/*
* Copyright (C) 2008 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef AbstractMacroAssembler_h
#define AbstractMacroAssembler_h
#include <wtf/Platform.h>
#include <MacroAssemblerCodeRef.h>
#include <CodeLocation.h>
#include <wtf/Noncopyable.h>
#include <wtf/UnusedParam.h>
#if ENABLE(ASSEMBLER)
namespace JSC {
class LinkBuffer;
class RepatchBuffer;
template <class AssemblerType>
class AbstractMacroAssembler {
public:
typedef AssemblerType AssemblerType_T;
typedef MacroAssemblerCodePtr CodePtr;
typedef MacroAssemblerCodeRef CodeRef;
class Jump;
typedef typename AssemblerType::RegisterID RegisterID;
typedef typename AssemblerType::FPRegisterID FPRegisterID;
typedef typename AssemblerType::JmpSrc JmpSrc;
typedef typename AssemblerType::JmpDst JmpDst;
// Section 1: MacroAssembler operand types
//
// The following types are used as operands to MacroAssembler operations,
// describing immediate and memory operands to the instructions to be planted.
enum Scale {
TimesOne,
TimesTwo,
TimesFour,
TimesEight,
};
// Address:
//
// Describes a simple base-offset address.
struct Address {
explicit Address(RegisterID base, int32_t offset = 0)
: base(base)
, offset(offset)
{
}
RegisterID base;
int32_t offset;
};
// ImplicitAddress:
//
// This class is used for explicit 'load' and 'store' operations
// (as opposed to situations in which a memory operand is provided
// to a generic operation, such as an integer arithmetic instruction).
//
// In the case of a load (or store) operation we want to permit
// addresses to be implicitly constructed, e.g. the two calls:
//
// load32(Address(addrReg), destReg);
// load32(addrReg, destReg);
//
// Are equivalent, and the explicit wrapping of the Address in the former
// is unnecessary.
struct ImplicitAddress {
ImplicitAddress(RegisterID base)
: base(base)
, offset(0)
{
}
ImplicitAddress(Address address)
: base(address.base)
, offset(address.offset)
{
}
RegisterID base;
int32_t offset;
};
// BaseIndex:
//
// Describes a complex addressing mode.
struct BaseIndex {
BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0)
: base(base)
, index(index)
, scale(scale)
, offset(offset)
{
}
RegisterID base;
RegisterID index;
Scale scale;
int32_t offset;
};
// AbsoluteAddress:
//
// Describes an memory operand given by a pointer. For regular load & store
// operations an unwrapped void* will be used, rather than using this.
struct AbsoluteAddress {
explicit AbsoluteAddress(void* ptr)
: m_ptr(ptr)
{
}
void* m_ptr;
};
// ImmPtr:
//
// A pointer sized immediate operand to an instruction - this is wrapped
// in a class requiring explicit construction in order to differentiate
// from pointers used as absolute addresses to memory operations
struct ImmPtr {
explicit ImmPtr(void* value)
: m_value(value)
{
}
intptr_t asIntptr()
{
return reinterpret_cast<intptr_t>(m_value);
}
void* m_value;
};
// Imm32:
//
// A 32bit immediate operand to an instruction - this is wrapped in a
// class requiring explicit construction in order to prevent RegisterIDs
// (which are implemented as an enum) from accidentally being passed as
// immediate values.
struct Imm32 {
explicit Imm32(int32_t value)
: m_value(value)
#if CPU(ARM)
, m_isPointer(false)
#endif
{
}
#if !CPU(X86_64)
explicit Imm32(ImmPtr ptr)
: m_value(ptr.asIntptr())
#if CPU(ARM)
, m_isPointer(true)
#endif
{
}
#endif
int32_t m_value;
#if CPU(ARM)
// We rely on being able to regenerate code to recover exception handling
// information. Since ARMv7 supports 16-bit immediates there is a danger
// that if pointer values change the layout of the generated code will change.
// To avoid this problem, always generate pointers (and thus Imm32s constructed
// from ImmPtrs) with a code sequence that is able to represent any pointer
// value - don't use a more compact form in these cases.
bool m_isPointer;
#endif
};
// Section 2: MacroAssembler code buffer handles
//
// The following types are used to reference items in the code buffer
// during JIT code generation. For example, the type Jump is used to
// track the location of a jump instruction so that it may later be
// linked to a label marking its destination.
// Label:
//
// A Label records a point in the generated instruction stream, typically such that
// it may be used as a destination for a jump.
class Label {
template<class TemplateAssemblerType>
friend class AbstractMacroAssembler;
friend class Jump;
friend class MacroAssemblerCodeRef;
friend class LinkBuffer;
public:
Label()
{
}
Label(AbstractMacroAssembler<AssemblerType>* masm)
: m_label(masm->m_assembler.label())
{
}
bool isUsed() const { return m_label.isUsed(); }
void used() { m_label.used(); }
private:
JmpDst m_label;
};
// DataLabelPtr:
//
// A DataLabelPtr is used to refer to a location in the code containing a pointer to be
// patched after the code has been generated.
class DataLabelPtr {
template<class TemplateAssemblerType>
friend class AbstractMacroAssembler;
friend class LinkBuffer;
public:
DataLabelPtr()
{
}
DataLabelPtr(AbstractMacroAssembler<AssemblerType>* masm)
: m_label(masm->m_assembler.label())
{
}
private:
JmpDst m_label;
};
// DataLabel32:
//
// A DataLabelPtr is used to refer to a location in the code containing a pointer to be
// patched after the code has been generated.
