectangle rect(format->format, startDim);
rectList.clear();
rectList.push_back(rect);
measPtr->startDimOverlays = numOverlays(rectList);
testPrintI(" startDimOverlays: %u", measPtr->startDimOverlays);
// Skip the rest of the measurements, when the start dimension
// doesn't produce an overlay
if (measPtr->startDimOverlays == 0) { continue; }
// Max Overlays
measPtr->maxNonOverlapping = maxOverlays(format->format, false);
testPrintI(" max nonOverlapping overlays: %s%u",
(measPtr->maxNonOverlapping == searchLimits.numOverlays)
? ">= " : "",
measPtr->maxNonOverlapping);
measPtr->maxOverlapping = maxOverlays(format->format, true);
testPrintI(" max Overlapping overlays: %s%u",
(measPtr->maxOverlapping == searchLimits.numOverlays)
? ">= " : "",
measPtr->maxOverlapping);
// Transforms and blends
measPtr->transforms = supportedTransforms(format->format);
testPrintI(" transforms: %s",
transformList2str(measPtr->transforms).c_str());
measPtr->blends = supportedBlends(format->format);
testPrintI(" blends: %s",
blendList2str(measPtr->blends).c_str());
// Display frame measurements
measPtr->df.minWidth = dfMinWidth(format->format);
testPrintI(" dfMinWidth: %u", measPtr->df.minWidth);
measPtr->df.minHeight = dfMinHeight(format->format);
testPrintI(" dfMinHeight: %u", measPtr->df.minHeight);
measPtr->df.maxWidth = dfMaxWidth(format->format);
testPrintI(" dfMaxWidth: %u", measPtr->df.maxWidth);
measPtr->df.maxHeight = dfMaxHeight(format->format);
testPrintI(" dfMaxHeight: %u", measPtr->df.maxHeight);
measPtr->df.minDim = dfMinDim(format->format);
testPrintI(" dfMinDim: %s", ((string) measPtr->df.minDim).c_str());
measPtr->df.maxDim = dfMaxDim(format->format);
testPrintI(" dfMaxDim: %s", ((string) measPtr->df.maxDim).c_str());
// Source crop measurements
measPtr->sc.minWidth = scMinWidth(format->format, measPtr->df.minDim);
testPrintI(" scMinWidth: %u", measPtr->sc.minWidth);
measPtr->sc.minHeight = scMinHeight(format->format, measPtr->df.minDim);
testPrintI(" scMinHeight: %u", measPtr->sc.minHeight);
measPtr->sc.maxWidth = scMaxWidth(format->format, measPtr->df.maxDim);
testPrintI(" scMaxWidth: %s%u", (measPtr->sc.maxWidth
== searchLimits.sourceCrop.width()) ? ">= " : "",
measPtr->sc.maxWidth);
measPtr->sc.maxHeight = scMaxHeight(format->format, measPtr->df.maxDim);
testPrintI(" scMaxHeight: %s%u", (measPtr->sc.maxHeight
== searchLimits.sourceCrop.height()) ? ">= " : "",
measPtr->sc.maxHeight);
measPtr->sc.minDim = scMinDim(format->format, measPtr->df.minDim);
testPrintI(" scMinDim: %s", ((string) measPtr->sc.minDim).c_str());
measPtr->sc.maxDim = scMaxDim(format->format, measPtr->df.maxDim);
testPrintI(" scMaxDim: %s%s", ((measPtr->sc.maxDim.width()
>= searchLimits.sourceCrop.width())
|| (measPtr->sc.maxDim.width() >=
searchLimits.sourceCrop.height())) ? ">= " : "",
((string) measPtr->sc.maxDim).c_str());
measPtr->sc.hScale = scHScale(format->format,
measPtr->df.minDim, measPtr->df.maxDim,
measPtr->sc.minDim, measPtr->sc.maxDim,
measPtr->sc.hScaleBestDf,
measPtr->sc.hScaleBestSc);
testPrintI(" scHScale: %s%f",
(measPtr->sc.hScale
>= Rational(searchLimits.sourceCrop.width(),
measPtr->df.minDim.width())) ? ">= " : "",
(double) measPtr->sc.hScale);
testPrintI(" HScale Best Display Frame: %s",
((string) measPtr->sc.hScaleBestDf).c_str());
testPrintI(" HScale Best Source Crop: %s",
((string) measPtr->sc.hScaleBestSc).c_str());
measPtr->sc.vScale = scVScale(format->format,
measPtr->df.minDim, measPtr->df.maxDim,
measPtr->sc.minDim, measPtr->sc.maxDim,
measPtr->sc.vScaleBestDf,
measPtr->sc.vScaleBestSc);
testPrintI(" scVScale: %s%f",
(measPtr->sc.vScale
>= Rational(searchLimits.sourceCrop.height(),
measPtr->df.minDim.height())) ? ">= " : "",
(double) measPtr->sc.vScale);
testPrintI(" VScale Best Display Frame: %s",
((string) measPtr->sc.vScaleBestDf).c_str());
testPrintI(" VScale Best Source Crop: %s",
((string) measPtr->sc.vScaleBestSc).c_str());
// Overlap two graphic formats and different blends
// Results displayed after all overlap measurments with
// current format in the foreground
// TODO: make measurments with background blend other than
// none. All of these measurements are done with a
// background blend of HWC_BLENDING_NONE, with the
// blend type of the foregound being varied.
