/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ /* * Hardware Composer Commit Points * * Synopsis * hwcCommit [options] graphicFormat ... * options: * -s [width, height] - Starting dimension * -v - Verbose * * graphic formats: * RGBA8888 (reference frame default) * RGBX8888 * RGB888 * RGB565 * BGRA8888 * RGBA5551 * RGBA4444 * YV12 * * Description * The Hardware Composer (HWC) Commit test is a benchmark that * discovers the points at which the HWC will commit to rendering an * overlay(s). Before rendering a set of overlays, the HWC is shown * the list through a prepare call. During the prepare call the HWC * is able to examine the list and specify which overlays it is able * to handle. The overlays that it can't handle are typically composited * by a higher level (e.g. Surface Flinger) and then the original list * plus a composit of what HWC passed on are provided back to the HWC * for rendering. * * Once an implementation of the HWC has been shipped, a regression would * likely occur if a latter implementation started passing on conditions * that it used to commit to. The primary purpose of this benchmark * is the automated discovery of the commit points, where an implementation * is on the edge between committing and not committing. These are commonly * referred to as commit points. Between implementations changes to the * commit points are allowed, as long as they improve what the HWC commits * to. Once an implementation of the HWC is shipped, the commit points are * not allowed to regress in future implementations. * * This benchmark takes a sampling and then adjusts until it finds a * commit point. It doesn't exhaustively check all possible conditions, * which do to the number of combinations would be impossible. Instead * it starts its search from a starting dimension, that can be changed * via the -s option. The search is also bounded by a set of search * limits, that are hard-coded into a structure of constants named * searchLimits. Results that happen to reach a searchLimit are prefixed * with >=, so that it is known that the value could possibly be larger. * * Measurements are made for each of the graphic formats specified as * positional parameters on the command-line. If no graphic formats * are specified on the command line, then by default measurements are * made and reported for each of the known graphic format. */ #include <algorithm> #include <assert.h> #include <cerrno> #include <cmath> #include <cstdlib> #include <ctime> #include <iomanip> #include <istream> #include <libgen.h> #include <list> #include <sched.h> #include <sstream> #include <stdint.h> #include <string.h> #include <unistd.h> #include <vector> #include <sys/syscall.h> #include <sys/types.h> #include <sys/wait.h> #include <EGL/egl.h> #include <EGL/eglext.h> #include <GLES2/gl2.h> #include <GLES2/gl2ext.h> #include <ui/FramebufferNativeWindow.h> #include <ui/GraphicBuffer.h> #include <ui/EGLUtils.h> #define LOG_TAG "hwcCommitTest" #include <utils/Log.h> #include <testUtil.h> #include <hardware/hwcomposer.h> #include <glTestLib.h> #include <hwc/hwcTestLib.h> using namespace std; using namespace android; // Defaults const HwcTestDim defaultStartDim = HwcTestDim(100, 100); const bool defaultVerbose = false; const uint32_t defaultFormat = HAL_PIXEL_FORMAT_RGBA_8888; const int32_t defaultTransform = 0; const uint32_t defaultBlend = HWC_BLENDING_NONE; const ColorFract defaultColor(0.5, 0.5, 0.5); const float defaultAlpha = 1.0; // Opaque const HwcTestDim defaultSourceDim(1, 1); const struct hwc_rect defaultSourceCrop = {0, 0, 1, 1}; const struct hwc_rect defaultDisplayFrame = {0, 0, 100, 100}; // Global Constants const uint32_t printFieldWidth = 2; const struct searchLimits { uint32_t numOverlays; HwcTestDim sourceCrop; } searchLimits = { 10, HwcTestDim(3000, 2000), }; const struct transformType { const char *desc; uint32_t id; } transformType[] = { {"fliph", HWC_TRANSFORM_FLIP_H}, {"flipv", HWC_TRANSFORM_FLIP_V}, {"rot90", HWC_TRANSFORM_ROT_90}, {"rot180", HWC_TRANSFORM_ROT_180}, {"rot270", HWC_TRANSFORM_ROT_270}, }; const struct blendType { const char *desc; uint32_t id; } blendType[] = { {"none", HWC_BLENDING_NONE}, {"premult", HWC_BLENDING_PREMULT}, {"coverage", HWC_BLENDING_COVERAGE}, }; // Defines #define MAXCMD 200 #define CMD_STOP_FRAMEWORK "stop 2>&1" #define CMD_START_FRAMEWORK "start 2>&1" // Macros #define NUMA(a) (sizeof(a) / sizeof(a [0])) // Num elements in an array // Local types class Rectangle { public: Rectangle(uint32_t graphicFormat = defaultFormat, HwcTestDim dfDim = HwcTestDim(1, 1), HwcTestDim sDim = HwcTestDim(1, 1)); void setSourceDim(HwcTestDim dim); uint32_t format; uint32_t transform; int32_t blend; ColorFract color; float alpha; HwcTestDim sourceDim; struct hwc_rect sourceCrop; struct hwc_rect displayFrame; }; class Range { public: Range(void) : _l(0), _u(0) {} Range(uint32_t lower, uint32_t upper) : _l(lower), _u(upper) {} uint32_t lower(void) { return _l; } uint32_t upper(void) { return _u; } operator string(); private: uint32_t _l; // lower uint32_t _u; // upper }; Range::operator string() { ostringstream out; out << '[' << _l << ", " << _u << ']'; return out.str(); } class Rational { public: Rational(void) : _n(0), _d(1) {} Rational(uint32_t n, uint32_t d) : _n(n), _d(d) {} uint32_t numerator(void) { return _n; } uint32_t denominator(void) { return _d; } void setNumerator(uint32_t numerator) { _n = numerator; } bool operator==(const Rational& other) const; bool operator!