class DataLabel32 {
template<class TemplateAssemblerType>
friend class AbstractMacroAssembler;
friend class LinkBuffer;
public:
DataLabel32()
{
}
DataLabel32(AbstractMacroAssembler<AssemblerType>* masm)
: m_label(masm->m_assembler.label())
{
}
private:
JmpDst m_label;
};
// Call:
//
// A Call object is a reference to a call instruction that has been planted
// into the code buffer - it is typically used to link the call, setting the
// relative offset such that when executed it will call to the desired
// destination.
class Call {
template<class TemplateAssemblerType>
friend class AbstractMacroAssembler;
public:
enum Flags {
None = 0x0,
Linkable = 0x1,
Near = 0x2,
LinkableNear = 0x3,
};
Call()
: m_flags(None)
{
}
Call(JmpSrc jmp, Flags flags)
: m_jmp(jmp)
, m_flags(flags)
{
}
bool isFlagSet(Flags flag)
{
return m_flags & flag;
}
static Call fromTailJump(Jump jump)
{
return Call(jump.m_jmp, Linkable);
}
JmpSrc m_jmp;
private:
Flags m_flags;
};
// Jump:
//
// A jump object is a reference to a jump instruction that has been planted
// into the code buffer - it is typically used to link the jump, setting the
// relative offset such that when executed it will jump to the desired
// destination.
class Jump {
template<class TemplateAssemblerType>
friend class AbstractMacroAssembler;
friend class Call;
friend class LinkBuffer;
public:
Jump()
{
}
Jump(JmpSrc jmp)
: m_jmp(jmp)
{
}
void link(AbstractMacroAssembler<AssemblerType>* masm)
{
masm->m_assembler.linkJump(m_jmp, masm->m_assembler.label());
}
void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm)
{
masm->m_assembler.linkJump(m_jmp, label.m_label);
}
private:
JmpSrc m_jmp;
};
// JumpList:
//
// A JumpList is a set of Jump objects.
// All jumps in the set will be linked to the same destination.
class JumpList {
friend class LinkBuffer;
public:
typedef Vector<Jump, 16> JumpVector;
void link(AbstractMacroAssembler<AssemblerType>* masm)
{
size_t size = m_jumps.size();
for (size_t i = 0; i < size; ++i)
m_jumps[i].link(masm);
m_jumps.clear();
}
void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm)
{
size_t size = m_jumps.size();
for (size_t i = 0; i < size; ++i)
m_jumps[i].linkTo(label, masm);
m_jumps.clear();
}
void append(Jump jump)
{
m_jumps.append(jump);
}
void append(JumpList& other)
{
m_jumps.append(other.m_jumps.begin(), other.m_jumps.size());
}
bool empty()
{
return !m_jumps.size();
}
const JumpVector& jumps() { return m_jumps; }
private:
JumpVector m_jumps;
};
// Section 3: Misc admin methods
static CodePtr trampolineAt(CodeRef ref, Label label)
{
return CodePtr(AssemblerType::getRelocatedAddress(ref.m_code.dataLocation(), label.m_label));
}
size_t size()
{
return m_assembler.size();
}
Label label()
{
return Label(this);
}
Label align()
{
m_assembler.align(16);
return Label(this);
}
ptrdiff_t differenceBetween(Label from, Jump to)
{
return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp);
}
ptrdiff_t differenceBetween(Label from, Call to)
{
return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp);
}
ptrdiff_t differenceBetween(Label from, Label to)
{
return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label);
}
ptrdiff_t differenceBetween(Label from, DataLabelPtr to)
{
return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label);
}
ptrdiff_t differenceBetween(Label from, DataLabel32 to)
{
return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label);
}
ptrdiff_t differenceBetween(DataLabelPtr from, Jump to)
{
return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp);
}
ptrdiff_t differenceBetween(DataLabelPtr from, DataLabelPtr to)
{
return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label);
}
ptrdiff_t differenceBetween(DataLabelPtr from, Call to)
{
return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp);
}
protected:
AssemblerType m_assembler;
friend class LinkBuffer;
friend class RepatchBuffer;
static void linkJump(void* code, Jump jump, CodeLocationLabel target)
{
AssemblerType::linkJump(code, jump.m_jmp, target.dataLocation());
}
static void linkPointer(void* code, typename AssemblerType::JmpDst label, void* value)
{
AssemblerType::linkPointer(code, label, value);
}
static void* getLinkerAddress(void* code, typename AssemblerType::JmpSrc label)
{
return AssemblerType::getRelocatedAddress(code, label);
}
static void* getLinkerAddress(void* code, typename AssemblerType::JmpDst label)
{
return AssemblerType::getRelocatedAddress(code, label);
}
static unsigned getLinkerCallReturnOffset(Call call)
{
return AssemblerType::getCallReturnOffset(call.m_jmp);
}
static void repatchJump(CodeLocationJump jump, CodeLocationLabel destination)
{
AssemblerType::relinkJump(jump.dataLocation(), destination.dataLocation());
}
static void repatchNearCall(CodeLocationNearCall nearCall, CodeLocationLabel destination)
{
AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress());
}
static void repatchInt32(CodeLocationDataLabel32 dataLabel32, int32_t value)
{
AssemblerType::repatchInt32(dataLabel32.dataLocation(), value);
}
static void repatchPointer(CodeLocationDataLabelPtr dataLabelPtr, void* value)
{
AssemblerType::repatchPointer(dataLabelPtr.dataLocation(), value);
}
static void repatchLoadPtrToLEA(CodeLocationInstruction instruction)
{
AssemblerType::repatchLoadPtrToLEA(instruction.dataLocation());
}
};
} // namespace JSC
#endif // ENABLE(ASSEMBLER)
#endif // AbstractMacroAssembler_h