uint32_t foregroundFormat = format->format;
for (vector<string>::iterator it = formats.begin();
it != formats.end(); ++it) {
uint32_t num;
const struct hwcTestGraphicFormat *backgroundFormatPtr
= hwcTestGraphicFormatLookup((*it).c_str());
uint32_t backgroundFormat = backgroundFormatPtr->format;
num = numOverlapping(backgroundFormat, foregroundFormat,
HWC_BLENDING_NONE, HWC_BLENDING_NONE);
measPtr->overlapBlendNone.push_back(num);
num = numOverlapping(backgroundFormat, foregroundFormat,
HWC_BLENDING_NONE, HWC_BLENDING_PREMULT);
measPtr->overlapBlendPremult.push_back(num);
num = numOverlapping(backgroundFormat, foregroundFormat,
HWC_BLENDING_NONE, HWC_BLENDING_COVERAGE);
measPtr->overlapBlendCoverage.push_back(num);
}
}
// Display overlap results
size_t indent = 2;
testPrintI("overlapping blend: none");
printFormatHeadings(indent);
for (vector<string>::iterator it = formats.begin();
it != formats.end(); ++it) {
printOverlapLine(indent, *it, measurements[it
- formats.begin()].overlapBlendNone);
}
testPrintI("");
testPrintI("overlapping blend: premult");
printFormatHeadings(indent);
for (vector<string>::iterator it = formats.begin();
it != formats.end(); ++it) {
printOverlapLine(indent, *it, measurements[it
- formats.begin()].overlapBlendPremult);
}
testPrintI("");
testPrintI("overlapping blend: coverage");
printFormatHeadings(indent);
for (vector<string>::iterator it = formats.begin();
it != formats.end(); ++it) {
printOverlapLine(indent, *it, measurements[it
- formats.begin()].overlapBlendCoverage);
}
testPrintI("");
// Start framework
rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK);
if (rv >= (signed) sizeof(cmd) - 1) {
testPrintE("Command too long for: %s", CMD_START_FRAMEWORK);
exit(21);
}
testExecCmd(cmd);
return 0;
}
// Determine the maximum number of overlays that are all of the same format
// that the HWC will commit to. If allowOverlap is true, then the rectangles
// are laid out on a diagonal starting from the upper left corner. With
// each rectangle adjust one pixel to the right and one pixel down.
// When allowOverlap is false, the rectangles are tiled in column major
// order. Note, column major ordering is used so that the initial rectangles
// are all on different horizontal scan rows. It is common that hardware
// has limits on the number of objects it can handle on any single row.
