/* * Copyright (C) 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef AbstractMacroAssembler_h #define AbstractMacroAssembler_h #include <wtf/Platform.h> #include <MacroAssemblerCodeRef.h> #include <CodeLocation.h> #include <wtf/Noncopyable.h> #include <wtf/UnusedParam.h> #if ENABLE(ASSEMBLER) namespace JSC { class LinkBuffer; class RepatchBuffer; template <class AssemblerType> class AbstractMacroAssembler { public: typedef AssemblerType AssemblerType_T; typedef MacroAssemblerCodePtr CodePtr; typedef MacroAssemblerCodeRef CodeRef; class Jump; typedef typename AssemblerType::RegisterID RegisterID; typedef typename AssemblerType::FPRegisterID FPRegisterID; typedef typename AssemblerType::JmpSrc JmpSrc; typedef typename AssemblerType::JmpDst JmpDst; // Section 1: MacroAssembler operand types // // The following types are used as operands to MacroAssembler operations, // describing immediate and memory operands to the instructions to be planted. enum Scale { TimesOne, TimesTwo, TimesFour, TimesEight, }; // Address: // // Describes a simple base-offset address. struct Address { explicit Address(RegisterID base, int32_t offset = 0) : base(base) , offset(offset) { } RegisterID base; int32_t offset; }; // ImplicitAddress: // // This class is used for explicit 'load' and 'store' operations // (as opposed to situations in which a memory operand is provided // to a generic operation, such as an integer arithmetic instruction). // // In the case of a load (or store) operation we want to permit // addresses to be implicitly constructed, e.g. the two calls: // // load32(Address(addrReg), destReg); // load32(addrReg, destReg); // // Are equivalent, and the explicit wrapping of the Address in the former // is unnecessary. struct ImplicitAddress { ImplicitAddress(RegisterID base) : base(base) , offset(0) { } ImplicitAddress(Address address) : base(address.base) , offset(address.offset) { } RegisterID base; int32_t offset; }; // BaseIndex: // // Describes a complex addressing mode. struct BaseIndex { BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0) : base(base) , index(index) , scale(scale) , offset(offset) { } RegisterID base; RegisterID index; Scale scale; int32_t offset; }; // AbsoluteAddress: // // Describes an memory operand given by a pointer. For regular load & store // operations an unwrapped void* will be used, rather than using this. struct AbsoluteAddress { explicit AbsoluteAddress(void* ptr) : m_ptr(ptr) { } void* m_ptr; }; // ImmPtr: // // A pointer sized immediate operand to an instruction - this is wrapped // in a class requiring explicit construction in order to differentiate // from pointers used as absolute addresses to memory operations struct ImmPtr { explicit ImmPtr(void* value) : m_value(value) { } intptr_t asIntptr() { return reinterpret_cast<intptr_t>(m_value); } void* m_value; }; // Imm32: // // A 32bit immediate operand to an instruction - this is wrapped in a // class requiring explicit construction in order to prevent RegisterIDs // (which are implemented as an enum) from accidentally being passed as // immediate values. struct Imm32 { explicit Imm32(int32_t value) : m_value(value) #if CPU(ARM) , m_isPointer(false) #endif { } #if !CPU(X86_64) explicit Imm32(ImmPtr ptr) : m_value(ptr.asIntptr()) #if CPU(ARM) , m_isPointer(true) #endif { } #endif int32_t m_value; #if CPU(ARM) // We rely on being able to regenerate code to recover exception handling // information. Since ARMv7 supports 16-bit immediates there is a danger // that if pointer values change the layout of the generated code will change. // To avoid this problem, always generate pointers (and thus Imm32s constructed // from ImmPtrs) with a code sequence that is able to represent any pointer // value - don't use a more compact form in these cases. bool m_isPointer; #endif }; // Section 2: MacroAssembler code buffer handles // // The following types are used to reference items in the code buffer // during JIT code generation. For example, the type Jump is used to // track the location of a jump instruction so that it may later be // linked to a label marking its destination. // Label: // // A Label records a point in the generated instruction stream, typically such that // it may be used as a destination for a jump. class Label { template<class TemplateAssemblerType> friend class AbstractMacroAssembler; friend class Jump; friend class MacroAssemblerCodeRef; friend class LinkBuffer; public: Label() { } Label(AbstractMacroAssembler<AssemblerType>* masm) : m_label(masm->m_assembler.label()) { } bool isUsed() const { return m_label.isUsed(); } void used() { m_label.used(); } private: JmpDst m_label; }; // DataLabelPtr: // // A DataLabelPtr is used to refer to a location in the code containing a pointer to be // patched after the code has been generated. class DataLabelPtr { template<class TemplateAssemblerType> friend class AbstractMacroAssembler; friend class LinkBuffer; public: DataLabelPtr() { } DataLabelPtr(AbstractMacroAssembler<AssemblerType>* masm) : m_label(masm->m_assembler.label()) { } private: JmpDst m_label; }; // DataLabel32: // // A DataLabelPtr is used to refer to a location in the code containing a pointer to be // patched after the code has been generated. class DataLabel32 { template<class TemplateAssemblerType> friend class AbstractMacroAssembler; friend class LinkBuffer; public: DataLabel32() { } DataLabel32(AbstractMacroAssembler<AssemblerType>* masm) : m_label(masm->m_assembler.label()) { } private: JmpDst m_label; }; // Call: // // A Call object is a reference to a call instruction that has been planted // into the code buffer - it is typically used to link the call, setting the // relative offset such that when executed it will call to the desired // destination. class Call { template<class TemplateAssemblerType> friend class AbstractMacroAssembler; public: enum Flags { None = 0x0, Linkable = 0x1, Near = 0x2, LinkableNear = 0x3, }; Call() : m_flags(None) { } Call(JmpSrc jmp, Flags flags) : m_jmp(jmp) , m_flags(flags) { } bool isFlagSet(Flags flag) { return m_flags & flag; } static Call fromTailJump(Jump jump) { return Call(jump.m_jmp, Linkable); } JmpSrc m_jmp; private: Flags m_flags; }; // Jump: // // A jump object is a reference to a jump instruction that has been planted // into the code buffer - it is typically used to link the jump, setting the // relative offset such that when executed it will jump to the desired // destination. class Jump { template<class TemplateAssemblerType> friend class AbstractMacroAssembler; friend class Call; friend class LinkBuffer; public: Jump() { } Jump(JmpSrc jmp) : m_jmp(jmp) { } void link(AbstractMacroAssembler<AssemblerType>* masm) { masm->m_assembler.linkJump(m_jmp, masm->m_assembler.label()); } void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) { masm->m_assembler.linkJump(m_jmp, label.m_label); } private: JmpSrc m_jmp; }; // JumpList: // // A JumpList is a set of Jump objects. // All jumps in the set will be linked to the same destination. class JumpList { friend class LinkBuffer; public: typedef Vector<Jump, 16> JumpVector; void link(AbstractMacroAssembler<AssemblerType>* masm) { size_t size = m_jumps.size(); for (size_t i = 0; i < size; ++i) m_jumps[i].link(masm); m_jumps.clear(); } void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) { size_t size = m_jumps.size(); for (size_t i = 0; i < size; ++i) m_jumps[i].linkTo(label, masm); m_jumps.clear(); } void append(Jump jump) { m_jumps.append(jump); } void append(JumpList& other) { m_jumps.append(other.m_jumps.begin(), other.m_jumps.size()); } bool empty() { return !m_jumps.size(); } const JumpVector& jumps() { return m_jumps; } private: JumpVector m_jumps; }; // Section 3: Misc admin methods static CodePtr trampolineAt(CodeRef ref, Label label) { return CodePtr(AssemblerType::getRelocatedAddress(ref.m_code.dataLocation(), label.m_label)); } size_t size() { return m_assembler.size(); } Label label() { return Label(this); } Label align() { m_assembler.align(16); return Label(this); } ptrdiff_t differenceBetween(Label from, Jump to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); } ptrdiff_t differenceBetween(Label from, Call to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); } ptrdiff_t differenceBetween(Label from, Label to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); } ptrdiff_t differenceBetween(Label from, DataLabelPtr to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); } ptrdiff_t differenceBetween(Label from, DataLabel32 to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); } ptrdiff_t differenceBetween(DataLabelPtr from, Jump to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); } ptrdiff_t differenceBetween(DataLabelPtr from, DataLabelPtr to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); } ptrdiff_t differenceBetween(DataLabelPtr from, Call to) { return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); } protected: AssemblerType m_assembler; friend class LinkBuffer; friend class RepatchBuffer; static void linkJump(void* code, Jump jump, CodeLocationLabel target) { AssemblerType::linkJump(code, jump.m_jmp, target.dataLocation()); } static void linkPointer(void* code, typename AssemblerType::JmpDst label, void* value) { AssemblerType::linkPointer(code, label, value); } static void* getLinkerAddress(void* code, typename AssemblerType::JmpSrc label) { return AssemblerType::getRelocatedAddress(code, label); } static void* getLinkerAddress(void* code, typename AssemblerType::JmpDst label) { return AssemblerType::getRelocatedAddress(code, label); } static unsigned getLinkerCallReturnOffset(Call call) { return AssemblerType::getCallReturnOffset(call.m_jmp); } static void repatchJump(CodeLocationJump jump, CodeLocationLabel destination) { AssemblerType::relinkJump(jump.dataLocation(), destination.dataLocation()); } static void repatchNearCall(CodeLocationNearCall nearCall, CodeLocationLabel destination) { AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress()); } static void repatchInt32(CodeLocationDataLabel32 dataLabel32, int32_t value) { AssemblerType::repatchInt32(dataLabel32.dataLocation(), value); } static void repatchPointer(CodeLocationDataLabelPtr dataLabelPtr, void* value) { AssemblerType::repatchPointer(dataLabelPtr.dataLocation(), value); } static void repatchLoadPtrToLEA(CodeLocationInstruction instruction) { AssemblerType::repatchLoadPtrToLEA(instruction.dataLocation()); } }; } // namespace JSC #endif // ENABLE(ASSEMBLER) #endif // AbstractMacroAssembler_h