=(const Rational& other) const { return !(*this == other); } bool operator<(const Rational& other) const; bool operator>(const Rational& other) const { return (!(*this == other) && !(*this < other)); } static void double2Rational(double f, Range nRange, Range dRange, Rational& lower, Rational& upper); operator string() const; operator double() const { return (double) _n / (double) _d; } private: uint32_t _n; uint32_t _d; }; // Globals static const int texUsage = GraphicBuffer::USAGE_HW_TEXTURE | GraphicBuffer::USAGE_SW_WRITE_RARELY; static hwc_composer_device_t *hwcDevice; static EGLDisplay dpy; static EGLSurface surface; static EGLint width, height; static size_t maxHeadingLen; static vector<string> formats; // Measurements struct meas { uint32_t format; uint32_t startDimOverlays; uint32_t maxNonOverlapping; uint32_t maxOverlapping; list<uint32_t> transforms; list<uint32_t> blends; struct displayFrame { uint32_t minWidth; uint32_t minHeight; HwcTestDim minDim; uint32_t maxWidth; uint32_t maxHeight; HwcTestDim maxDim; } df; struct sourceCrop { uint32_t minWidth; uint32_t minHeight; HwcTestDim minDim; uint32_t maxWidth; uint32_t maxHeight; HwcTestDim maxDim; Rational hScale; HwcTestDim hScaleBestDf; HwcTestDim hScaleBestSc; Rational vScale; HwcTestDim vScaleBestDf; HwcTestDim vScaleBestSc; } sc; vector<uint32_t> overlapBlendNone; vector<uint32_t> overlapBlendPremult; vector<uint32_t> overlapBlendCoverage; }; vector<meas> measurements; // Function prototypes uint32_t numOverlays(list<Rectangle>& rectList); uint32_t maxOverlays(uint32_t format, bool allowOverlap); list<uint32_t> supportedTransforms(uint32_t format); list<uint32_t> supportedBlends(uint32_t format); uint32_t dfMinWidth(uint32_t format); uint32_t dfMinHeight(uint32_t format); uint32_t dfMaxWidth(uint32_t format); uint32_t dfMaxHeight(uint32_t format); HwcTestDim dfMinDim(uint32_t format); HwcTestDim dfMaxDim(uint32_t format); uint32_t scMinWidth(uint32_t format, const HwcTestDim& dfDim); uint32_t scMinHeight(uint32_t format, const HwcTestDim& dfDim); uint32_t scMaxWidth(uint32_t format, const HwcTestDim& dfDim); uint32_t scMaxHeight(uint32_t format, const HwcTestDim& dfDim); HwcTestDim scMinDim(uint32_t format, const HwcTestDim& dfDim); HwcTestDim scMaxDim(uint32_t format, const HwcTestDim& dfDim); Rational scHScale(uint32_t format, const HwcTestDim& dfMin, const HwcTestDim& dfMax, const HwcTestDim& scMin, const HwcTestDim& scMax, HwcTestDim& outBestDf, HwcTestDim& outBestSc); Rational scVScale(uint32_t format, const HwcTestDim& dfMin, const HwcTestDim& dfMax, const HwcTestDim& scMin, const HwcTestDim& scMax, HwcTestDim& outBestDf, HwcTestDim& outBestSc); uint32_t numOverlapping(uint32_t backgroundFormat, uint32_t foregroundFormat, uint32_t backgroundBlend, uint32_t foregroundBlend); string transformList2str(const list<uint32_t>& transformList); string blendList2str(const list<uint32_t>& blendList); void init(void); void printFormatHeadings(size_t indent); void printOverlapLine(size_t indent, const string formatStr, const vector<uint32_t>& results); void printSyntax(const char *cmd); // Command-line option settings static bool verbose = defaultVerbose; static HwcTestDim startDim = defaultStartDim; /* * Main * * Performs the following high-level sequence of operations: * * 1. Command-line parsing * * 2. Form a list of command-line specified graphic formats. If * no formats are specified, then form a list of all known formats. * * 3. Stop framework * Only one user at a time is allowed to use the HWC. Surface * Flinger uses the HWC and is part of the framework. Need to * stop the framework so that Surface Flinger will stop using * the HWC. * * 4. Initialization * * 5. For each graphic format in the previously formed list perform * measurements on that format and report the results. * * 6. Start framework */ int main(int argc, char *argv[]) { int rv, opt; char *chptr; bool error; string str; char cmd[MAXCMD]; list<Rectangle> rectList; testSetLogCatTag(LOG_TAG); // Parse command line arguments while ((opt = getopt(argc, argv, "s:v?h")) != -1) { switch (opt) { case 's': // Start Dimension // Use arguments until next starts with a dash // or current ends with a > or ] str = optarg; while (optind < argc) { if (*argv[optind] == '-') { break; } char endChar = (str.length() > 1) ? str[str.length() - 1] : 0; if ((endChar == '>') || (endChar == ']')) { break; } str += " " + string(argv[optind++]); } { istringstream in(str); startDim = hwcTestParseDim(in, error); // Any parse error or characters not used by parser if (error || (((unsigned int) in.tellg() != in.str().length()) && (in.tellg() != (streampos) -1))) { testPrintE("Invalid command-line specified start " "dimension of: %s", str.c_str()); exit(8); } } break; case 'v': // Verbose verbose = true; break; case 'h': // Help case '?': default: printSyntax(basename(argv[0])); exit(((optopt == 0) || (optopt == '?')) ? 