uint32_t maxOverlays(uint32_t format, bool allowOverlap)
{
unsigned int max = 0;
for (unsigned int numRects = 1; numRects <= searchLimits.numOverlays;
numRects++) {
list<Rectangle> rectList;
for (unsigned int x = 0;
(x + startDim.width()) < (unsigned int) width;
x += (allowOverlap) ? 1 : startDim.width()) {
for (unsigned int y = 0;
(y + startDim.height()) < (unsigned int) height;
y += (allowOverlap) ? 1 : startDim.height()) {
Rectangle rect(format, startDim, startDim);
rect.displayFrame.left = x;
rect.displayFrame.top = y;
rect.displayFrame.right = x + startDim.width();
rect.displayFrame.bottom = y + startDim.height();
rectList.push_back(rect);
if (rectList.size() >= numRects) { break; }
}
if (rectList.size() >= numRects) { break; }
}
uint32_t num = numOverlays(rectList);
if (num > max) { max = num; }
}
return max;
}
// Measures what transforms (i.e. flip horizontal, rotate 180) are
// supported by the specified format
list<uint32_t> supportedTransforms(uint32_t format)
{
list<uint32_t> rv;
list<Rectangle> rectList;
Rectangle rect(format, startDim);
// For each of the transform types
for (unsigned int idx = 0; idx < NUMA(transformType); idx++) {
unsigned int id = transformType[idx].id;
rect.transform = id;
rectList.clear();
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num == 1) {
rv.push_back(id);
}
}
return rv;
}
// Determines which types of blends (i.e. none, premult, coverage) are
// supported by the specified format
list<uint32_t> supportedBlends(uint32_t format)
{
list<uint32_t> rv;
list<Rectangle> rectList;
Rectangle rect(format, startDim);
// For each of the blend types
for (unsigned int idx = 0; idx < NUMA(blendType); idx++) {
unsigned int id = blendType[idx].id;
rect.blend = id;
rectList.clear();
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num == 1) {
rv.push_back(id);
}
}
return rv;
}
// Determines the minimum width of any display frame of the given format
// that the HWC will commit to.
uint32_t dfMinWidth(uint32_t format)
{
uint32_t w;
list<Rectangle> rectList;
for (w = 1; w <= startDim.width(); w++) {
HwcTestDim dim(w, startDim.height());
Rectangle rect(format, dim);
rectList.clear();
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num > 0) {
return w;
}
}
if (w > startDim.width()) {
testPrintE("Failed to locate display frame min width");
exit(33);
}
return w;
}
// Display frame minimum height
uint32_t dfMinHeight(uint32_t format)
{
uint32_t h;
list<Rectangle> rectList;
for (h = 1; h <= startDim.height(); h++) {
HwcTestDim dim(startDim.width(), h);
Rectangle rect(format, dim);
rectList.clear();
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num > 0) {
return h;
}
}
if (h > startDim.height()) {
testPrintE("Failed to locate display frame min height");
exit(34);
}
return h;
}
// Display frame maximum width
uint32_t dfMaxWidth(uint32_t format)
{
uint32_t w;
list<Rectangle> rectList;
for (w = width; w >= startDim.width(); w--) {
HwcTestDim dim(w, startDim.height());
Rectangle rect(format, dim);
rectList.clear();
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num > 0) {
return w;
}
}
if (w < startDim.width()) {
testPrintE("Failed to locate display frame max width");
exit(35);
}
return w;
}
// Display frame maximum height
uint32_t dfMaxHeight(uint32_t format)
{
uint32_t h;
for (h = height; h >= startDim.height(); h--) {
HwcTestDim dim(startDim.width(), h);
Rectangle rect(format, dim);
list<Rectangle> rectList;
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num > 0) {
return h;
}
}
if (h < startDim.height()) {
testPrintE("Failed to locate display frame max height");
exit(36);
}
return h;
}
// Determine the minimum number of pixels that the HWC will ever commit to.
// Note, this might be different that dfMinWidth * dfMinHeight, in that this
// function adjusts both the width and height from the starting dimension.
HwcTestDim dfMinDim(uint32_t format)
{
uint64_t bestMinPixels = 0;
HwcTestDim bestDim;
bool bestSet = false; // True when value has been assigned to
// bestMinPixels and bestDim
bool origVerbose = verbose; // Temporarily turn off verbose
verbose = false;
for (uint32_t w = 1; w <= startDim.width(); w++) {
for (uint32_t h = 1; h <= startDim.height(); h++) {
if (bestSet && ((w > bestMinPixels) || (h > bestMinPixels))) {
break;
}
HwcTestDim dim(w, h);
Rectangle rect(format, dim);
list<Rectangle> rectList;
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num > 0) {
uint64_t pixels = dim.width() * dim.height();
if (!bestSet || (pixels < bestMinPixels)) {
bestMinPixels = pixels;
bestDim = dim;
bestSet = true;
}
}
}
}
verbose = origVerbose;
if (!bestSet) {
testPrintE("Unable to locate display frame min dimension");
exit(20);
}
return bestDim;
}
// Display frame maximum dimension
HwcTestDim dfMaxDim(uint32_t format)
{
uint64_t bestMaxPixels = 0;
HwcTestDim bestDim;
bool bestSet = false; // True when value has been assigned to
// bestMaxPixels and bestDim;
// Potentially increase benchmark performance by first checking
// for the common case of supporting a full display frame.
HwcTestDim dim(width, height);
Rectangle rect(format, dim);
list<Rectangle> rectList;
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num == 1) { return dim; }
// TODO: Use a binary search
bool origVerbose = verbose; // Temporarily turn off verbose
verbose = false;
for (uint32_t w = startDim.width(); w <= (uint32_t) width; w++) {
for (uint32_t h = startDim.height(); h <= (uint32_t) height; h++) {
if (bestSet && ((w * h) <= bestMaxPixels)) { continue; }
HwcTestDim dim(w, h);
Rectangle rect(format, dim);
list<Rectangle> rectList;
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num > 0) {
uint64_t pixels = dim.width() * dim.height();
if (!bestSet || (pixels > bestMaxPixels)) {
bestMaxPixels = pixels;
bestDim = dim;
bestSet = true;
}
}
}
}
verbose = origVerbose;
if (!bestSet) {
testPrintE("Unable to locate display frame max dimension");
exit(21);
}
return bestDim;
}
// Source crop minimum width
uint32_t scMinWidth(uint32_t format, const HwcTestDim& dfDim)
{
uint32_t w;
list<Rectangle> rectList;
// Source crop frame min width
for (w = 1; w <= dfDim.width(); w++) {
Rectangle rect(format, dfDim, HwcTestDim(w, dfDim.height()));
rectList.clear();
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num > 0) {
return w;
}
}
testPrintE("Failed to locate source crop min width");
exit(35);
}
// Source crop minimum height
uint32_t scMinHeight(uint32_t format, const HwcTestDim& dfDim)
{
uint32_t h;
list<Rectangle> rectList;
for (h = 1; h <= dfDim.height(); h++) {
Rectangle rect(format, dfDim, HwcTestDim(dfDim.width(), h));
rectList.clear();
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num > 0) {
return h;
}
}
testPrintE("Failed to locate source crop min height");
exit(36);
}
// Source crop maximum width
uint32_t scMaxWidth(uint32_t format, const HwcTestDim& dfDim)
{
uint32_t w;
list<Rectangle> rectList;
for (w = searchLimits.sourceCrop.width(); w >= dfDim.width(); w--) {
Rectangle rect(format, dfDim, HwcTestDim(w, dfDim.height()));
rectList.clear();
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num > 0) {
return w;
}
}
testPrintE("Failed to locate source crop max width");
exit(35);
}
// Source crop maximum height
uint32_t scMaxHeight(uint32_t format, const HwcTestDim& dfDim)
{
uint32_t h;
list<Rectangle> rectList;
for (h = searchLimits.sourceCrop.height(); h >= dfDim.height(); h--) {
Rectangle rect(format, dfDim, HwcTestDim(dfDim.width(), h));
rectList.clear();
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num > 0) {
return h;
}
}
testPrintE("Failed to locate source crop max height");
exit(36);
}
// Source crop minimum dimension
// Discovers the source crop with the least number of pixels that the
// HWC will commit to. Note, this may be different from scMinWidth
// * scMinHeight, in that this function searches for a combination of
// width and height. While the other routines always keep one of the
// dimensions equal to the corresponding start dimension.