0 : 11); } } // Positional parameters // Positional parameters provide the names of graphic formats that // measurements are to be made on. Measurements are made on all // known graphic formats when no positional parameters are provided. if (optind == argc) { // No command-line specified graphic formats // Add all graphic formats to the list of formats to be measured for (unsigned int n1 = 0; n1 < NUMA(hwcTestGraphicFormat); n1++) { formats.push_back(hwcTestGraphicFormat[n1].desc); } } else { // Add names of command-line specified graphic formats to the // list of formats to be tested for (; argv[optind] != NULL; optind++) { formats.push_back(argv[optind]); } } // Determine length of longest specified graphic format. // This value is used for output formating for (vector<string>::iterator it = formats.begin(); it != formats.end(); ++it) { maxHeadingLen = max(maxHeadingLen, it->length()); } // Stop framework rv = snprintf(cmd, sizeof(cmd), "%s", CMD_STOP_FRAMEWORK); if (rv >= (signed) sizeof(cmd) - 1) { testPrintE("Command too long for: %s", CMD_STOP_FRAMEWORK); exit(14); } testExecCmd(cmd); testDelay(1.0); // TODO - needs means to query whether asynchronous stop // framework operation has completed. For now, just wait // a long time. testPrintI("startDim: %s", ((string) startDim).c_str()); init(); // For each of the graphic formats for (vector<string>::iterator itFormat = formats.begin(); itFormat != formats.end(); ++itFormat) { // Locate hwcTestLib structure that describes this format const struct hwcTestGraphicFormat *format; format = hwcTestGraphicFormatLookup((*itFormat).c_str()); if (format == NULL) { testPrintE("Unknown graphic format of: %s", (*itFormat).c_str()); exit(1); } // Display format header testPrintI("format: %s", format->desc); // Create area to hold the measurements struct meas meas; struct meas *measPtr; meas.format = format->format; measurements.push_back(meas); measPtr = &measurements[measurements.size() - 1]; // Start dimension num overlays Rectangle rect(format->format, startDim); rectList.clear(); rectList.push_back(rect); measPtr->startDimOverlays = numOverlays(rectList); testPrintI(" startDimOverlays: %u", measPtr->startDimOverlays); // Skip the rest of the measurements, when the start dimension // doesn't produce an overlay if (measPtr->startDimOverlays == 0) { continue; } // Max Overlays measPtr->maxNonOverlapping = maxOverlays(format->format, false); testPrintI(" max nonOverlapping overlays: %s%u", (measPtr->maxNonOverlapping == searchLimits.numOverlays) ? ">= " : "", measPtr->maxNonOverlapping); measPtr->maxOverlapping = maxOverlays(format->format, true); testPrintI(" max Overlapping overlays: %s%u", (measPtr->maxOverlapping == searchLimits.numOverlays) ? ">= " : "", measPtr->maxOverlapping); // Transforms and blends measPtr->transforms = supportedTransforms(format->format); testPrintI(" transforms: %s", transformList2str(measPtr->transforms).c_str()); measPtr->blends = supportedBlends(format->format); testPrintI(" blends: %s", blendList2str(measPtr->blends).c_str()); // Display frame measurements measPtr->df.minWidth = dfMinWidth(format->format); testPrintI(" dfMinWidth: %u", measPtr->df.minWidth); measPtr->df.minHeight = dfMinHeight(format->format); testPrintI(" dfMinHeight: %u", measPtr->df.minHeight); measPtr->df.maxWidth = dfMaxWidth(format->format); testPrintI(" dfMaxWidth: %u", measPtr->df.maxWidth); measPtr->df.maxHeight = dfMaxHeight(format->format); testPrintI(" dfMaxHeight: %u", measPtr->df.maxHeight); measPtr->df.minDim = dfMinDim(format->format); testPrintI(" dfMinDim: %s", ((string) measPtr->df.minDim).c_str()); measPtr->df.maxDim = dfMaxDim(format->format); testPrintI(" dfMaxDim: %s", ((string) measPtr->df.maxDim).c_str()); // Source crop measurements measPtr->sc.minWidth = scMinWidth(format->format, measPtr->df.minDim); testPrintI(" scMinWidth: %u", measPtr->sc.minWidth); measPtr->sc.minHeight = scMinHeight(format->format, measPtr->df.minDim); testPrintI(" scMinHeight: %u", measPtr->sc.minHeight); measPtr->sc.maxWidth = scMaxWidth(format->format, measPtr->df.maxDim); testPrintI(" scMaxWidth: %s%u", (measPtr->sc.maxWidth == searchLimits.sourceCrop.width()) ? ">= " : "", measPtr->sc.maxWidth); measPtr->sc.maxHeight = scMaxHeight(format->format, measPtr->df.maxDim); testPrintI(" scMaxHeight: %s%u", (measPtr->sc.maxHeight == searchLimits.sourceCrop.height()) ? ">= " : "", measPtr->sc.maxHeight); measPtr->sc.minDim = scMinDim(format->format, measPtr->df.minDim); testPrintI(" scMinDim: %s", ((string) measPtr->sc.minDim).c_str()); measPtr->sc.maxDim = scMaxDim(format->format, measPtr->df.maxDim); testPrintI(" scMaxDim: %s%s", ((measPtr->sc.maxDim.width() >= searchLimits.sourceCrop.width()) || (measPtr->sc.maxDim.width() >= searchLimits.sourceCrop.height())) ? ">= " : "", ((string) measPtr->sc.maxDim).c_str()); measPtr->sc.hScale = scHScale(format->format, measPtr->df.minDim, measPtr->df.maxDim, measPtr->sc.minDim, measPtr->sc.maxDim, measPtr->sc.hScaleBestDf, measPtr->sc.hScaleBestSc); testPrintI(" scHScale: %s%f", (measPtr->sc.hScale >= Rational(searchLimits.sourceCrop.width(), measPtr->df.minDim.width())) ? ">= " : "", (double) measPtr->sc.hScale); testPrintI(" HScale Best Display Frame: %s", ((string) measPtr->sc.hScaleBestDf).c_str()); testPrintI(" HScale Best Source Crop: %s", ((string) measPtr->sc.hScaleBestSc).c_str()); measPtr->sc.vScale = scVScale(format->format, measPtr->df.minDim, measPtr->df.maxDim, measPtr->sc.minDim, measPtr->sc.maxDim, measPtr->sc.vScaleBestDf, measPtr->sc.vScaleBestSc); testPrintI(" scVScale: %s%f", (measPtr->sc.vScale >= Rational(searchLimits.sourceCrop.height(), measPtr->df.minDim.height())) ? ">= " : "", (double) measPtr->sc.vScale); testPrintI(" VScale Best Display Frame: %s", ((string) measPtr->sc.vScaleBestDf).c_str()); testPrintI(" VScale