HwcTestDim scMinDim(uint32_t format, const HwcTestDim& dfDim)
{
uint64_t bestMinPixels = 0;
HwcTestDim bestDim;
bool bestSet = false; // True when value has been assigned to
// bestMinPixels and bestDim
bool origVerbose = verbose; // Temporarily turn off verbose
verbose = false;
for (uint32_t w = 1; w <= dfDim.width(); w++) {
for (uint32_t h = 1; h <= dfDim.height(); h++) {
if (bestSet && ((w > bestMinPixels) || (h > bestMinPixels))) {
break;
}
HwcTestDim dim(w, h);
Rectangle rect(format, dfDim, HwcTestDim(w, h));
list<Rectangle> rectList;
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num > 0) {
uint64_t pixels = dim.width() * dim.height();
if (!bestSet || (pixels < bestMinPixels)) {
bestMinPixels = pixels;
bestDim = dim;
bestSet = true;
}
}
}
}
verbose = origVerbose;
if (!bestSet) {
testPrintE("Unable to locate source crop min dimension");
exit(20);
}
return bestDim;
}
// Source crop maximum dimension
HwcTestDim scMaxDim(uint32_t format, const HwcTestDim& dfDim)
{
uint64_t bestMaxPixels = 0;
HwcTestDim bestDim;
bool bestSet = false; // True when value has been assigned to
// bestMaxPixels and bestDim;
// Potentially increase benchmark performance by first checking
// for the common case of supporting the maximum checked source size
HwcTestDim dim = searchLimits.sourceCrop;
Rectangle rect(format, dfDim, searchLimits.sourceCrop);
list<Rectangle> rectList;
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num == 1) { return dim; }
// TODO: Use a binary search
bool origVerbose = verbose; // Temporarily turn off verbose
verbose = false;
for (uint32_t w = dfDim.width();
w <= searchLimits.sourceCrop.width(); w++) {
for (uint32_t h = dfDim.height();
h <= searchLimits.sourceCrop.height(); h++) {
if (bestSet && ((w * h) <= bestMaxPixels)) { continue; }
HwcTestDim dim(w, h);
Rectangle rect(format, dfDim, dim);
list<Rectangle> rectList;
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (num > 0) {
uint64_t pixels = dim.width() * dim.height();
if (!bestSet || (pixels > bestMaxPixels)) {
bestMaxPixels = pixels;
bestDim = dim;
bestSet = true;
}
}
}
}
verbose = origVerbose;
if (!bestSet) {
testPrintE("Unable to locate source crop max dimension");
exit(21);
}
return bestDim;
}
// Source crop horizontal scale
// Determines the maximum factor by which the source crop can be larger
// that the display frame. The commit point is discovered through a
// binary search of rational numbers. The numerator in each of the
// rational numbers contains the dimension for the source crop, while
// the denominator specifies the dimension for the display frame. On
// each pass of the binary search the mid-point between the greatest
// point committed to (best) and the smallest point in which a commit
// has failed is calculated. This mid-point is then passed to a function
// named double2Rational, which determines the closest rational numbers
// just below and above the mid-point. By default the lower rational
// number is used for the scale factor on the next pass of the binary
// search. The upper value is only used when best is already equal
// to the lower value. This only occurs when the lower value has already
// been tried.
Rational scHScale(uint32_t format,
const HwcTestDim& dfMin, const HwcTestDim& dfMax,
const HwcTestDim& scMin, const HwcTestDim& scMax,
HwcTestDim& outBestDf, HwcTestDim& outBestSc)
{
HwcTestDim scDim, dfDim; // Source crop and display frame dimension
Rational best(0, 1), minBad; // Current bounds for a binary search
// MinGood is set below the lowest
// possible scale. The value of minBad,
// will be set by the first pass
// of the binary search.
// Perform the passes of the binary search
bool firstPass = true;
do {
// On first pass try the maximum scale within the search limits
if (firstPass) {
// Try the maximum possible scale, within the search limits
scDim = HwcTestDim(searchLimits.sourceCrop.width(), scMin.height());
dfDim = dfMin;
} else {
// Subsequent pass
// Halve the difference between best and minBad.
Rational lower, upper, selected;
// Try the closest ratio halfway between minBood and minBad;
// TODO: Avoid rounding issue by using Rational type for
// midpoint. For now will use double, which should
// have more than sufficient resolution.
double mid = (double) best
+ ((double) minBad - (double) best) / 2.0;
Rational::double2Rational(mid,
Range(scMin.width(), scMax.width()),
Range(dfMin.width(), dfMax.width()),
lower, upper);
if (((lower == best) && (upper == minBad))) {
return best;
}
// Use lower value unless its already been tried
selected = (lower != best) ? lower : upper;
// Assign the size of the source crop and display frame
// from the selected ratio of source crop to display frame.
scDim = HwcTestDim(selected.numerator(), scMin.height());
dfDim = HwcTestDim(selected.denominator(), dfMin.height());
}
// See if the HWC will commit to this combination
Rectangle rect(format, dfDim, scDim);
list<Rectangle> rectList;
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (verbose) {
testPrintI(" scHscale num: %u scale: %f dfDim: %s scDim: %s",
num, (float) Rational(scDim.width(), dfDim.width()),
((string) dfDim).c_str(), ((string) scDim).c_str());
}
if (num == 1) {
// HWC committed to the combination
// This is the best scale factor seen so far. Report the
// dimensions to the caller, in case nothing better is seen.
outBestDf = dfDim;
outBestSc = scDim;
// Success on the first pass means the largest possible scale
// is supported, in which case no need to search any further.
if (firstPass) { return Rational(scDim.width(), dfDim.width()); }
// Update the lower bound of the binary search
best = Rational(scDim.width(), dfDim.width());
} else {
// HWC didn't commit to this combination, so update the
// upper bound of the binary search.
minBad = Rational(scDim.width(), dfDim.width());
}
firstPass = false;
} while (best != minBad);
return best;
}
// Source crop vertical scale
// Determines the maximum factor by which the source crop can be larger
// that the display frame. The commit point is discovered through a
// binary search of rational numbers. The numerator in each of the
// rational numbers contains the dimension for the source crop, while
// the denominator specifies the dimension for the display frame. On
// each pass of the binary search the mid-point between the greatest
// point committed to (best) and the smallest point in which a commit
// has failed is calculated. This mid-point is then passed to a function
// named double2Rational, which determines the closest rational numbers
// just below and above the mid-point. By default the lower rational
// number is used for the scale factor on the next pass of the binary
// search. The upper value is only used when best is already equal
// to the lower value. This only occurs when the lower value has already
// been tried.
Rational scVScale(uint32_t format,
const HwcTestDim& dfMin, const HwcTestDim& dfMax,
const HwcTestDim& scMin, const HwcTestDim& scMax,
HwcTestDim& outBestDf, HwcTestDim& outBestSc)
{
HwcTestDim scDim, dfDim; // Source crop and display frame dimension
Rational best(0, 1), minBad; // Current bounds for a binary search
// MinGood is set below the lowest
// possible scale. The value of minBad,
// will be set by the first pass
// of the binary search.
// Perform the passes of the binary search
bool firstPass = true;
do {
// On first pass try the maximum scale within the search limits
if (firstPass) {
// Try the maximum possible scale, within the search limits
scDim = HwcTestDim(scMin.width(), searchLimits.sourceCrop.height());
dfDim = dfMin;
} else {
// Subsequent pass
// Halve the difference between best and minBad.
Rational lower, upper, selected;
// Try the closest ratio halfway between minBood and minBad;
// TODO: Avoid rounding issue by using Rational type for
// midpoint. For now will use double, which should
// have more than sufficient resolution.
double mid = (double) best
+ ((double) minBad - (double) best) / 2.0;
Rational::double2Rational(mid,
Range(scMin.height(), scMax.height()),
Range(dfMin.height(), dfMax.height()),
lower, upper);
if (((lower == best) && (upper == minBad))) {
return best;
}
// Use lower value unless its already been tried
selected = (lower != best) ? lower : upper;
// Assign the size of the source crop and display frame
// from the selected ratio of source crop to display frame.
scDim = HwcTestDim(scMin.width(), selected.numerator());
dfDim = HwcTestDim(dfMin.width(), selected.denominator());
}
// See if the HWC will commit to this combination
Rectangle rect(format, dfDim, scDim);
list<Rectangle> rectList;
rectList.push_back(rect);
uint32_t num = numOverlays(rectList);
if (verbose) {
testPrintI(" scHscale num: %u scale: %f dfDim: %s scDim: %s",
num, (float) Rational(scDim.height(), dfDim.height()),
((string) dfDim).c_str(), ((string) scDim).c_str());
}
if (num == 1) {
// HWC committed to the combination
// This is the best scale factor seen so far. Report the
// dimensions to the caller, in case nothing better is seen.