Best Source Crop: %s", ((string) measPtr->sc.vScaleBestSc).c_str()); // Overlap two graphic formats and different blends // Results displayed after all overlap measurments with // current format in the foreground // TODO: make measurments with background blend other than // none. All of these measurements are done with a // background blend of HWC_BLENDING_NONE, with the // blend type of the foregound being varied. uint32_t foregroundFormat = format->format; for (vector<string>::iterator it = formats.begin(); it != formats.end(); ++it) { uint32_t num; const struct hwcTestGraphicFormat *backgroundFormatPtr = hwcTestGraphicFormatLookup((*it).c_str()); uint32_t backgroundFormat = backgroundFormatPtr->format; num = numOverlapping(backgroundFormat, foregroundFormat, HWC_BLENDING_NONE, HWC_BLENDING_NONE); measPtr->overlapBlendNone.push_back(num); num = numOverlapping(backgroundFormat, foregroundFormat, HWC_BLENDING_NONE, HWC_BLENDING_PREMULT); measPtr->overlapBlendPremult.push_back(num); num = numOverlapping(backgroundFormat, foregroundFormat, HWC_BLENDING_NONE, HWC_BLENDING_COVERAGE); measPtr->overlapBlendCoverage.push_back(num); } } // Display overlap results size_t indent = 2; testPrintI("overlapping blend: none"); printFormatHeadings(indent); for (vector<string>::iterator it = formats.begin(); it != formats.end(); ++it) { printOverlapLine(indent, *it, measurements[it - formats.begin()].overlapBlendNone); } testPrintI(""); testPrintI("overlapping blend: premult"); printFormatHeadings(indent); for (vector<string>::iterator it = formats.begin(); it != formats.end(); ++it) { printOverlapLine(indent, *it, measurements[it - formats.begin()].overlapBlendPremult); } testPrintI(""); testPrintI("overlapping blend: coverage"); printFormatHeadings(indent); for (vector<string>::iterator it = formats.begin(); it != formats.end(); ++it) { printOverlapLine(indent, *it, measurements[it - formats.begin()].overlapBlendCoverage); } testPrintI(""); // Start framework rv = snprintf(cmd, sizeof(cmd), "%s", CMD_START_FRAMEWORK); if (rv >= (signed) sizeof(cmd) - 1) { testPrintE("Command too long for: %s", CMD_START_FRAMEWORK); exit(21); } testExecCmd(cmd); return 0; } // Determine the maximum number of overlays that are all of the same format // that the HWC will commit to. If allowOverlap is true, then the rectangles // are laid out on a diagonal starting from the upper left corner. With // each rectangle adjust one pixel to the right and one pixel down. // When allowOverlap is false, the rectangles are tiled in column major // order. Note, column major ordering is used so that the initial rectangles // are all on different horizontal scan rows. It is common that hardware // has limits on the number of objects it can handle on any single row. uint32_t maxOverlays(uint32_t format, bool allowOverlap) { unsigned int max = 0; for (unsigned int numRects = 1; numRects <= searchLimits.numOverlays; numRects++) { list<Rectangle> rectList; for (unsigned int x = 0; (x + startDim.width()) < (unsigned int) width; x += (allowOverlap) ? 1 : startDim.width()) { for (unsigned int y = 0; (y + startDim.height()) < (unsigned int) height; y += (allowOverlap) ? 1 : startDim.height()) { Rectangle rect(format, startDim, startDim); rect.displayFrame.left = x; rect.displayFrame.top = y; rect.displayFrame.right = x + startDim.width(); rect.displayFrame.bottom = y + startDim.height(); rectList.push_back(rect); if (rectList.size() >= numRects) { break; } } if (rectList.size() >= numRects) { break; } } uint32_t num = numOverlays(rectList); if (num > max) { max = num; } } return max; } // Measures what transforms (i.e. flip horizontal, rotate 180) are // supported by the specified format list<uint32_t> supportedTransforms(uint32_t format) { list<uint32_t> rv; list<Rectangle> rectList; Rectangle rect(format, startDim); // For each of the transform types for (unsigned int idx = 0; idx < NUMA(transformType); idx++) { unsigned int id = transformType[idx].id; rect.transform = id; rectList.clear(); rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num == 1) { rv.push_back(id); } } return rv; } // Determines which types of blends (i.e. none, premult, coverage) are // supported by the specified format list<uint32_t> supportedBlends(uint32_t format) { list<uint32_t> rv; list<Rectangle> rectList; Rectangle rect(format, startDim); // For each of the blend types for (unsigned int idx = 0; idx < NUMA(blendType); idx++) { unsigned int id = blendType[idx].id; rect.blend = id; rectList.clear(); rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num == 1) { rv.push_back(id); } } return rv; } // Determines the minimum width of any display frame of the given format // that the HWC will commit to. uint32_t dfMinWidth(uint32_t format) { uint32_t w; list<Rectangle> rectList; for (w = 1; w <= startDim.width(); w++) { HwcTestDim dim(w, startDim.height()); Rectangle rect(format, dim); rectList.clear(); rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num > 0) { return w; } } if (w > startDim.width()) { testPrintE("Failed to locate display frame min width"); exit(33); } return w; } // Display frame minimum height uint32_t dfMinHeight(uint32_t format) { uint32_t h; list<Rectangle> rectList; for (h = 1; h <= startDim.height(); h++) { HwcTestDim dim(startDim.width(), h); Rectangle rect(format, dim); rectList.clear(); rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num > 0) { return h; } } if (h > startDim.height()) { testPrintE("Failed to locate display frame min height"); exit(34); } return h; } // Display frame maximum width uint32_t dfMaxWidth(uint32_t format) { uint32_t w; list<Rectangle> rectList; for (w = width; w >= startDim.width(); w--) { HwcTestDim dim(w, startDim.height()); Rectangle rect(format, dim); rectList.clear(); rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num > 0) { return w; } } if (w < startDim.width()) { testPrintE("Failed to locate display frame max width"); exit(35); } return w; } // Display frame maximum height uint32_t dfMaxHeight(uint32_t format) { uint32_t h; for (h = height; h >= startDim.height(); h--) { HwcTestDim dim(startDim.width(), h); Rectangle rect(format, dim); list<Rectangle> rectList; rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num > 0) { return h; } } if (h < startDim.height()) { testPrintE("Failed to locate display frame max height"); exit(36); } return h; } // Determine the minimum number of pixels that the HWC will ever commit to. // Note, this might be different that dfMinWidth * dfMinHeight, in that this // function adjusts both the width and height from the starting dimension. HwcTestDim dfMinDim(uint32_t format) { uint64_t bestMinPixels = 0; HwcTestDim bestDim; bool bestSet = false; // True when value has been assigned to // bestMinPixels and bestDim bool origVerbose = verbose; // Temporarily turn off verbose verbose = false; for (uint32_t w = 1; w <= startDim.width(); w++) { for (uint32_t h = 1; h <= startDim.height(); h++) { if (bestSet && ((w > bestMinPixels) || (h > bestMinPixels))) { break; } HwcTestDim dim(w, h); Rectangle rect(format, dim); list<Rectangle> rectList; rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num > 0) { uint64_t pixels = dim.width() * dim.height(); if (!bestSet || (pixels < bestMinPixels)) { bestMinPixels = pixels; bestDim = dim; bestSet = true; } } } } verbose = origVerbose; if (!bestSet) { testPrintE("Unable to locate display frame min dimension"); exit(20); } return bestDim; } // Display frame maximum dimension HwcTestDim dfMaxDim(uint32_t format) { uint64_t bestMaxPixels = 0; HwcTestDim bestDim; bool bestSet = false; // True when value has been assigned to // bestMaxPixels and bestDim; // Potentially increase benchmark performance by first checking // for the common case of supporting a full display frame. HwcTestDim dim(width, height); Rectangle rect(format, dim); list<Rectangle> rectList; rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num == 1) { return dim; } // TODO: Use a binary search bool origVerbose = verbose; // Temporarily turn off verbose verbose = false; for (uint32_t w = startDim.width(); w <= (uint32_t) width; w++) { for (uint32_t h = startDim.height(); h <= (uint32_t) height; h++) { if (bestSet && ((w * h) <= bestMaxPixels)) { continue; } HwcTestDim dim(w, h); Rectangle rect(format, dim); list<Rectangle> rectList; rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num > 0) { uint64_t pixels = dim.width() * dim.height(); if (!bestSet || (pixels > bestMaxPixels)) { bestMaxPixels = pixels; bestDim = dim; bestSet = true; } } } } verbose = origVerbose; if (!bestSet) { testPrintE("Unable to locate display frame max dimension"); exit(21); } return bestDim; } // Source crop minimum width uint32_t scMinWidth(uint32_t format, const HwcTestDim& dfDim) { uint32_t w; list<Rectangle> rectList; // Source crop frame min width for (w = 1; w <= dfDim.width(); w++) { Rectangle rect(format, dfDim, HwcTestDim(w, dfDim.height())); rectList.clear(); rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num > 0) { return w; } } testPrintE("Failed to locate source crop min width"); exit(35); } // Source crop minimum height uint32_t scMinHeight(uint32_t format, const HwcTestDim& dfDim) { uint32_t h; list<Rectangle> rectList; for (h = 1; h <= dfDim.height(); h++) { Rectangle rect(format, dfDim, HwcTestDim(dfDim.width(), h)); rectList.clear(); rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num > 0) { return h; } } testPrintE("Failed to locate source crop min height"); exit(36); } // Source crop maximum width uint32_t scMaxWidth(uint32_t format, const HwcTestDim& dfDim) { uint32_t w; list<Rectangle> rectList; for (w = searchLimits.sourceCrop.width(); w >= dfDim.width(); w--) { Rectangle rect(format, dfDim, HwcTestDim(w, dfDim.height())); rectList.clear(); rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num > 0) { return w; } } testPrintE("Failed to locate source crop max width"); exit(35); } // Source crop maximum height uint32_t scMaxHeight(uint32_t format, const HwcTestDim& dfDim) { uint32_t h; list<Rectangle> rectList; for (h = searchLimits.sourceCrop.height(); h >= dfDim.height(); h--) { Rectangle rect(format, dfDim, HwcTestDim(dfDim.width(), h)); rectList.clear(); rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num > 0) { return h; } } testPrintE("Failed to locate source crop max height"); exit(36); } // Source crop minimum dimension // Discovers the source crop with the least number of pixels that the // HWC will commit to. Note, this may be different from scMinWidth // * scMinHeight, in that this function searches for a combination of // width and height. While the other routines always keep one of the // dimensions equal to the corresponding start dimension. HwcTestDim scMinDim(uint32_t format, const HwcTestDim& dfDim) { uint64_t bestMinPixels = 0; HwcTestDim bestDim; bool bestSet = false; // True when value has been assigned to // bestMinPixels and bestDim bool origVerbose = verbose; // Temporarily turn off verbose verbose = false; for (uint32_t w = 1; w <= dfDim.width(); w++) { for (uint32_t h = 1; h <= dfDim.height(); h++) { if (bestSet && ((w > bestMinPixels) || (h > bestMinPixels))) { break; } HwcTestDim dim(w, h); Rectangle rect(format, dfDim, HwcTestDim(w, h)); list<Rectangle> rectList; rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num > 0) { uint64_t pixels = dim.width() * dim.height(); if (!bestSet || (pixels < bestMinPixels)) { bestMinPixels = pixels; bestDim = dim; bestSet = true; } } } } verbose = origVerbose; if (!bestSet) { testPrintE("Unable to locate source crop min dimension"); exit(20); } return bestDim; } // Source crop maximum dimension HwcTestDim scMaxDim(uint32_t format, const HwcTestDim& dfDim) { uint64_t bestMaxPixels = 0; HwcTestDim bestDim; bool bestSet = false; // True when value has been assigned to // bestMaxPixels and bestDim; // Potentially increase benchmark performance by first checking // for the common case of supporting the maximum checked source size HwcTestDim dim = searchLimits.sourceCrop; Rectangle rect(format, dfDim, searchLimits.sourceCrop); list<Rectangle> rectList; rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num == 1) { return dim; } // TODO: Use a binary search bool origVerbose = verbose; // Temporarily turn off verbose verbose = false; for (uint32_t w = dfDim.width(); w <= searchLimits.sourceCrop.width(); w++) { for (uint32_t h = dfDim.height(); h <= searchLimits.sourceCrop.height(); h++) { if (bestSet && ((w * h) <= bestMaxPixels)) { continue; } HwcTestDim dim(w, h); Rectangle rect(format, dfDim, dim); list<Rectangle> rectList; rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (num > 0) { uint64_t pixels = dim.width() * dim.height(); if (!bestSet || (pixels > bestMaxPixels)) { bestMaxPixels = pixels; bestDim = dim; bestSet = true; } } } } verbose = origVerbose; if (!bestSet) { testPrintE("Unable to locate source crop max dimension"); exit(21); } return bestDim; } // Source crop horizontal scale // Determines the maximum factor by which the source crop can be larger // that the display frame. The commit point is discovered through a // binary search of rational numbers. The numerator in each of the // rational numbers contains the dimension for the source crop, while // the denominator specifies the dimension for the display frame. On // each pass of the binary search the mid-point between the greatest // point committed to (best) and the smallest point in which a commit // has failed is calculated. This mid-point is then passed to a function // named double2Rational, which determines the closest rational numbers // just below and above the mid-point. By default the lower rational // number is used for the scale factor on the next pass of the binary // search. The upper value is only used when best is already equal // to the lower value. This only occurs when the lower value has already // been tried. Rational scHScale(uint32_t format, const HwcTestDim& dfMin, const HwcTestDim& dfMax, const HwcTestDim& scMin, const HwcTestDim& scMax, HwcTestDim& outBestDf, HwcTestDim& outBestSc) { HwcTestDim scDim, dfDim; // Source crop and display frame dimension Rational best(0, 1), minBad; // Current bounds for a binary search // MinGood is set below the lowest // possible scale. The value of minBad, // will be set by the first pass // of the binary search. // Perform the passes of the binary search bool firstPass = true; do { // On first pass try the maximum scale within the search limits if (firstPass) { // Try the maximum possible scale, within the search limits scDim = HwcTestDim(searchLimits.sourceCrop.width(), scMin.height()); dfDim = dfMin; } else { // Subsequent pass // Halve the difference between best and minBad. Rational lower, upper, selected; // Try the closest ratio halfway between minBood and minBad; // TODO: Avoid rounding issue by using Rational type for // midpoint. For now will use double, which should // have more than sufficient resolution. double mid = (double) best + ((double) minBad - (double) best) / 2.0; Rational::double2Rational(mid, Range(scMin.width(), scMax.width()), Range(dfMin.width(), dfMax.width()), lower, upper); if (((lower == best) && (upper == minBad))) { return best; } // Use lower value unless its already been tried selected = (lower != best) ? lower : upper; // Assign the size of the source crop and display frame // from the selected ratio of source crop to display frame. scDim = HwcTestDim(selected.numerator(), scMin.height()); dfDim = HwcTestDim(selected.denominator(), dfMin.height()); } // See if the HWC will commit to this combination Rectangle rect(format, dfDim, scDim); list<Rectangle> rectList; rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (verbose) { testPrintI(" scHscale num: %u scale: %f dfDim: %s scDim: %s", num, (float) Rational(scDim.width(), dfDim.width()), ((string) dfDim).c_str(), ((string) scDim).c_str()); } if (num == 1) { // HWC committed to the combination // This is the best scale factor seen so far. Report the // dimensions to the caller, in case nothing better is seen. outBestDf = dfDim; outBestSc = scDim; // Success on the first pass means the largest possible scale // is supported, in which case no need to search any