outBestDf = dfDim;
outBestSc = scDim;
// Success on the first pass means the largest possible scale
// is supported, in which case no need to search any further.
if (firstPass) { return Rational(scDim.height(), dfDim.height()); }
// Update the lower bound of the binary search
best = Rational(scDim.height(), dfDim.height());
} else {
// HWC didn't commit to this combination, so update the
// upper bound of the binary search.
minBad = Rational(scDim.height(), dfDim.height());
}
firstPass = false;
} while (best != minBad);
return best;
}
uint32_t numOverlapping(uint32_t backgroundFormat, uint32_t foregroundFormat,
uint32_t backgroundBlend, uint32_t foregroundBlend)
{
list<Rectangle> rectList;
Rectangle background(backgroundFormat, startDim, startDim);
background.blend = backgroundBlend;
rectList.push_back(background);
// TODO: Handle cases where startDim is so small that adding 5
// causes frames not to overlap.
// TODO: Handle cases where startDim is so large that adding 5
// cause a portion or all of the foreground displayFrame
// to be off the display.
Rectangle foreground(foregroundFormat, startDim, startDim);
foreground.displayFrame.left += 5;
foreground.displayFrame.top += 5;
foreground.displayFrame.right += 5;
foreground.displayFrame.bottom += 5;
background.blend = foregroundBlend;
rectList.push_back(foreground);
uint32_t num = numOverlays(rectList);
return num;
}
Rectangle::Rectangle(uint32_t graphicFormat, HwcTestDim dfDim,
HwcTestDim sDim) :
format(graphicFormat), transform(defaultTransform),
blend(defaultBlend), color(defaultColor), alpha(defaultAlpha),
sourceCrop(sDim), displayFrame(dfDim)
{
// Set source dimension
// Can't use a base initializer, because the setting of format
// must be done before setting the sourceDimension.
setSourceDim(sDim);
}
void Rectangle::setSourceDim(HwcTestDim dim)
{
this->sourceDim = dim;
const struct hwcTestGraphicFormat *attrib;
attrib = hwcTestGraphicFormatLookup(this->format);
if (attrib != NULL) {
if (sourceDim.width() % attrib->wMod) {
sourceDim.setWidth(sourceDim.width() + attrib->wMod
- (sourceDim.width() % attrib->wMod));
}
if (sourceDim.height() % attrib->hMod) {
sourceDim.setHeight(sourceDim.height() + attrib->hMod
- (sourceDim.height() % attrib->hMod));
}
}
}
// Rational member functions
bool Rational::operator==(const Rational& other) const
{
if (((uint64_t) _n * other._d)
== ((uint64_t) _d * other._n)) { return true; }
return false;
}
bool Rational::operator<(const Rational& other) const
{
if (((uint64_t) _n * other._d)
< ((uint64_t) _d * other._n)) { return true; }
return false;
}
Rational::operator string() const
{
ostringstream out;
out << _n << '/' << _d;
return out.str();
}
void Rational::double2Rational(double f, Range nRange, Range dRange,
Rational& lower, Rational& upper)
{
Rational bestLower(nRange.lower(), dRange.upper());
Rational bestUpper(nRange.upper(), dRange.lower());
// Search for a better solution
for (uint32_t d = dRange.lower(); d <= dRange.upper(); d++) {
Rational val(d * f, d); // Lower, because double to int cast truncates
if ((val.numerator() < nRange.lower())
|| (val.numerator() > nRange.upper())) { continue; }
if (((double) val > (double) bestLower) && ((double) val <= f)) {
bestLower = val;
}
val.setNumerator(val.numerator() + 1);
if (val.numerator() > nRange.upper()) { continue; }
if (((double) val < (double) bestUpper) && ((double) val >= f)) {
bestUpper = val;
}
}
lower = bestLower;
upper = bestUpper;
}
// Local functions
// Num Overlays
// Given a list of rectangles, determine how many HWC will commit to render
uint32_t numOverlays(list<Rectangle>& rectList)
{
hwc_layer_list_t *hwcList;
list<sp<GraphicBuffer> > buffers;
hwcList = hwcTestCreateLayerList(rectList.size());
if (hwcList == NULL) {
testPrintE("numOverlays create hwcList failed");
exit(30);
}
hwc_layer_t *layer = &hwcList->hwLayers[0];
for (std::list<Rectangle>::iterator it = rectList.begin();
it != rectList.end(); ++it, ++layer) {
// Allocate the texture for the source frame
// and push it onto the buffers list, so that it
// stays in scope until a return from this function.