further. if (firstPass) { return Rational(scDim.width(), dfDim.width()); } // Update the lower bound of the binary search best = Rational(scDim.width(), dfDim.width()); } else { // HWC didn't commit to this combination, so update the // upper bound of the binary search. minBad = Rational(scDim.width(), dfDim.width()); } firstPass = false; } while (best != minBad); return best; } // Source crop vertical scale // Determines the maximum factor by which the source crop can be larger // that the display frame. The commit point is discovered through a // binary search of rational numbers. The numerator in each of the // rational numbers contains the dimension for the source crop, while // the denominator specifies the dimension for the display frame. On // each pass of the binary search the mid-point between the greatest // point committed to (best) and the smallest point in which a commit // has failed is calculated. This mid-point is then passed to a function // named double2Rational, which determines the closest rational numbers // just below and above the mid-point. By default the lower rational // number is used for the scale factor on the next pass of the binary // search. The upper value is only used when best is already equal // to the lower value. This only occurs when the lower value has already // been tried. Rational scVScale(uint32_t format, const HwcTestDim& dfMin, const HwcTestDim& dfMax, const HwcTestDim& scMin, const HwcTestDim& scMax, HwcTestDim& outBestDf, HwcTestDim& outBestSc) { HwcTestDim scDim, dfDim; // Source crop and display frame dimension Rational best(0, 1), minBad; // Current bounds for a binary search // MinGood is set below the lowest // possible scale. The value of minBad, // will be set by the first pass // of the binary search. // Perform the passes of the binary search bool firstPass = true; do { // On first pass try the maximum scale within the search limits if (firstPass) { // Try the maximum possible scale, within the search limits scDim = HwcTestDim(scMin.width(), searchLimits.sourceCrop.height()); dfDim = dfMin; } else { // Subsequent pass // Halve the difference between best and minBad. Rational lower, upper, selected; // Try the closest ratio halfway between minBood and minBad; // TODO: Avoid rounding issue by using Rational type for // midpoint. For now will use double, which should // have more than sufficient resolution. double mid = (double) best + ((double) minBad - (double) best) / 2.0; Rational::double2Rational(mid, Range(scMin.height(), scMax.height()), Range(dfMin.height(), dfMax.height()), lower, upper); if (((lower == best) && (upper == minBad))) { return best; } // Use lower value unless its already been tried selected = (lower != best) ? lower : upper; // Assign the size of the source crop and display frame // from the selected ratio of source crop to display frame. scDim = HwcTestDim(scMin.width(), selected.numerator()); dfDim = HwcTestDim(dfMin.width(), selected.denominator()); } // See if the HWC will commit to this combination Rectangle rect(format, dfDim, scDim); list<Rectangle> rectList; rectList.push_back(rect); uint32_t num = numOverlays(rectList); if (verbose) { testPrintI(" scHscale num: %u scale: %f dfDim: %s scDim: %s", num, (float) Rational(scDim.height(), dfDim.height()), ((string) dfDim).c_str(), ((string) scDim).c_str()); } if (num == 1) { // HWC committed to the combination // This is the best scale factor seen so far. Report the // dimensions to the caller, in case nothing better is seen. outBestDf = dfDim; outBestSc = scDim; // Success on the first pass means the largest possible scale // is supported, in which case no need to search any further. if (firstPass) { return Rational(scDim.height(), dfDim.height()); } // Update the lower bound of the binary search best = Rational(scDim.height(), dfDim.height()); } else { // HWC didn't commit to this combination, so update the // upper bound of the binary search. minBad = Rational(scDim.height(), dfDim.height()); } firstPass = false; } while (best != minBad); return best; } uint32_t numOverlapping(uint32_t backgroundFormat, uint32_t foregroundFormat, uint32_t backgroundBlend, uint32_t foregroundBlend) { list<Rectangle> rectList; Rectangle background(backgroundFormat, startDim, startDim); background.blend = backgroundBlend; rectList.push_back(background); // TODO: Handle cases where startDim is so small that adding 5 // causes frames not to overlap. // TODO: Handle cases where startDim is so large that adding 5 // cause a portion or all of the foreground displayFrame // to be off the display. Rectangle foreground(foregroundFormat, startDim, startDim); foreground.displayFrame.left += 5; foreground.displayFrame.top += 5; foreground.displayFrame.right += 5; foreground.displayFrame.bottom += 5; background.blend = foregroundBlend; rectList.push_back(foreground); uint32_t num = numOverlays(rectList); return num; } Rectangle::Rectangle(uint32_t graphicFormat, HwcTestDim dfDim, HwcTestDim sDim) : format(graphicFormat), transform(defaultTransform), blend(defaultBlend), color(defaultColor), alpha(defaultAlpha), sourceCrop(sDim), displayFrame(dfDim) { // Set source dimension // Can't use a base initializer, because the setting of format // must be done before setting the sourceDimension. setSourceDim(sDim); } void Rectangle::setSourceDim(HwcTestDim dim) { this->sourceDim = dim; const struct hwcTestGraphicFormat *attrib; attrib = hwcTestGraphicFormatLookup(this->format); if (attrib != NULL) { if (sourceDim.width() % attrib->wMod) { sourceDim.setWidth(sourceDim.width() + attrib->wMod - (sourceDim.width() % attrib->wMod)); } if (sourceDim.height() % attrib->hMod) { sourceDim.setHeight(sourceDim.height() + attrib->hMod - (sourceDim.height() % attrib->hMod)); } } } // Rational member functions bool Rational::operator==(const Rational& other) const { if (((uint64_t) _n * other._d) == ((uint64_t) _d * other._n)) { return true; } return false; } bool Rational::operator<(const Rational& other) const { if (((uint64_t) _n * other._d) < ((uint64_t) _d * other._n)) { return true; } return false; } Rational::operator string() const { ostringstream out; out << _n << '/' << _d; return out.str(); } void Rational::double2Rational(double f, Range nRange, Range dRange, Rational& lower, Rational& upper) { Rational bestLower(nRange.lower(), dRange.upper()); Rational bestUpper(nRange.upper(), dRange.lower()); // Search for a better solution for (uint32_t d = dRange.lower(); d <= dRange.upper(); d++) { Rational val(d * f, d); // Lower, because double to int cast truncates if ((val.numerator() < nRange.lower()) || (val.numerator() > nRange.upper())) { continue; } if (((double) val > (double) bestLower) && ((double) val <= f)) { bestLower = val; } val.setNumerator(val.numerator() + 1); if (val.numerator() > nRange.upper()) { continue; } if (((double) val < (double) bestUpper) && ((double) val >= f)) { bestUpper = val; } } lower = bestLower; upper = bestUpper; } // Local functions // Num Overlays // Given a list of rectangles, determine how many HWC will commit to render uint32_t numOverlays(list<Rectangle>& rectList) { hwc_layer_list_t *hwcList; list<sp<GraphicBuffer> > buffers; hwcList = hwcTestCreateLayerList(rectList.size()); if (hwcList == NULL) { testPrintE("numOverlays create hwcList failed"); exit(30); } hwc_layer_t *layer = &hwcList->hwLayers[0]; for (std::list<Rectangle>::iterator it = rectList.begin(); it != rectList.end(); ++it, ++layer) { // Allocate the texture for the source frame // and push it onto the buffers list, so that it // stays in scope until a return from this function. sp<GraphicBuffer> texture; texture = new GraphicBuffer(it->sourceDim.width(), it->sourceDim.height(), it->format, texUsage); buffers.push_back(texture); layer->handle = texture->handle; layer->blending = it->blend; layer->transform = it->transform; layer->sourceCrop = it->sourceCrop; layer->displayFrame = it->displayFrame; layer->visibleRegionScreen.numRects = 1; layer->visibleRegionScreen.rects = &layer->displayFrame; } // Perform prepare operation if (verbose) { testPrintI("Prepare:"); hwcTestDisplayList(hwcList); } hwcDevice->prepare(hwcDevice, hwcList); if (verbose) { testPrintI("Post Prepare:"); hwcTestDisplayListPrepareModifiable(hwcList); } // Count the number of overlays uint32_t total = 0; for (unsigned int n1 = 0; n1 < hwcList->numHwLayers; n1++) { if (hwcList->hwLayers[n1].compositionType == HWC_OVERLAY) { total++; } } // Free the layer list and graphic buffers hwcTestFreeLayerList(hwcList); return total; } string transformList2str(const list<uint32_t>& transformList) { ostringstream out; for (list<uint32_t>::const_iterator it = transformList.begin(); it != transformList.end(); ++it) { uint32_t id = *it; if (it != transformList.begin()) { out << ", "; } out << id; for (unsigned int idx = 0; idx < NUMA(transformType); idx++) { if (id == transformType[idx].id) { out << " (" << transformType[idx].desc << ')'; break; } } } return out.str(); } string blendList2str(const list<uint32_t>& blendList) { ostringstream out; for (list<uint32_t>::const_iterator it = blendList.begin(); it != blendList.end(); ++it) { uint32_t id = *it; if (it != blendList.begin()) { out << ", "; } out << id; for (unsigned int idx = 0; idx < NUMA(blendType); idx++) { if (id == blendType[idx].id) { out << " (" << blendType[idx].desc << ')'; break; } } } return out.str(); } void init(void) { srand48(0); hwcTestInitDisplay(verbose, &dpy, &surface, &width, &height); hwcTestOpenHwc(&hwcDevice); } void printFormatHeadings(size_t indent) { for (size_t row = 0; row <= maxHeadingLen; row++) { ostringstream line; for(vector<string>::iterator it = formats.begin(); it != formats.end(); ++it) { if ((maxHeadingLen - row) <= it->length()) { if (row != maxHeadingLen) { char ch = (*it)[it->length() - (maxHeadingLen - row)]; line << ' ' << setw(printFieldWidth) << ch; } else { line << ' ' << string(printFieldWidth, '-'); } } else { line << ' ' << setw(printFieldWidth) << ""; } } testPrintI("%*s%s", indent + maxHeadingLen, "", line.str().c_str()); } } void printOverlapLine(size_t indent, const string formatStr, const vector<uint32_t>& results) { ostringstream line; line << setw(indent + maxHeadingLen - formatStr.length()) << ""; line << formatStr; for (vector<uint32_t>::const_iterator it = results.begin(); it != results.end(); ++it) { line << ' ' << setw(printFieldWidth) << *it; } testPrintI("%s", line.str().c_str()); } void printSyntax(const char *cmd) { testPrintE(" %s [options] [graphicFormat] ...", cmd); testPrintE(" options:"); testPrintE(" -s [width, height] - start dimension"); testPrintE(" -v - Verbose"); testPrintE(""); testPrintE(" graphic formats:"); for (unsigned int n1 = 0; n1 < NUMA(hwcTestGraphicFormat); n1++) { testPrintE(" %s", hwcTestGraphicFormat[n1].desc); } }