sp<GraphicBuffer> texture;
texture = new GraphicBuffer(it->sourceDim.width(),
it->sourceDim.height(),
it->format, texUsage);
buffers.push_back(texture);
layer->handle = texture->handle;
layer->blending = it->blend;
layer->transform = it->transform;
layer->sourceCrop = it->sourceCrop;
layer->displayFrame = it->displayFrame;
layer->visibleRegionScreen.numRects = 1;
layer->visibleRegionScreen.rects = &layer->displayFrame;
}
// Perform prepare operation
if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(hwcList); }
hwcDevice->prepare(hwcDevice, hwcList);
if (verbose) {
testPrintI("Post Prepare:");
hwcTestDisplayListPrepareModifiable(hwcList);
}
// Count the number of overlays
uint32_t total = 0;
for (unsigned int n1 = 0; n1 < hwcList->numHwLayers; n1++) {
if (hwcList->hwLayers[n1].compositionType == HWC_OVERLAY) {
total++;
}
}
// Free the layer list and graphic buffers
hwcTestFreeLayerList(hwcList);
return total;
}
string transformList2str(const list<uint32_t>& transformList)
{
ostringstream out;
for (list<uint32_t>::const_iterator it = transformList.begin();
it != transformList.end(); ++it) {
uint32_t id = *it;
if (it != transformList.begin()) {
out << ", ";
}
out << id;
for (unsigned int idx = 0; idx < NUMA(transformType); idx++) {
if (id == transformType[idx].id) {
out << " (" << transformType[idx].desc << ')';
break;
}
}
}
return out.str();
}
string blendList2str(const list<uint32_t>& blendList)
{
ostringstream out;
for (list<uint32_t>::const_iterator it = blendList.begin();
it != blendList.end(); ++it) {
uint32_t id = *it;
if (it != blendList.begin()) {
out << ", ";
}
out << id;
for (unsigned int idx = 0; idx < NUMA(blendType); idx++) {
if (id == blendType[idx].id) {
out << " (" << blendType[idx].desc << ')';
break;
}
}
}
return out.str();
}
void init(void)
{
srand48(0);
hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height);
hwcTestOpenHwc(&hwcDevice);
}
void printFormatHeadings(size_t indent)
{
for (size_t row = 0; row <= maxHeadingLen; row++) {
ostringstream line;
for(vector<string>::iterator it = formats.begin();
it != formats.end(); ++it) {
if ((maxHeadingLen - row) <= it->length()) {
if (row != maxHeadingLen) {
char ch = (*it)[it->length() - (maxHeadingLen - row)];
line << ' ' << setw(printFieldWidth) << ch;
} else {
line << ' ' << string(printFieldWidth, '-');
}
} else {
line << ' ' << setw(printFieldWidth) << "";
}
}
testPrintI("%*s%s", indent + maxHeadingLen, "",
line.str().c_str());
}
}
void printOverlapLine(size_t indent, const string formatStr,
const vector<uint32_t>& results)
{
ostringstream line;
line << setw(indent + maxHeadingLen - formatStr.length()) << "";
line << formatStr;
for (vector<uint32_t>::const_iterator it = results.begin();
it != results.end(); ++it) {
line << ' ' << setw(printFieldWidth) << *it;
}
testPrintI("%s", line.str().c_str());
}
void printSyntax(const char *cmd)
{
testPrintE(" %s [options] [graphicFormat] ...",
cmd);
testPrintE(" options:");
testPrintE(" -s [width, height] - start dimension");
testPrintE(" -v - Verbose");
testPrintE("");
testPrintE(" graphic formats:");
for (unsigned int n1 = 0; n1 < NUMA(hwcTestGraphicFormat); n1++) {
testPrintE(" %s", hwcTestGraphicFormat[n1].desc);
}
}